1
|
Phosphatidylserine Supplementation as a Novel Strategy for Reducing Myocardial Infarct Size and Preventing Adverse Left Ventricular Remodeling. Int J Mol Sci 2021; 22:ijms22094401. [PMID: 33922385 PMCID: PMC8122843 DOI: 10.3390/ijms22094401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/18/2022] Open
Abstract
Phosphatidylserines are known to sustain skeletal muscle activity during intense activity or hypoxic conditions, as well as preserve neurocognitive function in older patients. Our previous studies pointed out a potential cardioprotective role of phosphatidylserine in heart ischemia. Therefore, we investigated the effects of phosphatidylserine oral supplementation in a mouse model of acute myocardial infarction (AMI). We found out that phosphatidylserine increases, significantly, the cardiomyocyte survival by 50% in an acute model of myocardial ischemia-reperfusion. Similar, phosphatidylserine reduced significantly the infarcted size by 30% and improved heart function by 25% in a chronic model of AMI. The main responsible mechanism seems to be up-regulation of protein kinase C epsilon (PKC-ε), the main player of cardio-protection during pre-conditioning. Interestingly, if the phosphatidylserine supplementation is started before induction of AMI, but not after, it selectively inhibits neutrophil's activation, such as Interleukin 1 beta (IL-1β) expression, without affecting the healing and fibrosis. Thus, phosphatidylserine supplementation may represent a simple way to activate a pre-conditioning mechanism and may be a promising novel strategy to reduce infarct size following AMI and to prevent myocardial injury during myocardial infarction or cardiac surgery. Due to the minimal adverse effects, further investigation in large animals or in human are soon possible to establish the exact role of phosphatidylserine in cardiac diseases.
Collapse
|
2
|
Chen F, Yao C, Feng Y, Yu Y, Guo H, Yan J, Chen J. The identification of neutrophils-mediated mechanisms and potential therapeutic targets for the management of sepsis-induced acute immunosuppression using bioinformatics. Medicine (Baltimore) 2021; 100:e24669. [PMID: 33761636 PMCID: PMC9282053 DOI: 10.1097/md.0000000000024669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 01/18/2021] [Indexed: 01/05/2023] Open
Abstract
Neutrophils have crucial roles in defensing against infection and adaptive immune responses. This study aimed to investigate the genetic mechanism in neutrophils in response to sepsis-induced immunosuppression.The GSE64457 dataset was downloaded from the Gene Expression Omnibus database and the neutrophil samples (D3-4 and D6-8 post sepsis shock) were assigned into two groups. The differentially expressed genes (DEGs) were identified. The Short Time-series Expression Miner (STEM) clustering analysis was conducted to select the consistently changed DEGs post sepsis shock. The overlapping genes between the DEGs and the deposited genes associated with immune, sepsis, and immunosuppression in the AmiGO2 and Comparative Toxicogenomics Database were screened out and used for the construction of the protein-protein interaction (PPI) network. The expression of several hub genes in sepsis patients was validated using the PCR analysis. The drugs targeting the hub genes and the therapy strategies for sepsis or immunosuppression were reviewed and used to construct the drug-gene-therapy-cell network to illustrate the potential therapeutic roles of the hub genes.A total of 357 overlapping DEGs between the two groups were identified and were used for the STEM clustering analysis, which generated four significant profiles with 195 upregulated (including annexin A1, ANXA1; matrix metallopeptidase 9, MMP9; and interleukin 15, IL-15) and 151 downregulated DEGs (including, AKT1, IFN-related genes, and HLA antigen genes). Then, a total of 34 of the 151 downregulated DEGs and 39 of the 195 upregulated DEGs were shared between the databases and above DEGs, respectively. The PPI network analysis identified a downregulated module including IFN-related genes. The deregulation of DEGs including AKT1 (down), IFN-inducible protein 6 (IFI6, down), IL-15 (up), and ANXA1 (up) was verified in the neutrophils from patients with sepsis-induced immunosuppression as compared with controls. Literature review focusing on the therapy showed that the upregulation of IL-15, IFN, and HLA antigens are the management targets. Besides, the AKT1 gene was targeted by gemcitabine.These findings provided additional clues for understanding the mechanisms of sepsis-induced immunosuppression. The drugs targeting AKT1 might provide now clues for the management strategy of immunosuppression with the intention to prevent neutrophil infiltration.
Collapse
Affiliation(s)
- Fang Chen
- Nursing Department, Zhejiang Hospital
| | - Chunyan Yao
- Institute of Health Food, Zhejiang Academy of Medical Sciences
| | - Yue Feng
- Radiology Department, Zhejiang Hospital
| | - Ying Yu
- Institute of Health Food, Zhejiang Academy of Medical Sciences
| | - Honggang Guo
- Zhejiang Experimental Animal Center, Zhejiang Academy of Medical Sciences
| | - Jing Yan
- Intensive Care Unit, Zhejiang Hospital
| | - Jin Chen
- General Practice Department, Zhejiang Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Andreadou I, Cabrera-Fuentes HA, Devaux Y, Frangogiannis NG, Frantz S, Guzik T, Liehn EA, Gomes CPC, Schulz R, Hausenloy DJ. Immune cells as targets for cardioprotection: new players and novel therapeutic opportunities. Cardiovasc Res 2019; 115:1117-1130. [PMID: 30825305 PMCID: PMC6529904 DOI: 10.1093/cvr/cvz050] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/18/2018] [Accepted: 02/24/2019] [Indexed: 12/22/2022] Open
Abstract
New therapies are required to reduce myocardial infarct (MI) size and prevent the onset of heart failure in patients presenting with acute myocardial infarction (AMI), one of the leading causes of death and disability globally. In this regard, the immune cell response to AMI, which comprises an initial pro-inflammatory reaction followed by an anti-inflammatory phase, contributes to final MI size and post-AMI remodelling [changes in left ventricular (LV) size and function]. The transition between these two phases is critical in this regard, with a persistent and severe pro-inflammatory reaction leading to adverse LV remodelling and increased propensity for developing heart failure. In this review article, we provide an overview of the immune cells involved in orchestrating the complex and dynamic inflammatory response to AMI-these include neutrophils, monocytes/macrophages, and emerging players such as dendritic cells, lymphocytes, pericardial lymphoid cells, endothelial cells, and cardiac fibroblasts. We discuss potential reasons for past failures of anti-inflammatory cardioprotective therapies, and highlight new treatment targets for modulating the immune cell response to AMI, as a potential therapeutic strategy to improve clinical outcomes in AMI patients. This article is part of a Cardiovascular Research Spotlight Issue entitled 'Cardioprotection Beyond the Cardiomyocyte', and emerged as part of the discussions of the European Union (EU)-CARDIOPROTECTION Cooperation in Science and Technology (COST) Action, CA16225.
Collapse
Affiliation(s)
- Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, Athens, Greece
| | - Hector A Cabrera-Fuentes
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, 8 College Road, Singapore
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore
- Institute of Biochemistry, Medical School, Justus-Liebig University, Ludwigstrasse 23, Giessen, Germany
- Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Av. Eugenio Garza Sada 2501 Sur, Nuevo Leon, Mexico
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Kremlyovskaya St, 18, Kazan, Respublika Tatarstan, Russia
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, 1A-B rue Thomas Edison, Strassen, Luxembourg
| | - Nikolaos G Frangogiannis
- Wilf Family Cardiovascular Research Institute Department of Medicine (Cardiology) Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer G46B Bronx NY USA
| | - Stefan Frantz
- Department of Internal Medicine I, University Hospital Würzburg, Oberdürrbacher Str. 6, Würzburg, Germany
| | - Tomasz Guzik
- Department of Internal and Agricultural Medicine, Jagiellonian University Medical College, Świętej Anny 12, Kraków, Poland
- Institute of Cardiovascular and Medical Sciences, University ofGlasgow, University Avenue, Glasgow, UK
| | - Elisa A Liehn
- Institute for Molecular Cardiovascular Research, Rheinisch Westfälische Technische Hochschule Aachen University,Templergraben 55, Aachen, Germany
- Human Genomics Laboratory, University of Medicine and Pharmacy Craiova, Strada Petru Rareș 2, Craiova, Romania
- Department of Cardiology, Pulmonology, Angiology and Intensive Care, University Hospital, Rheinisch Westfälische Technische Hochschule,Templergraben 55, Aachen, Germany
| | - Clarissa P C Gomes
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, 1A-B rue Thomas Edison, Strassen, Luxembourg
| | - Rainer Schulz
- Physiologisches Institut Fachbereich Medizin der Justus-Liebig-Universität, Aulweg 129, Giessen, Germany
| | - Derek J Hausenloy
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, 8 College Road, Singapore
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore
- Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Av. Eugenio Garza Sada 2501 Sur, Nuevo Leon, Mexico
- Yong Loo Lin School of Medicine, National University Singapore, 1E Kent Ridge Road, Singapore
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, UK
- The National Institute of Health Research University College London Hospitals Biomedical Research Centre, Research & Development, Maple House 1st floor, 149 Tottenham Court Road, London, UK
| |
Collapse
|
5
|
Cabrera-Fuentes HA, Alba-Alba C, Aragones J, Bernhagen J, Boisvert WA, Bøtker HE, Cesarman-Maus G, Fleming I, Garcia-Dorado D, Lecour S, Liehn E, Marber MS, Marina N, Mayr M, Perez-Mendez O, Miura T, Ruiz-Meana M, Salinas-Estefanon EM, Ong SB, Schnittler HJ, Sanchez-Vega JT, Sumoza-Toledo A, Vogel CW, Yarullina D, Yellon DM, Preissner KT, Hausenloy DJ. Meeting report from the 2nd International Symposium on New Frontiers in Cardiovascular Research. Protecting the cardiovascular system from ischemia: between bench and bedside. Basic Res Cardiol 2016; 111:7. [PMID: 26667317 PMCID: PMC4679108 DOI: 10.1007/s00395-015-0527-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 11/26/2015] [Indexed: 12/17/2022]
Abstract
Recent advances in basic cardiovascular research as well as their translation into the clinical situation were the focus at the last "New Frontiers in Cardiovascular Research meeting". Major topics included the characterization of new targets and procedures in cardioprotection, deciphering new players and inflammatory mechanisms in ischemic heart disease as well as uncovering microRNAs and other biomarkers as versatile and possibly causal factors in cardiovascular pathogenesis. Although a number of pathological situations such as ischemia-reperfusion injury or atherosclerosis can be simulated and manipulated in diverse animal models, also to challenge new drugs for intervention, patient studies are the ultimate litmus test to obtain unequivocal information about the validity of biomedical concepts and their application in the clinics. Thus, the open and bidirectional exchange between bench and bedside is crucial to advance the field of ischemic heart disease with a particular emphasis of understanding long-lasting approaches in cardioprotection.
Collapse
Affiliation(s)
- Hector A Cabrera-Fuentes
- Institute of Biochemistry, Medical School, Justus-Liebig University, Giessen, Germany
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, Singapore, Singapore
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Department of Microbiology, Kazan Federal University, Kazan, Russian Federation
- Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, NL, México
| | - Corina Alba-Alba
- Institute of Genetics, Univeristy of the Sea. Puerto Escondido Campus, Oaxaca Oaxacan System of State Universities (SUNEO), Oaxaca, México
| | - Julian Aragones
- Research Unit, Hospital of Santa Cristina, Research Institute Princesa (IP), Autonomous University of Madrid, Madrid, Spain
| | - Jürgen Bernhagen
- Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University, Aachen, Germany
| | - William A Boisvert
- Department of Microbiology, Kazan Federal University, Kazan, Russian Federation
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, USA
| | - Hans E Bøtker
- Department of Cardiology, Aarhus University Hospital, Skejby, Aarhus N, Denmark
| | | | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe-University, Frankfurt, Germany
| | | | - Sandrine Lecour
- Hatter Institute and MRC Inter-University Cape Heart Unit, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Elisa Liehn
- Institute for Molecular Cardiovascular Research, RWTH University Hospital Aachen, Aachen, Germany
| | - Michael S Marber
- Department of Cardiology, The Rayne Institute, St Thomas' Campus, King's College London, London, UK
| | - Nephtali Marina
- Department of Clinical Pharmacology, University College London, London, UK
| | - Manuel Mayr
- The James Black Centre, King's College, University of London, London, UK
| | - Oscar Perez-Mendez
- Department of Molecular Biology, National Institute of Cardiology, Mexico City, Mexico
| | - Tetsuji Miura
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Marisol Ruiz-Meana
- Valld'Hebron University Hospital and Research Institute, Barcelona, Spain
| | | | - Sang-Bing Ong
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, Singapore, Singapore
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Hans J Schnittler
- Institute of Anatomy and Vascular Biology, Westfalian-Wilhelms-University, Münster, Germany
| | - Jose T Sanchez-Vega
- Laboratory of Parasitology, Department of Microbiology and Parasitology, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Adriana Sumoza-Toledo
- Laboratorio Multidisciplinario de Ciencias Biomédicas, Instituto de Investigaciones Medico-Biológicas, Universidad Veracruzana campus Veracruz, Veracruz, Mexico
| | - Carl-Wilhelm Vogel
- Department of Pathology, John A. Burns School of Medicine, University of Hawaii, Honolulu, USA
| | - Dina Yarullina
- Department of Microbiology, Kazan Federal University, Kazan, Russian Federation
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, London, UK
- The National Institute of Health Research University College London Hospitals Biomedical Research Centre, London, UK
| | - Klaus T Preissner
- Institute of Biochemistry, Medical School, Justus-Liebig University, Giessen, Germany
| | - Derek J Hausenloy
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, Singapore, Singapore.
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.
- The Hatter Cardiovascular Institute, University College London, London, UK.
- The National Institute of Health Research University College London Hospitals Biomedical Research Centre, London, UK.
| |
Collapse
|