1
|
Fan C, Wu Y, Rui X, Yang Y, Ling C, Liu S, Liu S, Wang Y. Animal models for COVID-19: advances, gaps and perspectives. Signal Transduct Target Ther 2022; 7:220. [PMID: 35798699 PMCID: PMC9261903 DOI: 10.1038/s41392-022-01087-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 01/08/2023] Open
Abstract
COVID-19, caused by SARS-CoV-2, is the most consequential pandemic of this century. Since the outbreak in late 2019, animal models have been playing crucial roles in aiding the rapid development of vaccines/drugs for prevention and therapy, as well as understanding the pathogenesis of SARS-CoV-2 infection and immune responses of hosts. However, the current animal models have some deficits and there is an urgent need for novel models to evaluate the virulence of variants of concerns (VOC), antibody-dependent enhancement (ADE), and various comorbidities of COVID-19. This review summarizes the clinical features of COVID-19 in different populations, and the characteristics of the major animal models of SARS-CoV-2, including those naturally susceptible animals, such as non-human primates, Syrian hamster, ferret, minks, poultry, livestock, and mouse models sensitized by genetically modified, AAV/adenoviral transduced, mouse-adapted strain of SARS-CoV-2, and by engraftment of human tissues or cells. Since understanding the host receptors and proteases is essential for designing advanced genetically modified animal models, successful studies on receptors and proteases are also reviewed. Several improved alternatives for future mouse models are proposed, including the reselection of alternative receptor genes or multiple gene combinations, the use of transgenic or knock-in method, and different strains for establishing the next generation of genetically modified mice.
Collapse
Affiliation(s)
- Changfa Fan
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), National Rodent Laboratory Animal Resources Center, Beijing, 102629, China
| | - Yong Wu
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), National Rodent Laboratory Animal Resources Center, Beijing, 102629, China
| | - Xiong Rui
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), National Rodent Laboratory Animal Resources Center, Beijing, 102629, China
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100083, China
| | - Yuansong Yang
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), National Rodent Laboratory Animal Resources Center, Beijing, 102629, China
| | - Chen Ling
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), National Rodent Laboratory Animal Resources Center, Beijing, 102629, China
- College of Life Sciences, Northwest University; Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, 710069, China
| | - Susu Liu
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), National Rodent Laboratory Animal Resources Center, Beijing, 102629, China
| | - Shunan Liu
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), National Rodent Laboratory Animal Resources Center, Beijing, 102629, China
| | - Youchun Wang
- Division of HIV/AIDS and Sexually Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, China.
| |
Collapse
|
2
|
Signori D, Magliocca A, Hayashida K, Graw JA, Malhotra R, Bellani G, Berra L, Rezoagli E. Inhaled nitric oxide: role in the pathophysiology of cardio-cerebrovascular and respiratory diseases. Intensive Care Med Exp 2022; 10:28. [PMID: 35754072 PMCID: PMC9234017 DOI: 10.1186/s40635-022-00455-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 06/08/2022] [Indexed: 11/23/2022] Open
Abstract
Nitric oxide (NO) is a key molecule in the biology of human life. NO is involved in the physiology of organ viability and in the pathophysiology of organ dysfunction, respectively. In this narrative review, we aimed at elucidating the mechanisms behind the role of NO in the respiratory and cardio-cerebrovascular systems, in the presence of a healthy or dysfunctional endothelium. NO is a key player in maintaining multiorgan viability with adequate organ blood perfusion. We report on its physiological endogenous production and effects in the circulation and within the lungs, as well as the pathophysiological implication of its disturbances related to NO depletion and excess. The review covers from preclinical information about endogenous NO produced by nitric oxide synthase (NOS) to the potential therapeutic role of exogenous NO (inhaled nitric oxide, iNO). Moreover, the importance of NO in several clinical conditions in critically ill patients such as hypoxemia, pulmonary hypertension, hemolysis, cerebrovascular events and ischemia-reperfusion syndrome is evaluated in preclinical and clinical settings. Accordingly, the mechanism behind the beneficial iNO treatment in hypoxemia and pulmonary hypertension is investigated. Furthermore, investigating the pathophysiology of brain injury, cardiopulmonary bypass, and red blood cell and artificial hemoglobin transfusion provides a focus on the potential role of NO as a protective molecule in multiorgan dysfunction. Finally, the preclinical toxicology of iNO and the antimicrobial role of NO-including its recent investigation on its role against the Sars-CoV2 infection during the COVID-19 pandemic-are described.
Collapse
Affiliation(s)
- Davide Signori
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Aurora Magliocca
- Department of Medical Physiopathology and Transplants, University of Milan, Milan, Italy
| | - Kei Hayashida
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, USA
- Department of Emergency Medicine, North Shore University Hospital, Northwell Health System, Manhasset, NY, USA
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Jan A Graw
- Department of Anesthesiology and Operative Intensive Care Medicine, CCM/CVK Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
- ARDS/ECMO Centrum Charité, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Rajeev Malhotra
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Giacomo Bellani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Emergency and Intensive Care, San Gerardo Hospital, Monza, Italy
| | - Lorenzo Berra
- Harvard Medical School, Boston, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Respiratory Care Department, Massachusetts General Hospital, Boston, MA, USA
| | - Emanuele Rezoagli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
- Department of Emergency and Intensive Care, San Gerardo Hospital, Monza, Italy.
| |
Collapse
|
3
|
Jungwirth-Weinberger A, Boettner F, Kapadia M, Diane A, Chiu YF, Lyman S, Fontana MA, Miller AO. History of COVID-19 Was Not Associated with Length of Stay or In-Hospital Complications After Elective Lower Extremity Joint Replacement. Arthroplast Today 2021; 13:109-115. [PMID: 34909457 PMCID: PMC8660178 DOI: 10.1016/j.artd.2021.11.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/11/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022] Open
Abstract
Background The impact of previous SARS-CoV-2 infection on the morbidity of elective total joint arthroplasty (TJA) is not fully understood. This study reports on the association between previous COVID-19 disease, hospital length of stay (LOS), and in-hospital complications after elective primary TJA. Methods Demographics, comorbidities, LOS, and in-hospital complications of consecutive 340 patients with a history of COVID-19 were compared with those of 5014 patients without a history of COVID-19 undergoing TJA. History of COVID-19 was defined as a positive IgG antibody test for SARS-CoV-2 before surgery. All patients were given both antibody and polymerase chain reaction tests before surgery. Results Patients with a history of COVID-19 were more likely to be obese (43.8% vs 32.4%, P < .001), Black (15.6% vs 6.8%, P < .001), or Hispanic (8.5% vs 5.4%, P = .028) than patients without a history of COVID-19. COVID-19 treatment was reported by 6.8% of patients with a history of COVID-19. Patients with a history of COVID-19 did not have a significantly longer median LOS after controlling for other factors (for hip replacements, median 2.9 h longer, 95% confidence interval = −2.0 to 7.8, P = .240; for knee replacements, median 4.1 h longer, 95% confidence interval = −2.4 to 10.5, P = .214), but a higher percentage were discharged to a post–acute care facility (4.7% vs 1.9%, P = .001). There was no significant difference in in-hospital complication rates between the 2 groups (0/340 = 0.0% vs 22/5014 = 0.44%, P = .221). Conclusions We do not find differences in LOS or in-hospital complications between the 2 groups. However, more work is needed to confirm these findings, particularly for patients with a history of more severe COVID-19. Level of evidence II.
Collapse
Affiliation(s)
- Anna Jungwirth-Weinberger
- Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA.,Cantonal Hospital Baden, Im Ergel 1, CH-5404 Baden, Switzerland
| | - Friedrich Boettner
- Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA
| | - Milan Kapadia
- Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA
| | - Alioune Diane
- Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA
| | - Yu-Fen Chiu
- Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA
| | - Stephen Lyman
- Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA
| | - Mark Alan Fontana
- Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA.,Weill Cornell Medical College, Department of Population Health Sciences, 1300 York Ave, New York, NY, 10065, USA
| | - Andy O Miller
- Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA
| |
Collapse
|
4
|
Liehn EA, Lupan AM, Diaconu R, Ioana M, Streata I, Manole C, Burlacu A. Heart function assessment during aging in apolipoprotein E knock-out mice. Discoveries (Craiova) 2021; 9:e136. [PMID: 34816004 PMCID: PMC8605688 DOI: 10.15190/d.2021.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Apolipoprotein (apo) E isoforms have strong correlations with metabolic and cardiovascular diseases. However, it is not clear if apoE has a role in development of non-ischemic cardiomyopathy. Our study aims to analyze the involvement of apoE in non-ischemic cardiomyopathy. METHODS AND RESULTS Serial echo-cardiographic measurements were performed in old wildtype and apoE deficient (apoE-/-) mice. Morphological and functional cardiac parameters were in normal range in both groups at the age of 12 month. At the age of 18 months, both groups had shown ventricular dilation and increased heart rates. However, the apoE-/- mice presented signs of diastolic dysfunction by hypertrophic changes in left ventricle, due probably to arterial hypertension. The right ventricle was not affected by age or genotype. CONCLUSION: Even in the absence of high fat diet, apoE deficiency in mice induces mild changes in the cardiac function of the left ventricle during aging, by developing diastolic dysfunction, which leads to heart failure with preserved ejection fraction. However, further studies are necessary to conclude over the role of apoE in cardiac physiology and its involvement in development of heart failure.
Collapse
Affiliation(s)
- Elisa A Liehn
- Human Genetic Laboratory, University of Medicine and Pharmacy of Craiova, Craiova, Romania.,Department of Cardiology, Angiology and Intensive Care, Medical Faculty, University Hospital Aachen, Aachen, Germany.,Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Ana-Mihaela Lupan
- Nicolae Simionescu Institute of Cellular Biology and Pathology, Bucharest, Romania
| | - Rodica Diaconu
- Human Genetic Laboratory, University of Medicine and Pharmacy of Craiova, Craiova, Romania.,Department of Cardiology, Angiology and Intensive Care, Medical Faculty, University Hospital Aachen, Aachen, Germany
| | - Mihai Ioana
- Human Genetic Laboratory, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Ioana Streata
- Human Genetic Laboratory, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Catalin Manole
- Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Alexandrina Burlacu
- Nicolae Simionescu Institute of Cellular Biology and Pathology, Bucharest, Romania
| |
Collapse
|
5
|
Therapeutic strategy of pregnancy associated with renal transplant and SARS-CoV-2 infection – case report. GINECOLOGIA.RO 2021. [DOI: 10.26416/gine.33.3.2021.5307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|