1
|
Blackwell J, Beitner J, Holcombe A. How Transparent and Reproducible Are Studies That Use Animal Models of Opioid Addiction? Addict Biol 2025; 30:e70027. [PMID: 40190211 PMCID: PMC11973454 DOI: 10.1111/adb.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 01/27/2025] [Accepted: 02/25/2025] [Indexed: 04/10/2025]
Abstract
The reproducibility crisis in psychology has caused various fields to consider the reliability of their own findings. Many of the unfortunate aspects of research design that undermine reproducibility also threaten translation potential. In preclinical addiction research, the rates of translation have been disappointing. We tallied indices of transparency and accurate and thorough reporting in animal models of opioid addiction from 2019 to 2023. By examining the prevalence of these practices, we aimed to understand whether efforts to improve reproducibility are relevant to this field. For 255 articles, we report the prevalence of transparency measures such as preregistration, registered reports, open data and open code, as well as compliance to the Animal Research: Reporting of In Vivo Experiments (ARRIVE) guidelines. We also report rates of bias minimization practices (randomization, masking and data exclusion), sample size calculations and multiple corrections adjustments. Lastly, we estimated the accuracy of test statistic reporting using a version of StatCheck. All the transparency measures and the ARRIVE guideline items had low prevalence, including no cases of study preregistration and no cases where authors shared their analysis code. Similarly, the levels of bias minimization practices and sample size calculations were unsatisfactory. In contrast, adjustments for multiple comparisons were implemented in most articles (76.5%). Lastly, p-value inconsistencies with test statistics were detected in about half of papers, and 11% contained statistical significance errors. We recommend that researchers, journal editors and others take steps to improve study reporting and to facilitate both replication and translation.
Collapse
Affiliation(s)
| | - Julia Beitner
- Department of PsychologyGoethe University FrankfurtFrankfurt am MainGermany
- Clinical Psychology, Central Institute of Mental Health, Medical Faculty MannheimUniversity of HeidelbergMannheimGermany
- Addiction Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty MannheimUniversity of HeidelbergMannheimGermany
- Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty MannheimUniversity of HeidelbergMannheimGermany
- German Center for Mental Health (DZPG), Partner Site Mannheim‐Heidelberg‐UlmMannheimGermany
| | | |
Collapse
|
2
|
Pérez-Edgar K, Dozier M, Saxe R, MacDuffie KE. How will developmental neuroimaging contribute to the prediction of neurodevelopmental or psychiatric disorders? Challenges and opportunities. Dev Cogn Neurosci 2025; 71:101490. [PMID: 39700912 PMCID: PMC11721882 DOI: 10.1016/j.dcn.2024.101490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/16/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024] Open
Abstract
Successful developmental neuroimaging efforts require interdisciplinary expertise to ground scientific questions in knowledge of human development, modify and create technologies and data processing pipelines suited to the young brain, and ensure research procedures meet the needs and protect the interests of young children and their caregivers. This paper brings together four interdisciplinary perspectives to tackle a set of questions that are central for the field to address as we imagine a future role for developmental neuroimaging in the prediction of neurodevelopmental or psychiatric disorders: 1) How do we generate a strong evidence base for causality and clinical relevance? 2) How do we ensure the integrity of the data and support fair and wide access? 3) How can these technologies be implemented in the clinic? 4) What are the ethical obligations for neuroimaging researchers working with infants and young children?
Collapse
Affiliation(s)
| | - Mary Dozier
- Department of Psychological & Brain Sciences, University of Delaware, USA
| | - Rebecca Saxe
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, USA
| | - Katherine E MacDuffie
- Treuman Katz Center for Pediatric Bioethics and Palliative Care, Seattle Children's Research Institute, USA; Department of Pediatrics, University of Washington School of Medicine, USA.
| |
Collapse
|
3
|
Martinez M, Cai T, Yang B, Zhou Z, Shankman SA, Mittal VA, Haase CM, Qu Y. Depressive symptoms during the transition to adolescence: Left hippocampal volume as a marker of social context sensitivity. Proc Natl Acad Sci U S A 2024; 121:e2321965121. [PMID: 39226358 PMCID: PMC11406239 DOI: 10.1073/pnas.2321965121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/17/2024] [Indexed: 09/05/2024] Open
Abstract
The transition to adolescence is a critical period for mental health development. Socio-experiential environments play an important role in the emergence of depressive symptoms with some adolescents showing more sensitivity to social contexts than others. Drawing on recent developmental neuroscience advances, we examined whether hippocampal volume amplifies social context effects in the transition to adolescence. We analyzed 2-y longitudinal data from the Adolescent Brain Cognitive Development (ABCD®) study in a diverse sample of 11,832 youth (mean age: 9.914 y; range: 8.917 to 11.083 y; 47.8% girls) from 21 sites across the United States. Socio-experiential environments (i.e., family conflict, primary caregiver's depressive symptoms, parental warmth, peer victimization, and prosocial school environment), hippocampal volume, and a wide range of demographic characteristics were measured at baseline. Youth's symptoms of major depressive disorder were assessed at both baseline and 2 y later. Multilevel mixed-effects linear regression analyses showed that negative social environments (i.e., family conflict, primary caregiver's depressive symptoms, and peer victimization) and the absence of positive social environments (i.e., parental warmth and prosocial school environment) predicted greater increases in youth's depressive symptoms over 2 y. Importantly, left hippocampal volume amplified social context effects such that youth with larger left hippocampal volume experienced greater increases in depressive symptoms in more negative and less positive social environments. Consistent with brain-environment interaction models of mental health, these findings underscore the importance of families, peers, and schools in the development of depression during the transition to adolescence and show how neural structure amplifies social context sensitivity.
Collapse
Affiliation(s)
- Matias Martinez
- School of Education and Social Policy, Northwestern University, Evanston, IL60208
- Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL60611
- Institute for Policy Research, Northwestern University, Evanston, IL60208
| | - Tianying Cai
- School of Education and Social Policy, Northwestern University, Evanston, IL60208
- Institute of Child Development, University of Minnesota, Twin Cities, Minneapolis, MN55455
| | - Beiming Yang
- School of Education and Social Policy, Northwestern University, Evanston, IL60208
| | - Zexi Zhou
- Department of Human Development and Family Sciences, University of Texas, Austin, TX78712
| | - Stewart A. Shankman
- Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL60611
- Department of Psychology, Northwestern University, Evanston, IL60208
- Department of Psychiatry, Northwestern University, Chicago, IL60611
| | - Vijay A. Mittal
- Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL60611
- Institute for Policy Research, Northwestern University, Evanston, IL60208
- Department of Psychology, Northwestern University, Evanston, IL60208
- Department of Psychiatry, Northwestern University, Chicago, IL60611
| | - Claudia M. Haase
- School of Education and Social Policy, Northwestern University, Evanston, IL60208
- Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL60611
- Institute for Policy Research, Northwestern University, Evanston, IL60208
- Department of Psychology, Northwestern University, Evanston, IL60208
- Department of Psychiatry, Northwestern University, Chicago, IL60611
- Interdepartmental Neuroscience, Northwestern University, Evanston, IL60611
- Buffett Institute for Global Studies, Northwestern University, Evanston, IL60201
| | - Yang Qu
- School of Education and Social Policy, Northwestern University, Evanston, IL60208
- Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL60611
- Institute for Policy Research, Northwestern University, Evanston, IL60208
- Department of Psychology, Northwestern University, Evanston, IL60208
| |
Collapse
|
4
|
Söylemez T, Kaplancıklı ZA, Osmaniye D, Özkay Y, Demirci F. Selective in vitro Synergistic Evaluation of Probiotic Tolerant morpholinyl- and 4-ethylpiperazinyl-Imidazole-chalcone Derivatives on Gastrointestinal System Pathogens. Curr Microbiol 2024; 81:258. [PMID: 38960917 PMCID: PMC11222229 DOI: 10.1007/s00284-024-03788-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 06/23/2024] [Indexed: 07/05/2024]
Abstract
Imidazole-chalcone compounds are recognised for their broad-spectrum antimicrobial properties. Probiotic-friendly, selective new-generation antimicrobials prove to be more efficient in combating gastrointestinal system pathogens. The aim of this study is to identify imidazole-chalcone derivatives that probiotics tolerate and evaluate their in vitro synergistic antimicrobial effects on pathogens. In this study, fifteen previously identified imidazole-chalcone derivatives were analyzed for their in vitro antimicrobial properties against gastrointestinal microorganisms. Initially, the antimicrobial activity of pathogens was measured using the agar well diffusion method, while the susceptibility of probiotics was determined by microdilution. The chosen imidazole-chalcone derivatives were assessed for synergistic effects using the checkerboard method. Four imidazole-chalcone derivatives to which probiotic bacteria were tolerant exhibited antibacterial and antifungal activity against the human pathogens tested. To our knowledge, this study is the first to reveal the fractional inhibitory concentration (FIC) of combinations of imidazole-chalcone derivatives. Indeed, the minimum inhibitory concentrations (MIC) for morpholinyl- (ZDO-3f) and 4-ethylpiperazinyl- (ZDO-3 m) imidazole-chalcones were notably low when tested against E. coli and B. subtilis, with values of 31.25 μg/mL and 125 μg/mL, respectively. The combination of morpholinyl- and 4-ethylpiperazinyl derivatives demonstrated an indifferent effect against E. coli, but an additive effect was observed for B. subtilis. Additionally, it was observed that imidazole-chalcone derivatives did not exhibit any inhibitory effects on probiotic organisms like Lactobacillus fermentum (CECT-5716), Lactobacillus rhamnosus (GG), and Lactobacillus casei (RSSK-591). This study demonstrates that imidazole-chalcone derivatives that are well tolerated by probiotics can potentially exert a synergistic effect against gastrointestinal system pathogens.
Collapse
Affiliation(s)
- Tuncay Söylemez
- Institut Für Lebensmittelchemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstraße 5, 30167, Hannover, Germany.
| | - Zafer Asım Kaplancıklı
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Anadolu University, Eskişehir, Türkiye
| | - Derya Osmaniye
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Anadolu University, Eskişehir, Türkiye
| | - Yusuf Özkay
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Anadolu University, Eskişehir, Türkiye
| | - Fatih Demirci
- Faculty of Pharmacy, Pharmacognosy Department, Anadolu University, Eskişehir, Türkiye
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, N. Cyprus, Cyprus
| |
Collapse
|
5
|
Brown RE. Measuring the replicability of our own research. J Neurosci Methods 2024; 406:110111. [PMID: 38521128 DOI: 10.1016/j.jneumeth.2024.110111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
In the study of transgenic mouse models of neurodevelopmental and neurodegenerative disorders, we use batteries of tests to measure deficits in behaviour and from the results of these tests, we make inferences about the mental states of the mice that we interpret as deficits in "learning", "memory", "anxiety", "depression", etc. This paper discusses the problems of determining whether a particular transgenic mouse is a valid mouse model of disease X, the problem of background strains, and the question of whether our behavioural tests are measuring what we say they are. The problem of the reliability of results is then discussed: are they replicable between labs and can we replicate our results in our own lab? This involves the study of intra- and inter- experimenter reliability. The variables that influence replicability and the importance of conducting a complete behavioural phenotype: sensory, motor, cognitive and social emotional behaviour are discussed. Then the thorny question of failure to replicate is examined: Is it a curse or a blessing? Finally, the role of failure in research and what it tells us about our research paradigms is examined.
Collapse
Affiliation(s)
- Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
6
|
Boxer E. Being positive about negatives: why publishing negative results is good for veterinary science. Vet Rec 2024; 194:434-435. [PMID: 38819920 DOI: 10.1002/vetr.4362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Affiliation(s)
- Emma Boxer
- Research editor, BVA Journals, London, UK
| |
Collapse
|
7
|
|
8
|
Affiliation(s)
- Penny Reynolds
- Department of Anesthesiology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
9
|
Li BZ, Sumera A, Booker SA, McCullagh EA. Current Best Practices for Analysis of Dendritic Spine Morphology and Number in Neurodevelopmental Disorder Research. ACS Chem Neurosci 2023; 14:1561-1572. [PMID: 37070364 PMCID: PMC10161226 DOI: 10.1021/acschemneuro.3c00062] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/07/2023] [Indexed: 04/19/2023] Open
Abstract
Quantitative methods for assessing neural anatomy have rapidly evolved in neuroscience and provide important insights into brain health and function. However, as new techniques develop, it is not always clear when and how each may be used to answer specific scientific questions posed. Dendritic spines, which are often indicative of synapse formation and neural plasticity, have been implicated across many brain regions in neurodevelopmental disorders as a marker for neural changes reflecting neural dysfunction or alterations. In this Perspective we highlight several techniques for staining, imaging, and quantifying dendritic spines as well as provide a framework for avoiding potential issues related to pseudoreplication. This framework illustrates how others may apply the most rigorous approaches. We consider the cost-benefit analysis of the varied techniques, recognizing that the most sophisticated equipment may not always be necessary for answering some research questions. Together, we hope this piece will help researchers determine the best strategy toward using the ever-growing number of techniques available to determine neural changes underlying dendritic spine morphology in health and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ben-Zheng Li
- Department
of Physiology and Biophysics, University
of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Anna Sumera
- Simons
Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, U.K.
| | - Sam A Booker
- Simons
Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, U.K.
| | - Elizabeth A. McCullagh
- Department
of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
10
|
Jin H, Wang Q, Yang YF, Zhang H, Gao M(M, Jin S, Chen Y(S, Xu T, Zheng YR, Chen J, Xiao Q, Yang J, Wang X, Geng H, Ge J, Wang WW, Chen X, Zhang L, Zuo XN, Chuang-Peng H. The Chinese Open Science Network (COSN): Building an Open Science Community From Scratch. ADVANCES IN METHODS AND PRACTICES IN PSYCHOLOGICAL SCIENCE 2023. [DOI: 10.1177/25152459221144986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Open Science is becoming a mainstream scientific ideology in psychology and related fields. However, researchers, especially early-career researchers (ECRs) in developing countries, are facing significant hurdles in engaging in Open Science and moving it forward. In China, various societal and cultural factors discourage ECRs from participating in Open Science, such as the lack of dedicated communication channels and the norm of modesty. To make the voice of Open Science heard by Chinese-speaking ECRs and scholars at large, the Chinese Open Science Network (COSN) was initiated in 2016. With its core values being grassroots-oriented, diversity, and inclusivity, COSN has grown from a small Open Science interest group to a recognized network both in the Chinese-speaking research community and the international Open Science community. So far, COSN has organized three in-person workshops, 12 tutorials, 48 talks, and 55 journal club sessions and translated 15 Open Science-related articles and blogs from English to Chinese. Currently, the main social media account of COSN (i.e., the WeChat Official Account) has more than 23,000 subscribers, and more than 1,000 researchers/students actively participate in the discussions on Open Science. In this article, we share our experience in building such a network to encourage ECRs in developing countries to start their own Open Science initiatives and engage in the global Open Science movement. We foresee great collaborative efforts of COSN together with all other local and international networks to further accelerate the Open Science movement.
Collapse
|