1
|
Peña-Ortega F. Microglial modulation of neuronal network function and plasticity. J Neurophysiol 2025; 133:661-680. [PMID: 39819084 DOI: 10.1152/jn.00458.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/08/2024] [Accepted: 12/30/2024] [Indexed: 01/19/2025] Open
Abstract
Microglia are the resident immune cells of the central nervous system (CNS), which have been classically viewed as involved in CNS responses to damage and tissue repair. However, microglia are constantly sensing neuronal network activity and changes in the CNS milieu, establishing complex state-dependent microglia-neuron interactions that impact their functions. By doing so, microglia perform a wide range of physiological roles, including brain homeostasis maintenance, control of neural connectivity, network function modulation, as well as functional and morphological plasticity regulation in health and disease. Here, the author reviews recent evidence of the modulations induced by microglia, a highly heterogeneous cell type, on synaptic and intrinsic neuronal properties, and on neuronal network patterns during perinatal development and adulthood. The reviewed evidence clearly indicates that microglia are important, if not essential, for brain function and plasticity in both health and disease.
Collapse
Affiliation(s)
- Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| |
Collapse
|
2
|
Balena T, Lillis K, Rahmati N, Bahari F, Dzhala V, Berdichevsky E, Staley K. A Dynamic Balance between Neuronal Death and Clearance in an in Vitro Model of Acute Brain Injury. J Neurosci 2023; 43:6084-6107. [PMID: 37527922 PMCID: PMC10451151 DOI: 10.1523/jneurosci.0436-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/15/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023] Open
Abstract
In in vitro models of acute brain injury, neuronal death may overwhelm the capacity for microglial phagocytosis, creating a queue of dying neurons awaiting clearance. Neurons undergoing programmed cell death are in this queue, and are the most visible and frequently quantified measure of neuronal death after injury. However, the size of this queue should be equally sensitive to changes in neuronal death and the rate of phagocytosis. Using rodent organotypic hippocampal slice cultures as a model of acute perinatal brain injury, serial imaging demonstrated that the capacity for microglial phagocytosis of dying neurons was overwhelmed for 2 weeks. Altering phagocytosis rates (e.g., by changing the number of microglia) dramatically changed the number of visibly dying neurons. Similar effects were generated when the visibility of dying neurons was altered by changing the membrane permeability for stains that label dying neurons. Canonically neuroprotective interventions, such as seizure blockade, and neurotoxic maneuvers, such as perinatal ethanol exposure, were mediated by effects on microglial activity and the membrane permeability of neurons undergoing programmed cell death. These canonically neuroprotective and neurotoxic interventions had either no or opposing effects on healthy surviving neurons identified by the ongoing expression of transgenic fluorescent proteins.SIGNIFICANCE STATEMENT In in vitro models of acute brain injury, microglial phagocytosis is overwhelmed by the number of dying cells. Under these conditions, the assumptions on which assays for neuroprotective and neurotoxic effects are based are no longer valid. Thus, longitudinal assays of healthy cells, such as serial assessment of the fluorescence emission of transgenically expressed proteins, provide more accurate estimates of cell death than do single-time point anatomic or biochemical assays of the number of dying neurons. More accurate estimates of death rates in vitro will increase the translatability of preclinical studies of neuroprotection and neurotoxicity.
Collapse
Affiliation(s)
- Trevor Balena
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Kyle Lillis
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Negah Rahmati
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Fatemeh Bahari
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Volodymyr Dzhala
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Eugene Berdichevsky
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, Pennsylvania 18015
| | - Kevin Staley
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114
| |
Collapse
|
3
|
Araki T, Ikegaya Y, Koyama R. Microglia attenuate the kainic acid-induced death of hippocampal neurons in slice cultures. Neuropsychopharmacol Rep 2019; 40:85-91. [PMID: 31794154 PMCID: PMC7292224 DOI: 10.1002/npr2.12086] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/03/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022] Open
Abstract
Background Status epilepticus‐induced hippocampal neuronal death, astrogliosis, and the activation of microglia are common pathological changes in mesial temporal lobe epilepsy (mTLE) with resistance to antiepileptic drugs. Neuronal death in mTLE gradually progresses and is involved in the aggravation of epilepsy and the impairment of hippocampus‐dependent memory. Thus, clarifying the cellular mechanisms by which neurons are protected in mTLE will significantly contribute to the treatment of epilepsy. Here, mainly using hippocampal slice cultures with or without the pharmacological depletion of microglia, we directly examined whether microglia, the resident immune cells of the brain that can act either neurotoxically or in a neuroprotective manner, accelerate or attenuate kainic acid (KA)‐induced neuronal death in vitro. Methods Hippocampal slice cultures were treated with KA to induce neuronal death in vitro. Clodronate‐containing liposomes or PLX3397 was used to deplete microglia in hippocampal slice cultures, and the effect on KA‐induced neuronal death was immunohistochemically assessed. Results The loss of microglia significantly promoted a decrease in neuronal density in KA‐treated hippocampal slice cultures. Conclusion Our results suggest that microglia are neuroprotective against KA‐induced neuronal death in slice cultures. We investigated the role of microglia in kainic acid‐induced neuronal death using hippocampal slice cultures.We found that pharmacological removal of microglia from cultured hippocampal slices enhanced kainic acid‐induced neuronal death. These results suggest that microglia are neuroprotective against kainic acid‐induced neuronal death.![]()
Collapse
Affiliation(s)
- Tasuku Araki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.,Center for Information and Neural Networks, Suita City, Japan
| | - Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Liu J, Sternberg AR, Ghiasvand S, Berdichevsky Y. Epilepsy-on-a-Chip System for Antiepileptic Drug Discovery. IEEE Trans Biomed Eng 2019; 66:1231-1241. [PMID: 30235116 PMCID: PMC6585967 DOI: 10.1109/tbme.2018.2871415] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Hippocampal slice cultures spontaneously develop chronic epilepsy several days after slicing and are used as an in vitro model of post-traumatic epilepsy. Here, we describe a hybrid microfluidic-microelectrode array (μflow-MEA) technology that incorporates a microfluidic perfusion network and electrodes into a miniaturized device for hippocampal slice culture based antiepileptic drug discovery. METHODS Field potential simulation was conducted to help optimize the electrode design to detect a seizure-like population activity. Epilepsy-on-a-chip model was validated by chronic electrical recording, neuronal survival quantification, and anticonvulsant test. To demonstrate the application of μflow-MEA in drug discovery, we utilized a two-stage screening platform to identify potential targets for antiepileptic drugs. In Stage I, lactate and lactate dehydrogenase biomarker assays were performed to identify potential drug candidates. In Stage II, candidate compounds were retested with μflow-MEA-based chronic electrical assay to provide electrophysiological confirmation of biomarker results. RESULTS AND CONCLUSION We screened 12 receptor tyrosine kinases inhibitors, and EGFR/ErbB-2 and cFMS inhibitors were identified as novel antiepileptic compounds. SIGNIFICANCE This epilepsy-on-a-chip system provides the means for rapid dissection of complex signaling pathways in epileptogenesis, paving the way for high-throughput antiepileptic drug discovery.
Collapse
Affiliation(s)
- Jing Liu
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA, USA. She is now with University of California, San Francisco, CA, USA
| | - Anna R. Sternberg
- IDEAS Program, Lehigh University, Bethlehem, PA, USA. She is now with Georgetown University, Washington D.C., USA
| | | | - Yevgeny Berdichevsky
- Department of Electrical and Computer Engineering and Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
| |
Collapse
|
5
|
Drion CM, Kooijman L, Aronica E, van Vliet EA, Wadman WJ, Chameau P, Gorter JA. Curcumin reduces development of seizurelike events in the hippocampal-entorhinal cortex slice culture model for epileptogenesis. Epilepsia 2019; 60:605-614. [PMID: 30747999 DOI: 10.1111/epi.14667] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Inhibition of the mammalian target of rapamycin (mTOR) pathway could be antiepileptogenic in temporal lobe epilepsy (TLE), possibly via anti-inflammatory actions. We studied effects of the mTOR inhibitor rapamycin and the anti-inflammatory compound curcumin-also reported to inhibit the mTOR pathway-on epileptogenesis and inflammation in an in vitro organotypic hippocampal-entorhinal cortex slice culture model. METHODS Brain slices containing hippocampus and entorhinal cortex were obtained from 6-day-old rat pups and maintained in culture for up to 3 weeks. Rapamycin or curcumin was added to the culture medium from day 2 in vitro onward. Electrophysiological recordings revealed epileptiformlike activity that developed over 3 weeks. RESULTS In week 3, spontaneous seizurelike events (SLEs) could be detected using whole cell recordings from CA1 principal neurons. The percentage of recorded CA1 neurons displaying SLEs was lower in curcumin-treated slice cultures compared to vehicle-treated slices (25.8% vs 72.5%), whereas rapamycin did not reduce SLE occurrence significantly (52%). Western blot for phosphorylated-S6 (pS6) and phosphorylated S6K confirmed that rapamycin inhibited the mTOR pathway, whereas curcumin only lowered pS6 expression at one phosphorylation site. Real-time quantitative polymerase chain reaction results indicated a trend toward lower expression of inflammatory markers IL-1β and IL-6 and transforming growth factor β after 3 weeks of treatment with rapamycin and curcumin compared to vehicle. SIGNIFICANCE Our results show that curcumin suppresses SLEs in the combined hippocampal-entorhinal cortex slice culture model and suggest that its antiepileptogenic effects should be further investigated in experimental models of TLE.
Collapse
Affiliation(s)
- Cato M Drion
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Lieneke Kooijman
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Department of (Neuro) Pathology, Amsterdam Neuroscience, Amsterdam, The Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), The Netherlands
| | - Erwin A van Vliet
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam UMC, University of Amsterdam, Department of (Neuro) Pathology, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Wytse J Wadman
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Pascal Chameau
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan A Gorter
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Toffa DH, Kpadonou C, Gams Massi D, Ouedraogo M, Sow AD, Ndiaye M, Samb A. Le magnésium et le calcium réduisent la sévérité des troubles de la mémoire spatiale pour le modèle kaïnique d’épilepsie mésiale temporale chez la souris. Can J Physiol Pharmacol 2018; 96:1132-1144. [DOI: 10.1139/cjpp-2018-0020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Dènahin Hinnoutondji Toffa
- Neurologie, Centre Hospitalier de l’Université de Montréal, Montréal, QC H2X 0C1, Canada
- Neuroépilepsie, Centre de recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC H2X 0A9, Canada
- Laboratoire de physiologie et physiopathologie humaines, Université Cheikh Anta Diop, Dakar, Sénégal
| | - Carl Kpadonou
- Laboratoire de physiologie et physiopathologie humaines, Université Cheikh Anta Diop, Dakar, Sénégal
| | - Daniel Gams Massi
- Neurologie, Université de Douala - Faculté de Médecine et de Sciences Pharmaceutiques, Douala, Cameroun
- Neurologie, Centre Hospitalo-Universitaire National Fann, Université Cheikh Anta Diop, Dakar, Sénégal
| | - Modeste Ouedraogo
- Laboratoire de physiologie et physiopathologie humaines, Université Cheikh Anta Diop, Dakar, Sénégal
| | - Adjaratou Dieynabou Sow
- Neurologie, Centre Hospitalo-Universitaire National Fann, Université Cheikh Anta Diop, Dakar, Sénégal
| | - Moustapha Ndiaye
- Neurologie, Centre Hospitalo-Universitaire National Fann, Université Cheikh Anta Diop, Dakar, Sénégal
| | - Abdoulaye Samb
- Laboratoire de physiologie et physiopathologie humaines, Université Cheikh Anta Diop, Dakar, Sénégal
| |
Collapse
|
7
|
Chong SA, Balosso S, Vandenplas C, Szczesny G, Hanon E, Claes K, Van Damme X, Danis B, Van Eyll J, Wolff C, Vezzani A, Kaminski RM, Niespodziany I. Intrinsic Inflammation Is a Potential Anti-Epileptogenic Target in the Organotypic Hippocampal Slice Model. Neurotherapeutics 2018; 15:470-488. [PMID: 29464573 PMCID: PMC5935638 DOI: 10.1007/s13311-018-0607-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Understanding the mechanisms of epileptogenesis is essential to develop novel drugs that could prevent or modify the disease. Neuroinflammation has been proposed as a promising target for therapeutic interventions to inhibit the epileptogenic process that evolves from traumatic brain injury. However, it remains unclear whether cytokine-related pathways, particularly TNFα signaling, have a critical role in the development of epilepsy. In this study, we investigated the role of innate inflammation in an in vitro model of post-traumatic epileptogenesis. We combined organotypic hippocampal slice cultures, representing an in vitro model of post-traumatic epilepsy, with multi-electrode array recordings to directly monitor the development of epileptiform activity and to examine the concomitant changes in cytokine release, cell death, and glial cell activation. We report that synchronized ictal- and interictal-like activities spontaneously evolve in this culture. Dynamic changes in the release of the pro-inflammatory cytokines IL-1β, TNFα, and IL-6 were observed throughout the culture period (3 to 21 days in vitro) with persistent activation of microglia and astrocytes. We found that neutralizing TNFα with a polyclonal antibody significantly reduced ictal discharges, and this effect lasted for 1 week after antibody washout. Neither phenytoin nor an anti-IL-6 polyclonal antibody was efficacious in inhibiting the development of epileptiform activity. Our data show a sustained effect of the anti-TNFα antibody on the ictal progression in organotypic hippocampal slice cultures supporting the critical role of inflammatory mediators in epilepsy and establishing a proof-of-principle evidence for the utility of this preparation to test the therapeutic effects of anti-inflammatory treatments.
Collapse
Affiliation(s)
- Seon-Ah Chong
- UCB Biopharma SPRL, Chemin du Foriest, B-1420, Braine l'Alleud, Belgium.
| | - Silvia Balosso
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, 20156, Italy
| | | | - Gregory Szczesny
- UCB Biopharma SPRL, Chemin du Foriest, B-1420, Braine l'Alleud, Belgium
| | - Etienne Hanon
- UCB Biopharma SPRL, Chemin du Foriest, B-1420, Braine l'Alleud, Belgium
| | - Kasper Claes
- UCB Biopharma SPRL, Chemin du Foriest, B-1420, Braine l'Alleud, Belgium
| | - Xavier Van Damme
- UCB Biopharma SPRL, Chemin du Foriest, B-1420, Braine l'Alleud, Belgium
| | - Bénédicte Danis
- UCB Biopharma SPRL, Chemin du Foriest, B-1420, Braine l'Alleud, Belgium
| | - Jonathan Van Eyll
- UCB Biopharma SPRL, Chemin du Foriest, B-1420, Braine l'Alleud, Belgium
| | - Christian Wolff
- UCB Biopharma SPRL, Chemin du Foriest, B-1420, Braine l'Alleud, Belgium
| | - Annamaria Vezzani
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, 20156, Italy
| | - Rafal M Kaminski
- UCB Biopharma SPRL, Chemin du Foriest, B-1420, Braine l'Alleud, Belgium
| | | |
Collapse
|
8
|
Chong SA, Balosso S, Vandenplas C, Szczesny G, Hanon E, Claes K, Van Damme X, Danis B, Van Eyll J, Wolff C, Vezzani A, Kaminski RM, Niespodziany I. Intrinsic Inflammation Is a Potential Anti-Epileptogenic Target in the Organotypic Hippocampal Slice Model. Neurotherapeutics 2018; 15:470-488. [PMID: 29464573 DOI: 10.1007/s13311-018-0607-6/figures/7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023] Open
Abstract
Understanding the mechanisms of epileptogenesis is essential to develop novel drugs that could prevent or modify the disease. Neuroinflammation has been proposed as a promising target for therapeutic interventions to inhibit the epileptogenic process that evolves from traumatic brain injury. However, it remains unclear whether cytokine-related pathways, particularly TNFα signaling, have a critical role in the development of epilepsy. In this study, we investigated the role of innate inflammation in an in vitro model of post-traumatic epileptogenesis. We combined organotypic hippocampal slice cultures, representing an in vitro model of post-traumatic epilepsy, with multi-electrode array recordings to directly monitor the development of epileptiform activity and to examine the concomitant changes in cytokine release, cell death, and glial cell activation. We report that synchronized ictal- and interictal-like activities spontaneously evolve in this culture. Dynamic changes in the release of the pro-inflammatory cytokines IL-1β, TNFα, and IL-6 were observed throughout the culture period (3 to 21 days in vitro) with persistent activation of microglia and astrocytes. We found that neutralizing TNFα with a polyclonal antibody significantly reduced ictal discharges, and this effect lasted for 1 week after antibody washout. Neither phenytoin nor an anti-IL-6 polyclonal antibody was efficacious in inhibiting the development of epileptiform activity. Our data show a sustained effect of the anti-TNFα antibody on the ictal progression in organotypic hippocampal slice cultures supporting the critical role of inflammatory mediators in epilepsy and establishing a proof-of-principle evidence for the utility of this preparation to test the therapeutic effects of anti-inflammatory treatments.
Collapse
Affiliation(s)
- Seon-Ah Chong
- UCB Biopharma SPRL, Chemin du Foriest, B-1420, Braine l'Alleud, Belgium.
| | - Silvia Balosso
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, 20156, Italy
| | | | - Gregory Szczesny
- UCB Biopharma SPRL, Chemin du Foriest, B-1420, Braine l'Alleud, Belgium
| | - Etienne Hanon
- UCB Biopharma SPRL, Chemin du Foriest, B-1420, Braine l'Alleud, Belgium
| | - Kasper Claes
- UCB Biopharma SPRL, Chemin du Foriest, B-1420, Braine l'Alleud, Belgium
| | - Xavier Van Damme
- UCB Biopharma SPRL, Chemin du Foriest, B-1420, Braine l'Alleud, Belgium
| | - Bénédicte Danis
- UCB Biopharma SPRL, Chemin du Foriest, B-1420, Braine l'Alleud, Belgium
| | - Jonathan Van Eyll
- UCB Biopharma SPRL, Chemin du Foriest, B-1420, Braine l'Alleud, Belgium
| | - Christian Wolff
- UCB Biopharma SPRL, Chemin du Foriest, B-1420, Braine l'Alleud, Belgium
| | - Annamaria Vezzani
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, 20156, Italy
| | - Rafal M Kaminski
- UCB Biopharma SPRL, Chemin du Foriest, B-1420, Braine l'Alleud, Belgium
| | | |
Collapse
|
9
|
Lanser AJ, Rezende RM, Rubino S, Lorello PJ, Donnelly DJ, Xu H, Lau LA, Dulla CG, Caldarone BJ, Robson SC, Weiner HL. Disruption of the ATP/adenosine balance in CD39 -/- mice is associated with handling-induced seizures. Immunology 2017; 152:589-601. [PMID: 28742222 DOI: 10.1111/imm.12798] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 07/15/2017] [Accepted: 07/16/2017] [Indexed: 12/14/2022] Open
Abstract
Seizures are due to excessive, synchronous neuronal firing in the brain and are characteristic of epilepsy, the fourth most prevalent neurological disease. We report handling-induced and spontaneous seizures in mice deficient for CD39, a cell-surface ATPase highly expressed on microglial cells. CD39-/- mice with handling-induced seizures had normal input-output curves and paired-pulse ratio measured from hippocampal slices and lacked microgliosis, astrogliosis or overt cell loss in the hippocampus and cortex. As expected, however, the cerebrospinal fluid of CD39-/- mice contained increased levels of ATP and decreased levels of adenosine. To determine if immune activation was involved in seizure progression, we challenged mice with lipopolysaccharide (LPS) and measured the effect on microglia activation and seizure severity. Systemic LPS challenge resulted in increased cortical staining of Iba1/CD68 and gene array data from purified microglia predicted increased expression of interleukin-8, triggering receptor expressed on myeloid cells 1, p38, pattern recognition receptors, death receptor, nuclear factor-κB , complement, acute phase, and interleukin-6 signalling pathways in CD39-/- versus CD39+/+ mice. However, LPS treatment did not affect handling-induced seizures. In addition, microglia-specific CD39 deletion in adult mice was not sufficient to cause seizures, suggesting instead that altered expression of CD39 during development or on non-microglial cells such as vascular endothelial cells may promote the seizure phenotype. In summary, we show a correlation between altered extracellular ATP/adenosine ratio and a previously unreported seizure phenotype in CD39-/- mice. This work provides groundwork for further elucidation of the underlying mechanisms of epilepsy.
Collapse
Affiliation(s)
- Amanda J Lanser
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rafael M Rezende
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephen Rubino
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Paul J Lorello
- NeuroBehavior Laboratory, Harvard NeuroDiscovery Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Dustin J Donnelly
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Huixin Xu
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lauren A Lau
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Barbara J Caldarone
- NeuroBehavior Laboratory, Harvard NeuroDiscovery Center; Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Simon C Robson
- Liver Center and The Transplant Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Liu J, Saponjian Y, Mahoney MM, Staley KJ, Berdichevsky Y. Epileptogenesis in organotypic hippocampal cultures has limited dependence on culture medium composition. PLoS One 2017; 12:e0172677. [PMID: 28225808 PMCID: PMC5321418 DOI: 10.1371/journal.pone.0172677] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 02/08/2017] [Indexed: 01/10/2023] Open
Abstract
Rodent organotypic hippocampal cultures spontaneously develop epileptiform activity after approximately 2 weeks in vitro and are increasingly used as a model of chronic post-traumatic epilepsy. However, organotypic cultures are maintained in an artificial environment (culture medium), which contains electrolytes, glucose, amino acids and other components that are not present at the same concentrations in cerebrospinal fluid (CSF). Therefore, it is possible that epileptogenesis in organotypic cultures is driven by these components. We examined the influence of medium composition on epileptogenesis. Epileptogenesis was evaluated by measurements of lactate and lactate dehydrogenase (LDH) levels (biomarkers of ictal activity and cell death, respectively) in spent culture media, immunohistochemistry and automated 3-D cell counts, and extracellular recordings from CA3 regions. Changes in culture medium components moderately influenced lactate and LDH levels as well as electrographic seizure burden and cell death. However, epileptogenesis occurred in any culture medium that was capable of supporting neural survival. We conclude that medium composition is unlikely to be the cause of epileptogenesis in the organotypic hippocampal culture model of chronic post-traumatic epilepsy.
Collapse
Affiliation(s)
- Jing Liu
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Yero Saponjian
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mark M. Mahoney
- Bioengineering Program, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Kevin J. Staley
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yevgeny Berdichevsky
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, Pennsylvania, United States of America
- Bioengineering Program, Lehigh University, Bethlehem, Pennsylvania, United States of America
| |
Collapse
|