1
|
Michael AH, Hana TA, Mousa VG, Ormerod KG. Muscle-fiber specific genetic manipulation of Drosophila sallimus severely impacts neuromuscular development, morphology, and physiology. Front Physiol 2024; 15:1429317. [PMID: 39351283 PMCID: PMC11439786 DOI: 10.3389/fphys.2024.1429317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024] Open
Abstract
The ability of skeletal muscles to contract is derived from the unique genes and proteins expressed within muscles, most notably myofilaments and elastic proteins. Here we investigated the role of the sallimus (sls) gene, which encodes a structural homologue of titin, in regulating development, structure, and function of Drosophila melanogaster. Knockdown of sls using RNA interference (RNAi) in all body-wall muscle fibers resulted in embryonic lethality. A screen for muscle-specific drivers revealed a Gal4 line that expresses in a single larval body wall muscle in each abdominal hemisegment. Disrupting sls expression in single muscle fibers did not impact egg or larval viability nor gross larval morphology but did significantly alter the morphology of individual muscle fibers. Ultrastructural analysis of individual muscles revealed significant changes in organization. Surprisingly, muscle-cell specific disruption of sls also severely impacted neuromuscular junction (NMJ) formation. The extent of motor-neuron (MN) innervation along disrupted muscles was significantly reduced along with the number of glutamatergic boutons, in MN-Is and MN-Ib. Electrophysiological recordings revealed a 40% reduction in excitatory junctional potentials correlating with the extent of motor neuron loss. Analysis of active zone (AZ) composition revealed changes in presynaptic scaffolding protein (brp) abundance, but no changes in postsynaptic glutamate receptors. Ultrastructural changes in muscle and NMJ development at these single muscle fibers were sufficient to lead to observable changes in neuromuscular transduction and ultimately, locomotory behavior. Collectively, the data demonstrate that sls mediates critical aspects of muscle and NMJ development and function, illuminating greater roles for sls/titin.
Collapse
Affiliation(s)
| | | | | | - Kiel G. Ormerod
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, United States
| |
Collapse
|
2
|
Mosallaei M, Ehtesham N, Beheshtian M, Khoshbakht S, Davarnia B, Kahrizi K, Najmabadi H. Phenotype and genotype spectrum of variants in guanine nucleotide exchange factor genes in a broad cohort of Iranian patients. Mol Genet Genomic Med 2022; 10:e1894. [PMID: 35174982 PMCID: PMC9000939 DOI: 10.1002/mgg3.1894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 11/21/2022] Open
Abstract
Background Guanine nucleotide exchange factors (GEFs) play pivotal roles in neuronal cell functions by exchanging GDP to GTP nucleotide and activation of GTPases. We aimed to determine the genotype and phenotype spectrum of GEF mutations by collecting data from a large Iranian cohort with intellectual disability (ID) and/or developmental delay (DD). Methods We collected data from nine families with 20 patients extracted from Iranian cohort of 640 families with ID and/or DD. Next‐generation sequencing (NGS) was used to identify the causing variants in recruited families. We also compared our clinical and molecular findings with previously reported patients carrying mutations in these GEF genes in the literature published until mid‐2021. Results We identified disease‐causing variants in eight GEF genes including ALS2, IQSEC2, MADD, RAB3GAP1, RAB3GAP2, TRIO, ITSN1, and DENND2A. The major clinical manifestations in 203 previously reported cases along with our 20 patients with disease causing variants in eight GEF genes were as follow; speech disorder (85.2%), ID (81.6%), DD (81.1%), inability to walk (71.3%), facial dysmorphisms features (52.4%), abnormalities in skull morphology (55.6%), hypotonia and muscle weakness (47%), and brain MRI abnormalities (43.4%). Conclusion Our study provides new insights into the genotype and phenotype spectrum of mutations in GEF genes.
Collapse
Affiliation(s)
- Meysam Mosallaei
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Naeim Ehtesham
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Maryam Beheshtian
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Shahrouz Khoshbakht
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Behzad Davarnia
- Department of Genetic and Pathology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.,Kariminejad - Najmabadi Pathology & Genetics Centre, Tehran, Iran
| |
Collapse
|
3
|
Changes in Presynaptic Gene Expression during Homeostatic Compensation at a Central Synapse. J Neurosci 2021; 41:3054-3067. [PMID: 33608385 PMCID: PMC8026347 DOI: 10.1523/jneurosci.2979-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/02/2022] Open
Abstract
Homeostatic matching of pre- and postsynaptic function has been observed in many species and neural structures, but whether transcriptional changes contribute to this form of trans-synaptic coordination remains unknown. To identify genes whose expression is altered in presynaptic neurons as a result of perturbing postsynaptic excitability, we applied a transcriptomics-friendly, temperature-inducible Kir2.1-based activity clamp at the first synaptic relay of the Drosophila olfactory system, a central synapse known to exhibit trans-synaptic homeostatic matching. Twelve hours after adult-onset suppression of activity in postsynaptic antennal lobe projection neurons of males and females, we detected changes in the expression of many genes in the third antennal segment, which houses the somata of presynaptic olfactory receptor neurons. These changes affected genes with roles in synaptic vesicle release and synaptic remodeling, including several implicated in homeostatic plasticity at the neuromuscular junction. At 48 h and beyond, the transcriptional landscape tilted toward protein synthesis, folding, and degradation; energy metabolism; and cellular stress defenses, indicating that the system had been pushed to its homeostatic limits. Our analysis suggests that similar homeostatic machinery operates at peripheral and central synapses and identifies many of its components. The presynaptic transcriptional response to genetically targeted postsynaptic perturbations could be exploited for the construction of novel connectivity tracing tools. SIGNIFICANCE STATEMENT Homeostatic feedback mechanisms adjust intrinsic and synaptic properties of neurons to keep their average activity levels constant. We show that, at a central synapse in the fruit fly brain, these mechanisms include changes in presynaptic gene expression that are instructed by an abrupt loss of postsynaptic excitability. The trans-synaptically regulated genes have roles in synaptic vesicle release and synapse remodeling; protein synthesis, folding, and degradation; and energy metabolism. Our study establishes a role for transcriptional changes in homeostatic synaptic plasticity, points to mechanistic commonalities between peripheral and central synapses, and potentially opens new opportunities for the development of connectivity-based gene expression systems.
Collapse
|
4
|
Abu-Libdeh B, Mor-Shaked H, Atawna AA, Gillis D, Halstuk O, Shaul-Lotan N, Slae M, Sultan M, Meiner V, Elpeleg O, Harel T. Homozygous variant in MADD, encoding a Rab guanine nucleotide exchange factor, results in pleiotropic effects and a multisystemic disorder. Eur J Hum Genet 2021; 29:977-987. [PMID: 33723354 DOI: 10.1038/s41431-021-00844-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 01/20/2021] [Accepted: 02/24/2021] [Indexed: 12/20/2022] Open
Abstract
Rab proteins coordinate inter-organellar vesicle-mediated transport, facilitating intracellular communication, protein recycling, and signaling processes. Dysfunction of Rab proteins or their direct interactors leads to a wide range of diseases with diverse manifestations. We describe seven individuals from four consanguineous Arab Muslim families with an infantile-lethal syndrome, including failure to thrive (FTT), chronic diarrhea, neonatal respiratory distress, variable pituitary dysfunction, and distal arthrogryposis. Exome sequencing analysis in the independent families, followed by an internal gene-matching process using a local exome database, identified a homozygous splice-site variant in MADD (c.2816 + 1 G > A) on a common haplotype. The variant segregated with the disease in all available family members. Determination of cDNA sequence verified single exon skipping, resulting in an out-of-frame deletion. MADD encodes a Rab guanine nucleotide exchange factor (GEF), which activates RAB3 and RAB27A/27B and is thus a crucial regulator of neuromuscular junctions and endocrine secretory granule release. Moreover, MADD protects cells from caspase-mediated TNF-α-induced apoptosis. The combined roles of MADD and its downstream effectors correlate with the phenotypic spectrum of disease, and call for additional studies to confirm the pathogenic mechanism and to investigate possible therapeutic avenues through modulation of TNF-α signaling.
Collapse
Affiliation(s)
- Bassam Abu-Libdeh
- Department of Pediatrics, Makassed Hospital and Faculty of Medicine, Al-Quds University, East Jerusalem, Palestine
| | - Hagar Mor-Shaked
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amir A Atawna
- Department of Neonatology, Makassed Hospital, East Jerusalem, Palestine
| | - David Gillis
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Pediatrics, Hadassah Medical Center, Jerusalem, Israel
| | - Orli Halstuk
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nava Shaul-Lotan
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
| | - Mordechai Slae
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Pediatrics, Hadassah Medical Center, Jerusalem, Israel
| | - Mutaz Sultan
- Department of Pediatrics, Makassed Hospital and Faculty of Medicine, Al-Quds University, East Jerusalem, Palestine
| | - Vardiella Meiner
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Orly Elpeleg
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel. .,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
5
|
Schneeberger PE, Kortüm F, Korenke GC, Alawi M, Santer R, Woidy M, Buhas D, Fox S, Juusola J, Alfadhel M, Webb BD, Coci EG, Abou Jamra R, Siekmeyer M, Biskup S, Heller C, Maier EM, Javaher-Haghighi P, Bedeschi MF, Ajmone PF, Iascone M, Peeters H, Ballon K, Jaeken J, Rodríguez Alonso A, Palomares-Bralo M, Santos-Simarro F, Meuwissen MEC, Beysen D, Kooy RF, Houlden H, Murphy D, Doosti M, Karimiani EG, Mojarrad M, Maroofian R, Noskova L, Kmoch S, Honzik T, Cope H, Sanchez-Valle A, Gelb BD, Kurth I, Hempel M, Kutsche K. Biallelic MADD variants cause a phenotypic spectrum ranging from developmental delay to a multisystem disorder. Brain 2020; 143:2437-2453. [PMID: 32761064 PMCID: PMC7447524 DOI: 10.1093/brain/awaa204] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/22/2022] Open
Abstract
In pleiotropic diseases, multiple organ systems are affected causing a variety of clinical manifestations. Here, we report a pleiotropic disorder with a unique constellation of neurological, endocrine, exocrine, and haematological findings that is caused by biallelic MADD variants. MADD, the mitogen-activated protein kinase (MAPK) activating death domain protein, regulates various cellular functions, such as vesicle trafficking, activity of the Rab3 and Rab27 small GTPases, tumour necrosis factor-α (TNF-α)-induced signalling and prevention of cell death. Through national collaboration and GeneMatcher, we collected 23 patients with 21 different pathogenic MADD variants identified by next-generation sequencing. We clinically evaluated the series of patients and categorized the phenotypes in two groups. Group 1 consists of 14 patients with severe developmental delay, endo- and exocrine dysfunction, impairment of the sensory and autonomic nervous system, and haematological anomalies. The clinical course during the first years of life can be potentially fatal. The nine patients in Group 2 have a predominant neurological phenotype comprising mild-to-severe developmental delay, hypotonia, speech impairment, and seizures. Analysis of mRNA revealed multiple aberrant MADD transcripts in two patient-derived fibroblast cell lines. Relative quantification of MADD mRNA and protein in fibroblasts of five affected individuals showed a drastic reduction or loss of MADD. We conducted functional tests to determine the impact of the variants on different pathways. Treatment of patient-derived fibroblasts with TNF-α resulted in reduced phosphorylation of the extracellular signal-regulated kinases 1 and 2, enhanced activation of the pro-apoptotic enzymes caspase-3 and -7 and increased apoptosis compared to control cells. We analysed internalization of epidermal growth factor in patient cells and identified a defect in endocytosis of epidermal growth factor. We conclude that MADD deficiency underlies multiple cellular defects that can be attributed to alterations of TNF-α-dependent signalling pathways and defects in vesicular trafficking. Our data highlight the multifaceted role of MADD as a signalling molecule in different organs and reveal its physiological role in regulating the function of the sensory and autonomic nervous system and endo- and exocrine glands.
Collapse
Affiliation(s)
- Pauline E Schneeberger
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fanny Kortüm
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Georg Christoph Korenke
- Klinik für Neuropädiatrie und angeborene Stoffwechselerkrankungen, Klinikum Oldenburg, Oldenburg, Germany
| | - Malik Alawi
- Bioinformatics Core Unit, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - René Santer
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mathias Woidy
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniela Buhas
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, Montreal, Canada
- Human Genetics Department, McGill University, Montreal, Canada
| | - Stephanie Fox
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, Montreal, Canada
- Human Genetics Department, McGill University, Montreal, Canada
| | | | - Majid Alfadhel
- Division of Genetics, Department of Pediatrics, King Abdullah specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Bryn D Webb
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Emanuele G Coci
- Department for Neuropediatrics, University Children's Hospital, Ruhr University Bochum, Bochum, Germany
- Department of Pediatrics, Prignitz Hospital, Brandenburg Medical School, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University Medical Center Leipzig, Leipzig, Germany
| | - Manuela Siekmeyer
- Universitätsklinikum Leipzig - AöR, University of Leipzig, Hospital for Children and Adolescents, Leipzig, Germany
| | - Saskia Biskup
- CeGaT GmbH and Praxis für Humangenetik Tübingen, Tübingen, Germany
| | - Corina Heller
- CeGaT GmbH and Praxis für Humangenetik Tübingen, Tübingen, Germany
| | - Esther M Maier
- Dr. von Hauner Children's Hospital, University of Munich, Munich, Germany
| | | | - Maria F Bedeschi
- Medical Genetic Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola F Ajmone
- Child and Adolescent Neuropsychiatric Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria Iascone
- Laboratorio di Genetica Medica, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Hilde Peeters
- Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Katleen Ballon
- Centre for Developmental Disabilities, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Jaak Jaeken
- Center for Metabolic Diseases, KU Leuven, Leuven, Belgium
| | - Aroa Rodríguez Alonso
- Unidad de Patología Compleja, Servicio de Pediatría, Hospital Universitario La Paz, Madrid, Spain
| | - María Palomares-Bralo
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz, IdiPAZ, CIBERER, ISCIII, Madrid, Spain
| | - Fernando Santos-Simarro
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz, IdiPAZ, CIBERER, ISCIII, Madrid, Spain
| | | | - Diane Beysen
- Department of Pediatric Neurology, University Hospital Antwerp, Antwerp, Belgium
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - David Murphy
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | | | - Ehsan G Karimiani
- Next Generation Genetic Polyclinic, Mashhad, Iran
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St. George's, University, London, UK
| | - Majid Mojarrad
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Genetic Center of Khorasan Razavi, Mashhad, Iran
| | - Reza Maroofian
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Lenka Noskova
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Stanislav Kmoch
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Tomas Honzik
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Heidi Cope
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Amarilis Sanchez-Valle
- Division of Genetics and Metabolism, College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Bruce D Gelb
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Ingo Kurth
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
6
|
Abstract
Parkinson's disease (PD) is characterized by intracellular inclusions of aggregated and misfolded α-Synuclein (α-Syn), and the loss of dopaminergic (DA) neurons in the brain. The resulting motor abnormalities mark the progression of PD, while non-motor symptoms can already be identified during early, prodromal stages of disease. Recent studies provide evidence that during this early prodromal phase, synaptic and axonal abnormalities occur before the degenerative loss of neuronal cell bodies. These early phenotypes can be attributed to synaptic accumulation of toxic α-Syn. Under physiological conditions, α-Syn functions in its native conformation as a soluble monomer. However, PD patient brains are characterized by intracellular inclusions of insoluble fibrils. Yet, oligomers and protofibrils of α-Syn have been identified to be the most toxic species, with their accumulation at presynaptic terminals affecting several steps of neurotransmitter release. First, high levels of α-Syn alter the size of synaptic vesicle pools and impair their trafficking. Second, α-Syn overexpression can either misregulate or redistribute proteins of the presynaptic SNARE complex. This leads to deficient tethering, docking, priming and fusion of synaptic vesicles at the active zone (AZ). Third, α-Syn inclusions are found within the presynaptic AZ, accompanied by a decrease in AZ protein levels. Furthermore, α-Syn overexpression reduces the endocytic retrieval of synaptic vesicle membranes during vesicle recycling. These presynaptic alterations mediated by accumulation of α-Syn, together impair neurotransmitter exocytosis and neuronal communication. Although α-Syn is expressed throughout the brain and enriched at presynaptic terminals, DA neurons are the most vulnerable in PD, likely because α-Syn directly regulates dopamine levels. Indeed, evidence suggests that α-Syn is a negative modulator of dopamine by inhibiting enzymes responsible for its synthesis. In addition, α-Syn is able to interact with and reduce the activity of VMAT2 and DAT. The resulting dysregulation of dopamine levels directly contributes to the formation of toxic α-Syn oligomers. Together these data suggest a vicious cycle of accumulating α-Syn and deregulated dopamine that triggers synaptic dysfunction and impaired neuronal communication, ultimately causing synaptopathy and progressive neurodegeneration in Parkinson's disease.
Collapse
Affiliation(s)
- Jessika C Bridi
- King's College London, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom
| | - Frank Hirth
- King's College London, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom
| |
Collapse
|
7
|
Li J, Zhang YV, Asghari Adib E, Stanchev DT, Xiong X, Klinedinst S, Soppina P, Jahn TR, Hume RI, Rasse TM, Collins CA. Restraint of presynaptic protein levels by Wnd/DLK signaling mediates synaptic defects associated with the kinesin-3 motor Unc-104. eLife 2017; 6:e24271. [PMID: 28925357 PMCID: PMC5605197 DOI: 10.7554/elife.24271] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 08/11/2017] [Indexed: 12/19/2022] Open
Abstract
The kinesin-3 family member Unc-104/KIF1A is required for axonal transport of many presynaptic components to synapses, and mutation of this gene results in synaptic dysfunction in mice, flies and worms. Our studies at the Drosophila neuromuscular junction indicate that many synaptic defects in unc-104-null mutants are mediated independently of Unc-104's transport function, via the Wallenda (Wnd)/DLK MAP kinase axonal damage signaling pathway. Wnd signaling becomes activated when Unc-104's function is disrupted, and leads to impairment of synaptic structure and function by restraining the expression level of active zone (AZ) and synaptic vesicle (SV) components. This action concomitantly suppresses the buildup of synaptic proteins in neuronal cell bodies, hence may play an adaptive role to stresses that impair axonal transport. Wnd signaling also becomes activated when pre-synaptic proteins are over-expressed, suggesting the existence of a feedback circuit to match synaptic protein levels to the transport capacity of the axon.
Collapse
Affiliation(s)
- Jiaxing Li
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborUnited States
| | - Yao V Zhang
- Junior Research Group Synaptic PlasticityHertie-Institute for Clinical Brain Research, University of TübingenTübingenGermany
- Graduate School of Cellular and Molecular NeuroscienceUniversity of TübingenTübingenGermany
| | - Elham Asghari Adib
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborUnited States
| | - Doychin T Stanchev
- Junior Research Group Synaptic PlasticityHertie-Institute for Clinical Brain Research, University of TübingenTübingenGermany
- Graduate School of Cellular and Molecular NeuroscienceUniversity of TübingenTübingenGermany
| | - Xin Xiong
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborUnited States
| | - Susan Klinedinst
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborUnited States
| | - Pushpanjali Soppina
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborUnited States
| | - Thomas Robert Jahn
- CHS Research Group Proteostasis in Neurodegenerative DiseaseDKFZ Deutsches KrebsforschungszentrumHeidelbergGermany
| | - Richard I Hume
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborUnited States
| | - Tobias M Rasse
- Junior Research Group Synaptic PlasticityHertie-Institute for Clinical Brain Research, University of TübingenTübingenGermany
- CHS Research Group Proteostasis in Neurodegenerative DiseaseDKFZ Deutsches KrebsforschungszentrumHeidelbergGermany
| | - Catherine A Collins
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborUnited States
| |
Collapse
|
8
|
Saburova EA, Vasiliev AN, Kravtsova VV, Ryabova EV, Zefirov AL, Bolshakova OI, Sarantseva SV, Krivoi II. Human APP Gene Expression Alters Active Zone Distribution and Spontaneous Neurotransmitter Release at the Drosophila Larval Neuromuscular Junction. Neural Plast 2017; 2017:9202584. [PMID: 28770114 PMCID: PMC5523229 DOI: 10.1155/2017/9202584] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/07/2017] [Indexed: 12/11/2022] Open
Abstract
This study provides further insight into the molecular mechanisms that control neurotransmitter release. Experiments were performed on larval neuromuscular junctions of transgenic Drosophila melanogaster lines with different levels of human amyloid precursor protein (APP) production. To express human genes in motor neurons of Drosophila, the UAS-GAL4 system was used. Human APP gene expression increased the number of synaptic boutons per neuromuscular junction. The total number of active zones, detected by Bruchpilot protein puncta distribution, remained unchanged; however, the average number of active zones per bouton decreased. These disturbances were accompanied by a decrease in frequency of miniature excitatory junction potentials without alteration in random nature of spontaneous quantal release. Similar structural and functional changes were observed with co-overexpression of human APP and β-secretase genes. In Drosophila line with expression of human amyloid-β42 peptide itself, parameters analyzed did not differ from controls, suggesting the specificity of APP effects. These results confirm the involvement of APP in synaptogenesis and provide evidence to suggest that human APP overexpression specifically disturbs the structural and functional organization of active zone and results in altered Bruchpilot distribution and lowered probability of spontaneous neurotransmitter release.
Collapse
Affiliation(s)
- Ekaterina A. Saburova
- Department of General Physiology, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Alexander N. Vasiliev
- Department of General Physiology, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Violetta V. Kravtsova
- Department of General Physiology, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Elena V. Ryabova
- B.P. Konstantinov Petersburg Nuclear Physics Institute, National Research Centre “Kurchatov Institute”, Gatchina 188300, Russia
| | - Andrey L. Zefirov
- Department of Normal Physiology, Kazan State Medical University, Kazan 420012, Russia
| | - Olga I. Bolshakova
- B.P. Konstantinov Petersburg Nuclear Physics Institute, National Research Centre “Kurchatov Institute”, Gatchina 188300, Russia
| | - Svetlana V. Sarantseva
- B.P. Konstantinov Petersburg Nuclear Physics Institute, National Research Centre “Kurchatov Institute”, Gatchina 188300, Russia
| | - Igor I. Krivoi
- Department of General Physiology, St. Petersburg State University, St. Petersburg 199034, Russia
| |
Collapse
|
9
|
Mallik B, Dwivedi MK, Mushtaq Z, Kumari M, Verma PK, Kumar V. Regulation of neuromuscular junction organization by Rab2 and its effector ICA69 in Drosophila. Development 2017; 144:2032-2044. [PMID: 28455372 DOI: 10.1242/dev.145920] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 04/19/2017] [Indexed: 12/31/2022]
Abstract
The mechanisms underlying synaptic differentiation, which involves neuronal membrane and cytoskeletal remodeling, are not completely understood. We performed a targeted RNAi-mediated screen of Drosophila BAR-domain proteins and identified islet cell autoantigen 69 kDa (ICA69) as one of the key regulators of morphological differentiation of the larval neuromuscular junction (NMJ). We show that Drosophila ICA69 colocalizes with α-Spectrin at the NMJ. The conserved N-BAR domain of ICA69 deforms liposomes in vitro Full-length ICA69 and the ICAC but not the N-BAR domain of ICA69 induce filopodia in cultured cells. Consistent with its cytoskeleton regulatory role, ICA69 mutants show reduced α-Spectrin immunoreactivity at the larval NMJ. Manipulating levels of ICA69 or its interactor PICK1 alters the synaptic level of ionotropic glutamate receptors (iGluRs). Moreover, reducing PICK1 or Rab2 levels phenocopies ICA69 mutation. Interestingly, Rab2 regulates not only synaptic iGluR but also ICA69 levels. Thus, our data suggest that: (1) ICA69 regulates NMJ organization through a pathway that involves PICK1 and Rab2, and (2) Rab2 functions genetically upstream of ICA69 and regulates NMJ organization and targeting/retention of iGluRs by regulating ICA69 levels.
Collapse
Affiliation(s)
- Bhagaban Mallik
- Department of Biological Sciences, AB-3, Indian Institute of Science Education and Research, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Manish Kumar Dwivedi
- Department of Biological Sciences, AB-3, Indian Institute of Science Education and Research, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Zeeshan Mushtaq
- Department of Biological Sciences, AB-3, Indian Institute of Science Education and Research, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Manisha Kumari
- National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| | - Praveen Kumar Verma
- National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| | - Vimlesh Kumar
- Department of Biological Sciences, AB-3, Indian Institute of Science Education and Research, Bhauri, Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
10
|
Van Vactor D, Sigrist SJ. Presynaptic morphogenesis, active zone organization and structural plasticity in Drosophila. Curr Opin Neurobiol 2017; 43:119-129. [PMID: 28388491 DOI: 10.1016/j.conb.2017.03.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 03/06/2017] [Accepted: 03/08/2017] [Indexed: 12/31/2022]
Abstract
Effective adaptation of neural circuit function to a changing environment requires many forms of plasticity. Among these, structural plasticity is one of the most durable, and is also an intrinsic part of the developmental logic for the formation and refinement of synaptic connectivity. Structural plasticity of presynaptic sites can involve the addition, remodeling, or removal of pre- and post-synaptic elements. However, this requires coordination of morphogenesis and assembly of the subcellular machinery for neurotransmitter release within the presynaptic neuron, as well as coordination of these events with the postsynaptic cell. While much progress has been made in revealing the cell biological mechanisms of postsynaptic structural plasticity, our understanding of presynaptic mechanisms is less complete.
Collapse
Affiliation(s)
- David Van Vactor
- Department of Cell Biology and Program in Neuroscience, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA; Okinawa Institute of Science and Technology, Graduate University, Tancha 1919-1, Onna-son, Okinawa, Japan.
| | - Stephan J Sigrist
- Institut für Biologie/Genetik and NeuroCure, Freie Universität Berlin, Takustrasse 6, D-14195 Berlin, Germany.
| |
Collapse
|
11
|
Zhang YV, Hannan SB, Stapper ZA, Kern JV, Jahn TR, Rasse TM. The Drosophila KIF1A Homolog unc-104 Is Important for Site-Specific Synapse Maturation. Front Cell Neurosci 2016; 10:207. [PMID: 27656128 PMCID: PMC5011141 DOI: 10.3389/fncel.2016.00207] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/19/2016] [Indexed: 11/13/2022] Open
Abstract
Mutations in the kinesin-3 family member KIF1A have been associated with hereditary spastic paraplegia (HSP), hereditary and sensory autonomic neuropathy type 2 (HSAN2) and non-syndromic intellectual disability (ID). Both autosomal recessive and autosomal dominant forms of inheritance have been reported. Loss of KIF1A or its homolog unc-104 causes early postnatal or embryonic lethality in mice and Drosophila, respectively. In this study, we use a previously described hypomorphic allele of unc-104, unc-104(bris) , to investigate the impact of partial loss-of-function of kinesin-3 on synapse maturation at the Drosophila neuromuscular junction (NMJ). Unc-104(bris) mutants exhibit structural defects where a subset of synapses at the NMJ lack all investigated active zone (AZ) proteins, suggesting a complete failure in the formation of the cytomatrix at the active zone (CAZ) at these sites. Modulating synaptic Bruchpilot (Brp) levels by ectopic overexpression or RNAi-mediated knockdown suggests that the loss of AZ components such as Ca(2+) channels and Liprin-α is caused by impaired kinesin-3 based transport rather than due to the absence of the key AZ organizer protein, Brp. In addition to defects in CAZ assembly, unc-104(bris) mutants display further defects such as depletion of dense core and synaptic vesicle (SV) markers from the NMJ. Notably, the level of Rab3, which is important for the allocation of AZ proteins to individual release sites, was severely reduced at unc-104(bris) mutant NMJs. Overexpression of Rab3 partially ameliorates synaptic phenotypes of unc-104(bris) larvae, suggesting that lack of presynaptic Rab3 contributes to defects in synapse maturation.
Collapse
Affiliation(s)
- Yao V Zhang
- Junior Research Group Synaptic Plasticity, Hertie-Institute for Clinical Brain Research, University of TübingenTübingen, Germany; Graudate School of Cellular and Molecular Neuroscience, University of TübingenTübingen, Germany; The Picower Institute for Learning and Memory, Department of Biology and Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridge, MA, USA
| | - Shabab B Hannan
- Junior Research Group Synaptic Plasticity, Hertie-Institute for Clinical Brain Research, University of TübingenTübingen, Germany; Graudate School of Cellular and Molecular Neuroscience, University of TübingenTübingen, Germany; Schaller Research Group at the University of Heidelberg and DKFZ, Proteostasis in Neurodegenerative Disease (B180), German Cancer Research CenterHeidelberg, Germany
| | - Zeenna A Stapper
- Schaller Research Group at the University of Heidelberg and DKFZ, Proteostasis in Neurodegenerative Disease (B180), German Cancer Research Center Heidelberg, Germany
| | - Jeannine V Kern
- Junior Research Group Synaptic Plasticity, Hertie-Institute for Clinical Brain Research, University of Tübingen Tübingen, Germany
| | - Thomas R Jahn
- Schaller Research Group at the University of Heidelberg and DKFZ, Proteostasis in Neurodegenerative Disease (B180), German Cancer Research Center Heidelberg, Germany
| | - Tobias M Rasse
- Junior Research Group Synaptic Plasticity, Hertie-Institute for Clinical Brain Research, University of TübingenTübingen, Germany; Schaller Research Group at the University of Heidelberg and DKFZ, Proteostasis in Neurodegenerative Disease (B180), German Cancer Research CenterHeidelberg, Germany
| |
Collapse
|