1
|
Suri H, Salgado-Puga K, Wang Y, Allen N, Lane K, Granroth K, Olivei A, Nass N, Rothschild G. A Cortico-Striatal Circuit for Sound-Triggered Prediction of Reward Timing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.21.568134. [PMID: 38045246 PMCID: PMC10690153 DOI: 10.1101/2023.11.21.568134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
A crucial aspect of auditory perception is the ability to use sound cues to predict future events and to time actions accordingly. For example, distinct smartphone notification sounds reflect a call that needs to be answered within a few seconds, or a text that can be read later; the sound of an approaching vehicle signals when it is safe to cross the street. Other animals similarly use sounds to plan, time and execute behaviors such as hunting, evading predation and tending to offspring. However, the neural mechanisms that underlie sound-guided prediction of upcoming salient event timing are not well understood. To address this gap, we employed an appetitive sound-triggered reward time prediction behavior in head-fixed mice. We find that mice trained on this task reliably estimate the time from a sound cue to upcoming reward on the scale of a few seconds, as demonstrated by learning-dependent well-timed increases in reward-predictive licking. Moreover, mice showed a dramatic impairment in their ability to use sound to predict delayed reward when the auditory cortex was inactivated, demonstrating its causal involvement. To identify the neurophysiological signatures of auditory cortical reward-timing prediction, we recorded local field potentials during learning and performance of this behavior and found that the magnitude of auditory cortical responses to the sound prospectively encoded the duration of the anticipated sound-reward time interval. Next, we explored how and where these sound-triggered time interval prediction signals propagate from the auditory cortex to time and initiate consequent action. We targeted the monosynaptic projections from the auditory cortex to the posterior striatum and found that chemogenetic inactivation of these projections impairs animal's ability to predict sound-triggered delayed reward. Simultaneous neural recordings in the auditory cortex and posterior striatum during task performance revealed coordination of neural activity across these regions during the sound cue predicting the time interval to reward. Collectively, our findings identify an auditory cortical-striatal circuit supporting sound-triggered timing-prediction behaviors.
Collapse
|
2
|
Vivaldo CA, Lee J, Shorkey M, Keerthy A, Rothschild G. Auditory cortex ensembles jointly encode sound and locomotion speed to support sound perception during movement. PLoS Biol 2023; 21:e3002277. [PMID: 37651461 PMCID: PMC10499203 DOI: 10.1371/journal.pbio.3002277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 09/13/2023] [Accepted: 07/26/2023] [Indexed: 09/02/2023] Open
Abstract
The ability to process and act upon incoming sounds during locomotion is critical for survival and adaptive behavior. Despite the established role that the auditory cortex (AC) plays in behavior- and context-dependent sound processing, previous studies have found that auditory cortical activity is on average suppressed during locomotion as compared to immobility. While suppression of auditory cortical responses to self-generated sounds results from corollary discharge, which weakens responses to predictable sounds, the functional role of weaker responses to unpredictable external sounds during locomotion remains unclear. In particular, whether suppression of external sound-evoked responses during locomotion reflects reduced involvement of the AC in sound processing or whether it results from masking by an alternative neural computation in this state remains unresolved. Here, we tested the hypothesis that rather than simple inhibition, reduced sound-evoked responses during locomotion reflect a tradeoff with the emergence of explicit and reliable coding of locomotion velocity. To test this hypothesis, we first used neural inactivation in behaving mice and found that the AC plays a critical role in sound-guided behavior during locomotion. To investigate the nature of this processing, we used two-photon calcium imaging of local excitatory auditory cortical neural populations in awake mice. We found that locomotion had diverse influences on activity of different neurons, with a net suppression of baseline-subtracted sound-evoked responses and neural stimulus detection, consistent with previous studies. Importantly, we found that the net inhibitory effect of locomotion on baseline-subtracted sound-evoked responses was strongly shaped by elevated ongoing activity that compressed the response dynamic range, and that rather than reflecting enhanced "noise," this ongoing activity reliably encoded the animal's locomotion speed. Decoding analyses revealed that locomotion speed and sound are robustly co-encoded by auditory cortical ensemble activity. Finally, we found consistent patterns of joint coding of sound and locomotion speed in electrophysiologically recorded activity in freely moving rats. Together, our data suggest that rather than being suppressed by locomotion, auditory cortical ensembles explicitly encode it alongside sound information to support sound perception during locomotion.
Collapse
Affiliation(s)
- Carlos Arturo Vivaldo
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Joonyeup Lee
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - MaryClaire Shorkey
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ajay Keerthy
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Gideon Rothschild
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, United States of America
- Kresge Hearing Research Institute and Department of Otolaryngology—Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
3
|
Gilday OD, Mizrahi A. Learning-Induced Odor Modulation of Neuronal Activity in Auditory Cortex. J Neurosci 2023; 43:1375-1386. [PMID: 36650061 PMCID: PMC9987573 DOI: 10.1523/jneurosci.1398-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 01/19/2023] Open
Abstract
Sensory cortices, even of primary regions, are not purely unisensory. Rather, cortical neurons in sensory cortex show various forms of multisensory interactions. While some multisensory interactions naturally co-occur, the combination of others will co-occur through experience. In real life, learning and experience will result in conjunction with seemingly disparate sensory information that ultimately becomes behaviorally relevant, impacting perception, cognition, and action. Here we describe a novel auditory discrimination task in mice, designed to manipulate the expectation of upcoming trials using olfactory cues. We show that, after learning, female mice display a transient period of several days during which they exploit odor-mediated expectations for making correct decisions. Using two-photon calcium imaging of single neurons in auditory cortex (ACx) during behavior, we found that the behavioral effects of odor-mediated expectations are accompanied by an odor-induced modulation of neuronal activity. Further, we find that these effects are manifested differentially, based on the response preference of individual cells. A significant portion of effects, but not all, are consistent with a predictive coding framework. Our data show that learning novel odor-sound associations evoke changes in ACx. We suggest that behaviorally relevant multisensory environments mediate contextual effects as early as ACx.SIGNIFICANCE STATEMENT Natural environments are composed of multisensory objects. It remains unclear whether and how animals learn the regularities of congruent multisensory associations and how these may impact behavior and neural activity. We tested how learned odor-sound associations affected single-neuron responses in auditory cortex. We introduce a novel auditory discrimination task for mice in which odors set different contexts of expectation to upcoming trials. We show that, although the task can be solved purely by sounds, odor-mediated expectation impacts performance. We further show that odors cause a modulation of neuronal activity in auditory cortex, which is correlated with behavior. These results suggest that learning prompts an interaction of odor and sound information as early as sensory cortex.
Collapse
Affiliation(s)
- Omri David Gilday
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Adi Mizrahi
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel,
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
4
|
Huang J, Liang S, Li L, Li X, Liao X, Hu Q, Zhang C, Jia H, Chen X, Wang M, Li R. Daily two-photon neuronal population imaging with targeted single-cell electrophysiology and subcellular imaging in auditory cortex of behaving mice. Front Cell Neurosci 2023; 17:1142267. [PMID: 36937184 PMCID: PMC10020347 DOI: 10.3389/fncel.2023.1142267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
Quantitative and mechanistic understanding of learning and long-term memory at the level of single neurons in living brains require highly demanding techniques. A specific need is to precisely label one cell whose firing output property is pinpointed amidst a functionally characterized large population of neurons through the learning process and then investigate the distribution and properties of dendritic inputs. Here, we disseminate an integrated method of daily two-photon neuronal population Ca2+ imaging through an auditory associative learning course, followed by targeted single-cell loose-patch recording and electroporation of plasmid for enhanced chronic Ca2+ imaging of dendritic spines in the targeted cell. Our method provides a unique solution to the demand, opening a solid path toward the hard-cores of how learning and long-term memory are physiologically carried out at the level of single neurons and synapses.
Collapse
Affiliation(s)
- Junjie Huang
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China
| | - Susu Liang
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China
| | - Longhui Li
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China
| | - Xingyi Li
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China
| | - Xiang Liao
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China
| | - Qianshuo Hu
- School of Artificial Intelligence, Chongqing University of Technology, Chongqing, China
| | - Chunqing Zhang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
| | - Hongbo Jia
- School of Physical Science and Technology, Advanced Institute for Brain and Intelligence, Guangxi University, Nanning, China
- Brain Research Instrument Innovation Center, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
- Leibniz Institute for Neurobiology, Magdeburg, Germany
- Institute of Neuroscience and the SyNergy Cluster, Technical University Munich, Munich, Germany
| | - Xiaowei Chen
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
- Guangyang Bay Laboratory, Chongqing Institute for Brain and Intelligence, Chongqing, China
- Xiaowei Chen,
| | - Meng Wang
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China
- Meng Wang,
| | - Ruijie Li
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
- School of Physical Science and Technology, Advanced Institute for Brain and Intelligence, Guangxi University, Nanning, China
- *Correspondence: Ruijie Li,
| |
Collapse
|