1
|
Sluzala ZB, Hamati A, Fort PE. Key Role of Phosphorylation in Small Heat Shock Protein Regulation via Oligomeric Disaggregation and Functional Activation. Cells 2025; 14:127. [PMID: 39851555 PMCID: PMC11764305 DOI: 10.3390/cells14020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/08/2025] [Accepted: 01/16/2025] [Indexed: 01/26/2025] Open
Abstract
Heat shock proteins (HSPs) are essential molecular chaperones that protect cells by aiding in protein folding and preventing aggregation under stress conditions. Small heat shock proteins (sHSPs), which include members from HSPB1 to HSPB10, are particularly important for cellular stress responses. These proteins share a conserved α-crystallin domain (ACD) critical for their chaperone function, with flexible N- and C-terminal extensions that facilitate oligomer formation. Phosphorylation, a key post-translational modification (PTM), plays a dynamic role in regulating sHSP structure, oligomeric state, stability, and chaperone function. Unlike other PTMs such as deamidation, oxidation, and glycation-which are often linked to protein destabilization-phosphorylation generally induces structural transitions that enhance sHSP activity. Specifically, phosphorylation promotes the disaggregation of sHSP oligomers into smaller, more active complexes, thereby increasing their efficiency. This disaggregation mechanism is crucial for protecting cells from stress-induced damage, including apoptosis, inflammation, and other forms of cellular dysfunction. This review explores the role of phosphorylation in modulating the function of sHSPs, particularly HSPB1, HSPB4, and HSPB5, and discusses how these modifications influence their protective functions in cellular stress responses.
Collapse
Affiliation(s)
- Zachary B. Sluzala
- Department of Ophthalmology & Visual Sciences, The University of Michigan, Ann Arbor, MI 48109, USA; (Z.B.S.); (A.H.)
| | - Angelina Hamati
- Department of Ophthalmology & Visual Sciences, The University of Michigan, Ann Arbor, MI 48109, USA; (Z.B.S.); (A.H.)
| | - Patrice E. Fort
- Department of Ophthalmology & Visual Sciences, The University of Michigan, Ann Arbor, MI 48109, USA; (Z.B.S.); (A.H.)
- Department of Molecular & Integrative Physiology, The University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
2
|
Sluzala ZB, Shan Y, Elghazi L, Cárdenas EL, Hamati A, Garner AL, Fort PE. Novel mTORC2/HSPB4 Interaction: Role and Regulation of HSPB4 T148 Phosphorylation. Cells 2024; 13:2000. [PMID: 39682748 PMCID: PMC11640050 DOI: 10.3390/cells13232000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
HSPB4 and HSPB5 (α-crystallins) have shown increasing promise as neuroprotective agents, demonstrating several anti-apoptotic and protective roles in disorders such as multiple sclerosis and diabetic retinopathy. HSPs are highly regulated by post-translational modification, including deamidation, glycosylation, and phosphorylation. Among them, T148 phosphorylation has been shown to regulate the structural and functional characteristics of HSPB4 and underlie, in part, its neuroprotective capacity. We recently demonstrated that this phosphorylation is reduced in retinal tissues from patients with diabetic retinopathy, raising the question of its regulation during diseases. The kinase(s) responsible for regulating this phosphorylation, however, have yet to be identified. To this end, we employed a multi-tier strategy utilizing in vitro kinome profiling, bioinformatics, and chemoproteomics to predict and discover the kinases capable of phosphorylating T148. Several kinases were identified as being capable of specifically phosphorylating T148 in vitro, and further analysis highlighted mTORC2 as a particularly strong candidate. Altogether, our data demonstrate that the HSPB4-mTORC2 interaction is multi-faceted. Our data support the role of mTORC2 as a specific kinase phosphorylating HSPB4 at T148, but also provide evidence that the HSPB4 chaperone function further strengthens the interaction. This study addresses a critical gap in our understanding of the regulatory underpinnings of T148 phosphorylation-mediated neuroprotection.
Collapse
Affiliation(s)
- Zachary B. Sluzala
- Department of Ophthalmology & Visual Sciences, The University of Michigan, Ann Arbor, MI 48109, USA; (Z.B.S.); (Y.S.); (L.E.); (A.H.)
| | - Yang Shan
- Department of Ophthalmology & Visual Sciences, The University of Michigan, Ann Arbor, MI 48109, USA; (Z.B.S.); (Y.S.); (L.E.); (A.H.)
| | - Lynda Elghazi
- Department of Ophthalmology & Visual Sciences, The University of Michigan, Ann Arbor, MI 48109, USA; (Z.B.S.); (Y.S.); (L.E.); (A.H.)
| | - Emilio L. Cárdenas
- Interdepartmental Program in Medicinal Chemistry, The University of Michigan, Ann Arbor, MI 48109, USA; (E.L.C.); (A.L.G.)
| | - Angelina Hamati
- Department of Ophthalmology & Visual Sciences, The University of Michigan, Ann Arbor, MI 48109, USA; (Z.B.S.); (Y.S.); (L.E.); (A.H.)
| | - Amanda L. Garner
- Interdepartmental Program in Medicinal Chemistry, The University of Michigan, Ann Arbor, MI 48109, USA; (E.L.C.); (A.L.G.)
| | - Patrice E. Fort
- Department of Ophthalmology & Visual Sciences, The University of Michigan, Ann Arbor, MI 48109, USA; (Z.B.S.); (Y.S.); (L.E.); (A.H.)
- Department of Molecular & Integrative Physiology, The University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Kosior-Jarecka E, Grzybowski A. Retinal Ganglion Cell Replacement in Glaucoma Therapy: A Narrative Review. J Clin Med 2024; 13:7204. [PMID: 39685661 DOI: 10.3390/jcm13237204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024] Open
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide. It leads to the progressive degeneration of retinal ganglion cells (RGCs), the axons of which form the optic nerve. Enormous RGC apoptosis causes a lack of transfer of visual information to the brain. The RGC loss typical of the central nervous system is irreversible, and when glaucoma progresses, the total amount of RGCs in the retina enormously diminishes. The successful treatment in glaucoma patients is a direct neuroprotection by decreasing the intraocular pressure, which enables RGC protection but does not revive the lost ones. The intriguing new therapy for advanced glaucoma is the possibility of RGC replacement with new healthy cells. In this review article, the strategies regarding RGC replacement therapy are presented with the latest advances in the technique and the obstacles that it meets.
Collapse
Affiliation(s)
- Ewa Kosior-Jarecka
- Department of Diagnostics and Microsurgery of Glaucoma, Medical University of Lublin, 20-079 Lublin, Poland
| | - Andrzej Grzybowski
- Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, 60-836 Poznan, Poland
| |
Collapse
|
4
|
Yamamoto T, Kase S, Shinkai A, Murata M, Kikuchi K, Wu D, Kageyama Y, Shinohara M, Sasase T, Ishida S. Phosphorylation of αB-Crystallin Involves Interleukin-1β-Mediated Intracellular Retention in Retinal Müller Cells: A New Mechanism Underlying Fibrovascular Membrane Formation. Invest Ophthalmol Vis Sci 2023; 64:20. [PMID: 37459063 PMCID: PMC10362920 DOI: 10.1167/iovs.64.10.20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Purpose Chronic inflammation plays a pivotal role in the pathology of proliferative diabetic retinopathy (PDR), in which biological alterations of retinal glial cells are one of the key elements. The phosphorylation of αB-crystallin/CRYAB modulates its molecular dynamics and chaperone activity, and attenuates αB-crystallin secretion via exosomes. In this study, we investigated the effect of phosphorylated αB-crystallin in retinal Müller cells on diabetic mimicking conditions, including interleukin (IL)-1β stimuli. Methods Human retinal Müller cells (MIO-M1) were used to examine gene and protein expressions with real-time quantitative PCR, enzyme linked immunosorbent assay (ELISA), and immunoblot analyses. Cell apoptosis was assessed by Caspase-3/7 assay and TdT-mediated dUTP nick-end labeling staining. Retinal tissues isolated from the Spontaneously Diabetic Torii (SDT) fatty rat, a type 2 diabetic animal model with obesity, and fibrovascular membranes from patients with PDR were examined by double-staining immunofluorescence. Results CRYAB mRNA was downregulated in MIO-M1 cells with the addition of 10 ng/mL IL-1β; however, intracellular αB-crystallin protein levels were maintained. The αB-crystallin serine 59 (Ser59) residue was phosphorylated with IL-1β application in MIO-M1 cells. Cell apoptosis in MIO-M1 cells was induced by CRYAB knockdown. Immunoreactivity for Ser59-phosphorylated αB-crystallin and glial fibrillary acidic protein was colocalized in glial cells of SDT fatty rats and fibrovascular membranes. Conclusions The Ser59 phosphorylation of αB-crystallin was modulated by IL-1β in Müller cells under diabetic mimicking inflammatory conditions, suggesting that αB-crystallin contributes to the pathogenesis of PDR through an anti-apoptotic effect.
Collapse
Affiliation(s)
- Taku Yamamoto
- Laboratory of Ocular Cell Biology and Visual Science, Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Satoru Kase
- Laboratory of Ocular Cell Biology and Visual Science, Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Akihiro Shinkai
- Laboratory of Ocular Cell Biology and Visual Science, Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Miyuki Murata
- Laboratory of Ocular Cell Biology and Visual Science, Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kasumi Kikuchi
- Laboratory of Ocular Cell Biology and Visual Science, Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Di Wu
- Eye Center of the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | | | | | - Tomohiko Sasase
- Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Osaka, Japan
| | - Susumu Ishida
- Laboratory of Ocular Cell Biology and Visual Science, Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
5
|
Zhang J, Wu J, Lu D, To CH, Lam TC, Lin B. Retinal Proteomic Analysis in a Mouse Model of Endotoxin-Induced Uveitis Using Data-Independent Acquisition-Based Mass Spectrometry. Int J Mol Sci 2022; 23:ijms23126464. [PMID: 35742911 PMCID: PMC9223489 DOI: 10.3390/ijms23126464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/24/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Uveitis is a group of sight-threatening ocular inflammatory diseases, potentially leading to permanent vision loss in patients. However, it remains largely unknown how uveitis causes retinal malfunction and vision loss. Endotoxin-induced uveitis (EIU) in rodents is a good animal model to study uveitis and associated acute retinal inflammation. To understand the pathogenic mechanism of uveitis and screen potential targets for treatment, we analyzed the retinal proteomic profile of the EIU mouse model using a data-independent acquisition-based mass spectrometry (SWATH-MS). After systemic LPS administration, we observed activation of microglial cells accompanied with the elevation of pro-inflammatory mediators and visual function declines. In total, we observed 79 upregulated and 90 downregulated differentially expressed proteins (DEPs). Among the DEPs, we found that histone family members (histone H1, H2A, H2B) and blood proteins including haptoglobin (HP), hemopexin (HPX), and fibrinogen gamma chain (FGG) were dramatically increased in EIU groups relative to those in control groups. We identified phototransduction and synaptic vesicle cycle as the top two significant KEGG pathways. Moreover, canonical pathway analysis on DEPs using Ingenuity Pathway Analysis revealed top three most significant enriched pathways related to acute phase response signaling, synaptogenesis signaling, and eif2 signaling. We further confirmed upregulation of several DEPs associated with the acute phase response signaling including HP, HPX, and FGG in LPS-treated retinas by qPCR and Western blot. In summary, this study serves as the first report to detect retinal proteome changes in the EIU model. The study provides several potential candidates for exploring the mechanism and novel therapeutic targets for uveitis and other retinal inflammatory diseases.
Collapse
Affiliation(s)
- Jing Zhang
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China; (J.Z.); (J.W.); (D.L.); (C.-H.T.)
| | - Jiangmei Wu
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China; (J.Z.); (J.W.); (D.L.); (C.-H.T.)
| | - Daqian Lu
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China; (J.Z.); (J.W.); (D.L.); (C.-H.T.)
| | - Chi-Ho To
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China; (J.Z.); (J.W.); (D.L.); (C.-H.T.)
- Centre for Eye and Vision Research (CEVR), Hong Kong SAR, China
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Thomas Chuen Lam
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China; (J.Z.); (J.W.); (D.L.); (C.-H.T.)
- Centre for Eye and Vision Research (CEVR), Hong Kong SAR, China
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong SAR, China
- Correspondence: (T.C.L.); (B.L.)
| | - Bin Lin
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China; (J.Z.); (J.W.); (D.L.); (C.-H.T.)
- Centre for Eye and Vision Research (CEVR), Hong Kong SAR, China
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong SAR, China
- Correspondence: (T.C.L.); (B.L.)
| |
Collapse
|
6
|
Rajeswaren V, Wong JO, Yabroudi D, Nahomi RB, Rankenberg J, Nam MH, Nagaraj RH. Small Heat Shock Proteins in Retinal Diseases. Front Mol Biosci 2022; 9:860375. [PMID: 35480891 PMCID: PMC9035800 DOI: 10.3389/fmolb.2022.860375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/11/2022] [Indexed: 11/29/2022] Open
Abstract
This review summarizes the latest findings on small heat shock proteins (sHsps) in three major retinal diseases: glaucoma, diabetic retinopathy, and age-related macular degeneration. A general description of the structure and major cellular functions of sHsps is provided in the introductory remarks. Their role in specific retinal diseases, highlighting their regulation, role in pathogenesis, and possible use as therapeutics, is discussed.
Collapse
Affiliation(s)
- Vivian Rajeswaren
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, School of Medicine, Aurora, CO, United States
| | - Jeffrey O. Wong
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, School of Medicine, Aurora, CO, United States
| | - Dana Yabroudi
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, School of Medicine, Aurora, CO, United States
| | - Rooban B. Nahomi
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, School of Medicine, Aurora, CO, United States
| | - Johanna Rankenberg
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, School of Medicine, Aurora, CO, United States
| | - Mi-Hyun Nam
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, School of Medicine, Aurora, CO, United States
- *Correspondence: Mi-Hyun Nam, ; Ram H. Nagaraj,
| | - Ram H. Nagaraj
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, School of Medicine, Aurora, CO, United States
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States
- *Correspondence: Mi-Hyun Nam, ; Ram H. Nagaraj,
| |
Collapse
|