1
|
Endepols H, Apetz N, Vieth L, Lesser C, Schulte-Holtey L, Neumaier B, Drzezga A. Cerebellar Metabolic Connectivity during Treadmill Walking before and after Unilateral Dopamine Depletion in Rats. Int J Mol Sci 2024; 25:8617. [PMID: 39201305 PMCID: PMC11354914 DOI: 10.3390/ijms25168617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Compensatory changes in brain connectivity keep motor symptoms mild in prodromal Parkinson's disease. Studying compensation in patients is hampered by the steady progression of the disease and a lack of individual baseline controls. Furthermore, combining fMRI with walking is intricate. We therefore used a seed-based metabolic connectivity analysis based on 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) uptake in a unilateral 6-OHDA rat model. At baseline and in the chronic phase 6-7 months after lesion, rats received an intraperitoneal injection of [18F]FDG and spent 50 min walking on a horizontal treadmill, followed by a brain PET-scan under anesthesia. High activity was found in the cerebellar anterior vermis in both conditions. At baseline, the anterior vermis showed hardly any stable connections to the rest of the brain. The (future) ipsilesional cerebellar hemisphere was not particularly active during walking but was extensively connected to many brain areas. After unilateral dopamine depletion, rats still walked normally without obvious impairments. The ipsilesional cerebellar hemisphere increased its activity, but narrowed its connections down to the vestibulocerebellum, probably aiding lateral stability. The anterior vermis established a network involving the motor cortex, hippocampus and thalamus. Adding those regions to the vermis network of (previously) automatic control of locomotion suggests that after unilateral dopamine depletion considerable conscious and cognitive effort has to be provided to achieve stable walking.
Collapse
Affiliation(s)
- Heike Endepols
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany (L.V.)
- Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany;
| | - Nadine Apetz
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany (L.V.)
| | - Lukas Vieth
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany (L.V.)
| | - Christoph Lesser
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany (L.V.)
| | - Léon Schulte-Holtey
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany (L.V.)
| | - Bernd Neumaier
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany (L.V.)
- Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Alexander Drzezga
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany;
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
- Molecular Organization of the Brain (INM-2), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| |
Collapse
|
2
|
Mai N, Wu Y, Zhong X, Chen B, Zhang M, Peng Q, Ning Y. Increasing variance of rich-club nodes distribution in early onset depression according to dynamic network. Brain Imaging Behav 2024; 18:662-674. [PMID: 38349505 DOI: 10.1007/s11682-023-00848-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2023] [Indexed: 07/04/2024]
Abstract
Early onset depression (EOD) and late onset depression (LOD) are thought to have different pathogeneses, but lack of pathological evidence. In the current study we describe the dynamic rich-club properties of patients with EOD and LOD to address this question indirectly. We recruited 82 patients with late life depression (EOD 40, LOD 42) and 90 healthy controls. Memory, executive function and processing speed were measured, and resting-stage functional MRI was performed with all participants. We constructed a dynamic functional connectivity network and carried out rich-club and modularity analyses. Normalized mutual information (NMI) was applied to describe the variance in rich-club nodes distribution and partitioning. The NMI coefficient of rich club nodes distribution among the three groups was the lowest in the EOD patients (F = 4.298; P = 0.0151, FDR = 0.0231), which was positively correlated with rich-club connectivity (R = 0.886, P < 0.001) and negatively correlated with memory (R = -0.347, P = 0.038) in the EOD group. In the LOD patients, non-rich-club connectivity was positively correlated with memory (R = 0.353, P = 0.030 and R = 0.420, P = 0.009). Furthermore, local connectivity was positively correlated with processing speed in the LOD patients (R = 0.374, P = 0.021). The modular partition was different between the EOD patients and the HCs (P = 0.0013 < 0.05/3). The temporal instability of rich-club nodes was found in the EOD patients, but not the LOD patients, supporting the hypothesis that EOD and LOD result from different pathogenesis, and showing that the instability of the rich-club nodes across time might disrupt rich-club connectivity.
Collapse
Affiliation(s)
- Naikeng Mai
- Department of Neurology, the Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangdong, Guangzhou, China
| | - Yujie Wu
- School of Education Science, Guangdong Polytechnic Normal University, Guangdong, Guangzhou, China
| | - Xiaomei Zhong
- Geriatric Neuroscience center, the Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangdong, Guangzhou, China
| | - Ben Chen
- Geriatric Neuroscience center, the Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangdong, Guangzhou, China
| | - Min Zhang
- Geriatric Neuroscience center, the Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangdong, Guangzhou, China
| | - Qi Peng
- Geriatric Neuroscience center, the Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangdong, Guangzhou, China
| | - Yuping Ning
- Geriatric Neuroscience center, the Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangdong, Guangzhou, China.
| |
Collapse
|
3
|
Hernandez AR, Barrett ME, Lubke KN, Maurer AP, Burke SN. A long-term ketogenic diet in young and aged rats has dissociable effects on prelimbic cortex and CA3 ensemble activity. Front Aging Neurosci 2023; 15:1274624. [PMID: 38155737 PMCID: PMC10753023 DOI: 10.3389/fnagi.2023.1274624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023] Open
Abstract
Introduction Age-related cognitive decline has been linked to distinct patterns of cellular dysfunction in the prelimbic cortex (PL) and the CA3 subregion of the hippocampus. Because higher cognitive functions require both structures, selectively targeting a neurobiological change in one region, at the expense of the other, is not likely to restore normal behavior in older animals. One change with age that both the PL and CA3 share, however, is a reduced ability to utilize glucose, which can produce aberrant neural activity patterns. Methods The current study used a ketogenic diet (KD) intervention, which reduces the brain's reliance on glucose, and has been shown to improve cognition, as a metabolic treatment for restoring neural ensemble dynamics in aged rats. Expression of the immediate-early genes Arc and Homer1a were used to quantify the neural ensembles that were active in the home cage prior to behavior, during a working memory/biconditional association task, and a continuous spatial alternation task. Results Aged rats on the control diet had increased activity in CA3 and less ensemble overlap in PL between different task conditions than did the young animals. In the PL, the KD was associated with increased activation of neurons in the superficial cortical layers, establishing a clear link between dietary macronutrient content and frontal cortical activity. The KD did not lead to any significant changes in CA3 activity. Discussion These observations suggest that the availability of ketone bodies may permit the engagement of compensatory mechanisms in the frontal cortices that produce better cognitive outcomes.
Collapse
Affiliation(s)
- Abbi R. Hernandez
- Division of Gerontology, Geriatrics, and Palliative Care, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Maya E. Barrett
- Department of Psychology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Katelyn N. Lubke
- Department of Neuroscience, McKnight Brain Institute, and Center for Cognitive Aging and Memory, University of Florida, Gainesville, FL, United States
| | - Andrew P. Maurer
- Department of Neuroscience, McKnight Brain Institute, and Center for Cognitive Aging and Memory, University of Florida, Gainesville, FL, United States
| | - Sara N. Burke
- Department of Neuroscience, McKnight Brain Institute, and Center for Cognitive Aging and Memory, University of Florida, Gainesville, FL, United States
| |
Collapse
|
4
|
Smith SM, Garcia E, Montelongo A, Davidson CG, Bakhtiar D, Lovett SD, Maurer AP, Burke SN. Muscimol inactivation of dorsal striatum in young and aged male rats does not affect paired associates learning performance. Behav Neurosci 2023; 137:356-363. [PMID: 37326524 PMCID: PMC10721732 DOI: 10.1037/bne0000561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Improving cognitive health for older adults requires understanding the neurobiology of age-related cognitive decline and the mechanisms underlying preserved cognition in old age. During spatial learning tasks, aged humans and rodents shift navigation preferences in favor of a stimulus-response learning strategy. This has been hypothesized to result from competitive interactions of the caudate nucleus/dorsal striatum (DS) memory system with the hippocampus (HPC)-dependent spatial/allocentric memory system. In support of this hypothesis, a recent study reported that inactivation of the DS in aged rodents rescued HPC-dependent spatial learning on a T-maze (Gardner, Gold, & Korol, 2020). Currently, it is unclear whether a shift from HPC-dependent to DS-dependent behavior also contributes to age-related cognitive decline outside of spatial learning and memory. To test the hypothesis that inactivation of the DS can restore age-related cognitive function outside of spatial behavior, the present study bilaterally inactivated the DS of young (n = 8) and aged (n = 7) rats during visuospatial paired associates learning (PAL). This study found that inactivation of the DS did not alter PAL performance in young or aged rats, but did alter a positive control, DS-dependent spatial navigation task. This observation suggests that elevated DS activity does not play a role in the decline of HPC-dependent PAL performance in aged male rats. Given the persistent tendencies of aged rodents toward DS-dependent learning, it will be worthwhile to explore further the coordination dynamics between the HPC and DS that may contribute to age-related cognitive decline. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
- Samantha M. Smith
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL
- Graduate Program in Biomedical Sciences, Neuroscience Concentration, University of Florida
- Center for Cognitive Aging and Memory, University of Florida, Gainesville, FL
| | - Elena Garcia
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL
| | - Anna Montelongo
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL
| | - Caroline G. Davidson
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL
| | - Denna Bakhtiar
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL
| | - Sarah D. Lovett
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL
| | - Andrew P. Maurer
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL
- Center for Cognitive Aging and Memory, University of Florida, Gainesville, FL
| | - Sara N. Burke
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL
- Center for Cognitive Aging and Memory, University of Florida, Gainesville, FL
| |
Collapse
|
5
|
Gaynor LS, Ravi M, Zequeira S, Hampton AM, Pyon WS, Smith S, Colon-Perez LM, Pompilus M, Bizon JL, Maurer AP, Febo M, Burke SN. Touchscreen-Based Cognitive Training Alters Functional Connectivity Patterns in Aged But Not Young Male Rats. eNeuro 2023; 10:ENEURO.0329-22.2023. [PMID: 36754628 PMCID: PMC9961373 DOI: 10.1523/eneuro.0329-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/31/2022] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Age-related cognitive decline is related to cellular and systems-level disruptions across multiple brain regions. Because age-related cellular changes within different structures do not show the same patterns of dysfunction, interventions aimed at optimizing function of large-scale brain networks may show greater efficacy at improving cognitive outcomes in older adults than traditional pharmacotherapies. The current study aimed to leverage a preclinical rat model of aging to determine whether cognitive training in young and aged male rats with a computerized paired-associates learning (PAL) task resulted in changes in global resting-state functional connectivity. Moreover, seed-based functional connectivity was used to examine resting state connectivity of cortical areas involved in object-location associative memory and vulnerable in old age, namely the medial temporal lobe (MTL; hippocampal cortex and perirhinal cortex), retrosplenial cortex (RSC), and frontal cortical areas (prelimbic and infralimbic cortices). There was an age-related increase in global functional connectivity between baseline and post-training resting state scans in aged, cognitively trained rats. This change in connectivity following cognitive training was not observed in young animals, or rats that traversed a track for a reward between scan sessions. Relatedly, an increase in connectivity between perirhinal and prelimbic cortices, as well as reduced reciprocal connectivity within the RSC, was found in aged rats that underwent cognitive training, but not the other groups. Subnetwork activation was associated with task performance across age groups. Greater global functional connectivity and connectivity between task-relevant brain regions may elucidate compensatory mechanisms that can be engaged by cognitive training.
Collapse
Affiliation(s)
- Leslie S Gaynor
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94158
| | - Meena Ravi
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
- McKnight Brain Institute and College of Medicine, University of Florida, Gainesville, FL 32610
| | - Sabrina Zequeira
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
- McKnight Brain Institute and College of Medicine, University of Florida, Gainesville, FL 32610
| | - Andreina M Hampton
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
| | - Wonn S Pyon
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
- McKnight Brain Institute and College of Medicine, University of Florida, Gainesville, FL 32610
| | - Samantha Smith
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
- McKnight Brain Institute and College of Medicine, University of Florida, Gainesville, FL 32610
| | - Luis M Colon-Perez
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107
| | - Marjory Pompilus
- Department of Psychiatry, University of Florida, Gainesville, FL 32610
| | - Jennifer L Bizon
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
- McKnight Brain Institute and College of Medicine, University of Florida, Gainesville, FL 32610
| | - Andrew P Maurer
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
- McKnight Brain Institute and College of Medicine, University of Florida, Gainesville, FL 32610
| | - Marcelo Febo
- Department of Psychiatry, University of Florida, Gainesville, FL 32610
- McKnight Brain Institute and College of Medicine, University of Florida, Gainesville, FL 32610
| | - Sara N Burke
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
- McKnight Brain Institute and College of Medicine, University of Florida, Gainesville, FL 32610
| |
Collapse
|
6
|
Orsini CA, Pyon WS, Dragone RJ, Faraji M, Wheeler AR, Pompilus M, Febo M, Bizon JL, Setlow B. Age-Related Changes in Risky Decision Making and Associated Neural Circuitry in a Rat Model. eNeuro 2023; 10:ENEURO.0385-22.2022. [PMID: 36596593 PMCID: PMC9840382 DOI: 10.1523/eneuro.0385-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 01/05/2023] Open
Abstract
Altered decision making at advanced ages can have a significant impact on an individual's quality of life and the ability to maintain personal independence. Relative to young adults, older adults make less impulsive and less risky choices; although these changes in decision making could be considered beneficial, they can also lead to choices with potentially negative consequences (e.g., avoidance of medical procedures). Rodent models of decision making have been invaluable for dissecting cognitive and neurobiological mechanisms that contribute to age-related changes in decision making, but they have predominantly used costs related to timing or probability of reward delivery and have not considered other equally important costs, such as the risk of adverse consequences. The current study therefore used a rat model of decision making involving risk of explicit punishment to examine age-related changes in this form of choice behavior in male rats, and to identify potential cognitive and neurobiological mechanisms that contribute to these changes. Relative to young rats, aged rats displayed greater risk aversion, which was not attributable to reduced motivation for food, changes in shock sensitivity, or impaired cognitive flexibility. Functional MRI analyses revealed that, overall, functional connectivity was greater in aged rats compared with young rats, particularly among brain regions implicated in risky decision making such as basolateral amygdala, orbitofrontal cortex, and ventral tegmental area. Collectively, these findings are consistent with greater risk aversion found in older humans, and reveal age-related changes in brain connectivity.
Collapse
Affiliation(s)
- Caitlin A Orsini
- Department of Psychiatry, University of Florida, Gainesville, Florida 32610
| | - Wonn S Pyon
- Department of Neuroscience, University of Florida, Gainesville, Florida 32610
| | - Richard J Dragone
- Department of Psychiatry, University of Florida, Gainesville, Florida 32610
| | - Mojdeh Faraji
- Department of Psychiatry, University of Florida, Gainesville, Florida 32610
| | - Alexa-Rae Wheeler
- Department of Neuroscience, University of Florida, Gainesville, Florida 32610
| | - Marjory Pompilus
- Department of Psychiatry, University of Florida, Gainesville, Florida 32610
| | - Marcelo Febo
- Department of Psychiatry, University of Florida, Gainesville, Florida 32610
- McKnight Brain Institute, University of Florida, Gainesville, Florida 32610
| | - Jennifer L Bizon
- Department of Neuroscience, University of Florida, Gainesville, Florida 32610
- McKnight Brain Institute, University of Florida, Gainesville, Florida 32610
| | - Barry Setlow
- Department of Psychiatry, University of Florida, Gainesville, Florida 32610
- McKnight Brain Institute, University of Florida, Gainesville, Florida 32610
| |
Collapse
|
7
|
Myrum C, Moreno-Castilla P, Rapp PR. 'Arc'-hitecture of normal cognitive aging. Ageing Res Rev 2022; 80:101678. [PMID: 35781092 PMCID: PMC9378697 DOI: 10.1016/j.arr.2022.101678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 06/10/2022] [Accepted: 06/24/2022] [Indexed: 12/17/2022]
Abstract
Arc is an effector immediate-early gene that is critical for forming long-term memories. Since its discovery 25 years ago, it has repeatedly surprised us with a number of intriguing properties, including the transport of its mRNA to recently-activated synapses, its master role in bidirectionally regulating synaptic strength, its evolutionary retroviral origins, its ability to mediate intercellular transfer between neurons via extracellular vesicles (EVs), and its exceptional regulation-both temporally and spatially. The current review discusses how Arc has been used as a tool to identify the neural networks involved in cognitive aging and how Arc itself may contribute to cognitive outcome in aging. In addition, we raise several outstanding questions, including whether Arc-containing EVs in peripheral blood might provide a noninvasive biomarker for memory-related synaptic failure in aging, and whether rectifying Arc dysregulation is likely to be an effective strategy for bending the arc of aging toward successful cognitive outcomes.
Collapse
Affiliation(s)
- Craig Myrum
- Neurocognitive Aging Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Perla Moreno-Castilla
- Neurocognitive Aging Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Peter R Rapp
- Neurocognitive Aging Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
8
|
Hernandez CM, Hernandez AR, Hoffman JM, King PH, McMahon LL, Buford TW, Carter C, Bizon JL, Burke SN. A Neuroscience Primer for Integrating Geroscience With the Neurobiology of Aging. J Gerontol A Biol Sci Med Sci 2022; 77:e19-e33. [PMID: 34623396 PMCID: PMC8751809 DOI: 10.1093/gerona/glab301] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Indexed: 11/13/2022] Open
Abstract
Neuroscience has a rich history of studies focusing on neurobiology of aging. However, much of the aging studies in neuroscience occur outside of the gerosciences. The goal of this primer is 2-fold: first, to briefly highlight some of the history of aging neurobiology and second, to introduce to geroscientists the broad spectrum of methodological approaches neuroscientists use to study the neurobiology of aging. This primer is accompanied by a corresponding geroscience primer, as well as a perspective on the current challenges and triumphs of the current divide across these 2 fields. This series of manuscripts is intended to foster enhanced collaborations between neuroscientists and geroscientists with the intent of strengthening the field of cognitive aging through inclusion of parameters from both areas of expertise.
Collapse
Affiliation(s)
- Caesar M Hernandez
- Department of Cellular, Development, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,Evelyn F. McKnight Brain Institute, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Abigail R Hernandez
- Evelyn F. McKnight Brain Institute, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jessica M Hoffman
- Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Peter H King
- Department of Cellular, Development, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,Birmingham Veterans Affairs Medical Center, Birmingham, Alabama, USA
| | - Lori L McMahon
- Department of Cellular, Development, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,Evelyn F. McKnight Brain Institute, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,UAB Nathan Shock Center for the Basic Biology of Aging, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,UAB Integrative Center for Aging Research, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Thomas W Buford
- Evelyn F. McKnight Brain Institute, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,UAB Nathan Shock Center for the Basic Biology of Aging, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,UAB Integrative Center for Aging Research, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,Geriatric Research Education and Clinical Center, Birmingham VA Medical Center, Birmingham, Alabama, USA
| | - Christy Carter
- Evelyn F. McKnight Brain Institute, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jennifer L Bizon
- Department of Neuroscience, Center for Cognitive Aging and Memory, and the McKnight Brain Institute, The University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Sara N Burke
- Department of Neuroscience, Center for Cognitive Aging and Memory, and the McKnight Brain Institute, The University of Florida, College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
9
|
Smith SM, Zequeira S, Ravi M, Johnson SA, Hampton AM, Ross AM, Pyon W, Maurer AP, Bizon JL, Burke SN. Age-related impairments on the touchscreen paired associates learning (PAL) task in male rats. Neurobiol Aging 2022; 109:176-191. [PMID: 34749169 PMCID: PMC9351724 DOI: 10.1016/j.neurobiolaging.2021.09.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 02/01/2023]
Abstract
Discovery research in rodent models of cognitive aging is instrumental for identifying mechanisms of behavioral decline in old age that can be therapeutically targeted. Clinically relevant behavioral paradigms, however, have not been widely employed in aged rats. The current study aimed to bridge this translational gap by testing cognition in a cross-species touchscreen-based platform known as paired-associates learning (PAL) and then utilizing a trial-by-trial behavioral analysis approach. This study found age-related deficits in PAL task acquisition in male rats. Furthermore, trial-by-trial analyses and testing rats on a novel interference version of PAL suggested that age-related impairments were not due to differences in vulnerability to an irrelevant distractor, motivation, or to forgetting. Rather, impairment appeared to arise from vulnerability to accumulating, proactive interference, with aged animals performing worse than younger rats in later trial blocks within a single testing session. The detailed behavioral analysis employed in this study provides new insights into the etiology of age-associated cognitive deficits.
Collapse
Affiliation(s)
- Samantha M Smith
- Department of Neuroscience, Center for Cognitive Aging and Memory, University of Florida College of Medicine, Gainesville, FL, USA; Graduate Program in Biomedical Sciences, Neuroscience Concentration, University of Florida College of Medicine, Gainesville, FL, USA
| | - Sabrina Zequeira
- Department of Neuroscience, Center for Cognitive Aging and Memory, University of Florida College of Medicine, Gainesville, FL, USA; Graduate Program in Biomedical Sciences, Neuroscience Concentration, University of Florida College of Medicine, Gainesville, FL, USA
| | - Meena Ravi
- Department of Neuroscience, Center for Cognitive Aging and Memory, University of Florida College of Medicine, Gainesville, FL, USA
| | - Sarah A Johnson
- Department of Neuroscience and Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, Chicago, IL, USA
| | - Andriena M Hampton
- Department of Neuroscience, Center for Cognitive Aging and Memory, University of Florida College of Medicine, Gainesville, FL, USA
| | - Aleyna M Ross
- Department of Neuroscience, Center for Cognitive Aging and Memory, University of Florida College of Medicine, Gainesville, FL, USA; Graduate Program in Biomedical Sciences, Neuroscience Concentration, University of Florida College of Medicine, Gainesville, FL, USA
| | - Wonn Pyon
- Department of Neuroscience, Center for Cognitive Aging and Memory, University of Florida College of Medicine, Gainesville, FL, USA; Graduate Program in Biomedical Sciences, Neuroscience Concentration, University of Florida College of Medicine, Gainesville, FL, USA
| | - Andrew P Maurer
- Department of Neuroscience, Center for Cognitive Aging and Memory, University of Florida College of Medicine, Gainesville, FL, USA
| | - Jennifer L Bizon
- Department of Neuroscience, Center for Cognitive Aging and Memory, University of Florida College of Medicine, Gainesville, FL, USA
| | - Sara N Burke
- Department of Neuroscience, Center for Cognitive Aging and Memory, University of Florida College of Medicine, Gainesville, FL, USA; Institute on Aging, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
10
|
Yang Z, Zhu T, Pompilus M, Fu Y, Zhu J, Arjona K, Arja RD, Grudny MM, Plant HD, Bose P, Wang KK, Febo M. Compensatory functional connectome changes in a rat model of traumatic brain injury. Brain Commun 2021; 3:fcab244. [PMID: 34729482 PMCID: PMC8557657 DOI: 10.1093/braincomms/fcab244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 12/24/2022] Open
Abstract
Penetrating cortical impact injuries alter neuronal communication beyond the injury epicentre, across regions involved in affective, sensorimotor and cognitive processing. Understanding how traumatic brain injury reorganizes local and brain wide nodal interactions may provide valuable quantitative parameters for monitoring pathological progression and recovery. To this end, we investigated spontaneous fluctuations in the functional MRI signal obtained at 11.1 T in rats sustaining controlled cortical impact and imaged at 2- and 30-days post-injury. Graph theory-based calculations were applied to weighted undirected matrices constructed from 12 879 pairwise correlations between functional MRI signals from 162 regions. Our data indicate that on Days 2 and 30 post-controlled cortical impact there is a significant increase in connectivity strength in nodes located in contralesional cortical, thalamic and basal forebrain areas. Rats imaged on Day 2 post-injury had significantly greater network modularity than controls, with influential nodes (with high eigenvector centrality) contained within the contralesional module and participating less in cross-modular interactions. By Day 30, modularity and cross-modular interactions recover, although a cluster of nodes with low strength and low eigenvector centrality remain in the ipsilateral cortex. Our results suggest that changes in node strength, modularity, eigenvector centrality and participation coefficient track early and late traumatic brain injury effects on brain functional connectivity. We propose that the observed compensatory functional connectivity reorganization in response to controlled cortical impact may be unfavourable to brain wide communication in the early post-injury period.
Collapse
Affiliation(s)
- Zhihui Yang
- Department of Emergency Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Tian Zhu
- Department of Emergency Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Marjory Pompilus
- Department of Psychiatry, University of Florida, Gainesville, FL 32611, USA
| | - Yueqiang Fu
- Department of Emergency Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Jiepei Zhu
- Department of Anesthesiology, University of Florida, Gainesville, FL 32611, USA
| | - Kefren Arjona
- Department of Emergency Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Rawad Daniel Arja
- Department of Emergency Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Matteo M Grudny
- Department of Psychiatry, University of Florida, Gainesville, FL 32611, USA
| | - H Daniel Plant
- VA Research Service, Malcom Randall VA Medical Center, Gainesville, FL 32611, USA
| | - Prodip Bose
- Department of Anesthesiology, University of Florida, Gainesville, FL 32611, USA
- VA Research Service, Malcom Randall VA Medical Center, Gainesville, FL 32611, USA
- Department of Neurology, University of Florida, Gainesville, FL 32611, USA
| | - Kevin K Wang
- Department of Emergency Medicine, University of Florida, Gainesville, FL 32611, USA
- VA Research Service, Malcom Randall VA Medical Center, Gainesville, FL 32611, USA
| | - Marcelo Febo
- Department of Psychiatry, University of Florida, Gainesville, FL 32611, USA
- Advanced Magnetic Resonance Imaging and Spectroscopy Facility (AMRIS), University of Florida, Gainesville, FL 32611, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
11
|
Johnson SA, Zequeira S, Turner SM, Maurer AP, Bizon JL, Burke SN. Rodent mnemonic similarity task performance requires the prefrontal cortex. Hippocampus 2021; 31:701-716. [PMID: 33606338 PMCID: PMC9343235 DOI: 10.1002/hipo.23316] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/01/2021] [Accepted: 01/23/2021] [Indexed: 11/07/2023]
Abstract
Mnemonic similarity task performance, in which a known target stimulus must be distinguished from similar lures, is supported by the hippocampus and perirhinal cortex. Impairments on this task are known to manifest with advancing age. Interestingly, disrupting hippocampal activity leads to mnemonic discrimination impairments when lures are novel, but not when they are familiar. This observation suggests that other brain structures support discrimination abilities as stimuli are learned. The prefrontal cortex (PFC) is critical for retrieval of remote events and executive functions, such as working memory, and is also particularly vulnerable to dysfunction in aging. Importantly, the medial PFC is reciprocally connected to the perirhinal cortex and neuron firing in this region coordinates communication between lateral entorhinal and perirhinal cortices to presumably modulate hippocampal activity. This anatomical organization and function of the medial PFC suggests that it contributes to mnemonic discrimination; however, this notion has not been empirically tested. In the current study, rats were trained on a LEGO object-based mnemonic similarity task adapted for rodents, and surgically implanted with guide cannulae targeting prelimbic and infralimbic regions of the medial PFC. Prior to mnemonic discrimination tests, rats received PFC infusions of the GABAA agonist muscimol. Analyses of expression of the neuronal activity-dependent immediate-early gene Arc in medial PFC and adjacent cortical regions confirmed muscimol infusions led to neuronal inactivation in the infralimbic and prelimbic cortices. Moreover, muscimol infusions in PFC impaired mnemonic discrimination performance relative to the vehicle control across all testing blocks when lures shared 50-90% feature overlap with the target. Thus, in contrast hippocampal infusions, PFC inactivation impaired target-lure discrimination regardless of the novelty or familiarity of the lures. These findings indicate the PFC plays a critical role in mnemonic similarity task performance, but the time course of PFC involvement is dissociable from that of the hippocampus.
Collapse
Affiliation(s)
- Sarah A. Johnson
- Evelyn F. and William L. McKnight Brain Institute, Gainesville, Florida
- Department of Neuroscience, University of Florida, Gainesville, Florida
| | - Sabrina Zequeira
- Evelyn F. and William L. McKnight Brain Institute, Gainesville, Florida
- Department of Neuroscience, University of Florida, Gainesville, Florida
| | - Sean M. Turner
- Department of Clinical Health Psychology, University of Florida, Gainesville, Florida
| | - Andrew P. Maurer
- Evelyn F. and William L. McKnight Brain Institute, Gainesville, Florida
- Department of Neuroscience, University of Florida, Gainesville, Florida
- Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Jennifer L. Bizon
- Evelyn F. and William L. McKnight Brain Institute, Gainesville, Florida
- Department of Neuroscience, University of Florida, Gainesville, Florida
| | - Sara N. Burke
- Evelyn F. and William L. McKnight Brain Institute, Gainesville, Florida
- Department of Neuroscience, University of Florida, Gainesville, Florida
- Institute on Aging, University of Florida, Gainesville, Florida
| |
Collapse
|
12
|
Contextual experience modifies functional connectome indices of topological strength and efficiency. Sci Rep 2020; 10:19843. [PMID: 33199790 PMCID: PMC7670469 DOI: 10.1038/s41598-020-76935-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/27/2020] [Indexed: 11/08/2022] Open
Abstract
Stimuli presented at short temporal delays before functional magnetic resonance imaging (fMRI) can have a robust impact on the organization of synchronous activity in resting state networks. This presents an opportunity to investigate how sensory, affective and cognitive stimuli alter functional connectivity in rodent models. In the present study we assessed the effect on functional connectivity of a familiar contextual stimulus presented 10 min prior to sedation for imaging. A subset of animals were co-presented with an unfamiliar social stimulus in the same environment to further investigate the effect of familiarity on network topology. Rats were imaged at 11.1 T and graph theory analysis was applied to matrices generated from seed-based functional connectivity data sets with 144 brain regions (nodes) and 10,152 pairwise correlations (after excluding 144 diagonal edges). Our results show substantial changes in network topology in response to the familiar (context). Presentation of the familiar context, both in the absence and presence of the social stimulus, strongly reduced network strength, global efficiency, and altered the location of the highest eigenvector centrality nodes from cortex to the hypothalamus. We did not observe changes in modular organization, nodal cartographic assignments, assortative mixing, rich club organization, and network resilience. We propose that experiential factors, perhaps involving associative or episodic memory, can exert a dramatic effect on functional network strength and efficiency when presented at a short temporal delay before imaging.
Collapse
|
13
|
Trask S, Dulka BN, Helmstetter FJ. Age-Related Memory Impairment Is Associated with Increased zif268 Protein Accumulation and Decreased Rpt6 Phosphorylation. Int J Mol Sci 2020; 21:E5352. [PMID: 32731408 PMCID: PMC7432048 DOI: 10.3390/ijms21155352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 01/26/2023] Open
Abstract
Aging is associated with cognitive decline, including impairments in the ability to accurately form and recall memories. Some behavioral and brain changes associated with aging are evident as early as middle age, making the understanding of associated neurobiological mechanisms essential to aid in efforts aimed at slowing cognitive decline throughout the lifespan. Here, we found that both 15-month-old and 22-month-old rats showed impaired memory recall following trace fear conditioning. This behavioral deficit was accompanied by increased zif268 protein accumulation relative to 3-month-old animals in the medial prefrontal cortex, the dorsal and ventral hippocampi, the anterior and posterior retrosplenial cortices, the lateral amygdala, and the ventrolateral periaqueductal gray. Elevated zif268 protein levels corresponded with decreases in phosphorylation of the Rpt6 proteasome regulatory subunit, which is indicative of decreased engagement of activity-driven protein degradation. Together, these results identify several brain regions differentially impacted by aging and suggest that the accumulation of proteins associated with memory retrieval, through reduced proteolytic activity, is associated with age-related impairments in memory retention.
Collapse
Affiliation(s)
| | | | - Fred J. Helmstetter
- Department of Psychology, The University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201, USA; (S.T.); (B.N.D.)
| |
Collapse
|