1
|
Zhang M, Zhu J, Jiang Y, Chang T, Fu Y, Wu K, Zheng Z, Zhang Z, Wang X. Excitation-inhibition imbalance in the auditory cortex causes sound recognition impairment in noisy environment in hidden hearing loss mice. Brain Res Bull 2025:111371. [PMID: 40334993 DOI: 10.1016/j.brainresbull.2025.111371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 04/28/2025] [Accepted: 05/02/2025] [Indexed: 05/09/2025]
Abstract
Noise-induced hidden hearing loss (HHL) is a type of hearing dysfunction caused by moderate noise exposure. It is clinically manifested as speech recognition impairment in noisy environments while the hearing threshold remains within the normal range. The mechanism by which noise exposure causes speech recognition impairment remains unclear. This study aimed to investigate the excitation-inhibition status in the auditory cortex of HHL mice and its roles in sound recognition disability in noisy environments. A model of HHL in mice was induced using 110 decibels (dB) of helicopter noise for 2h, the sound recognition-avoidance decision (SRAD) behavioral test was used to evaluate sound recognition ability. The activation level of excitatory neurons and the expression of vesicular glutamate transporter 1 (VGluT1) and glutamate decarboxylase 67 (GAD67) in the auditory cortex were observed. Mice were administered α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist NBQX. The results showed increased cFos expression in the auditory cortex of HHL mice and an upregulated ratio of activated CaMKⅡ+ neurons. Furthermore, the expression of VGluT1 and GAD67 increased in an imbalanced manner under an 80dB noise stimulus for 2h. The SRAD behavioral tests showed the HHL mice maintained normal sound recognition ability under quiet conditions but not in a noisy environment. The NBQX treatment improved sound recognition but did not restore normal status. This study suggested that the excitation-inhibition imbalance in the auditory cortex of mice with HHL might be the direct cause of sound recognition disorders.
Collapse
Affiliation(s)
- Min Zhang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi'an, 169 changle west road, 710032, China; Department of Aviation Medicine, Xi-Jing Hospital, Air Force Medical University, Xi'an, 169 changle west road, 710032, China.
| | - Jing Zhu
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi'an, 169 changle west road, 710032, China; Innovation Research Institute, Xi-Jing Hospital, Air Force Medical University, Xi'an, 169 changle west road, 710032, China.
| | - Yihong Jiang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi'an, 169 changle west road, 710032, China.
| | - Tong Chang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi'an, 169 changle west road, 710032, China.
| | - Yang Fu
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi'an, 169 changle west road, 710032, China.
| | - Kan Wu
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi'an, 169 changle west road, 710032, China.
| | - Zeyu Zheng
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi'an, 169 changle west road, 710032, China.
| | - Zuoming Zhang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi'an, 169 changle west road, 710032, China.
| | - Xiaocheng Wang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi'an, 169 changle west road, 710032, China; Department of Otolaryngology, Xi-Jing Hospital, Air Force Medical University, Xi'an, 169 changle west road, 710032, China.
| |
Collapse
|
2
|
Herr DW. The Future of Neurotoxicology: A Neuroelectrophysiological Viewpoint. FRONTIERS IN TOXICOLOGY 2021; 3:1. [PMID: 34966904 PMCID: PMC8711081 DOI: 10.3389/ftox.2021.729788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Neuroelectrophysiology is an old science, dating to the 18th century when electrical activity in nerves was discovered. Such discoveries have led to a variety of neurophysiological techniques, ranging from basic neuroscience to clinical applications. These clinical applications allow assessment of complex neurological functions such as (but not limited to) sensory perception (vision, hearing, somatosensory function), and muscle function. The ability to use similar techniques in both humans and animal models increases the ability to perform mechanistic research to investigate neurological problems. Good animal to human homology of many neurophysiological systems facilitates interpretation of data to provide cause-effect linkages to epidemiological findings. Mechanistic cellular research to screen for toxicity often includes gaps between cellular and whole animal/person neurophysiological changes, preventing understanding of the complete function of the nervous system. Building Adverse Outcome Pathways (AOPs) will allow us to begin to identify brain regions, timelines, neurotransmitters, etc. that may be Key Events (KE) in the Adverse Outcomes (AO). This requires an integrated strategy, from in vitro to in vivo (and hypothesis generation, testing, revision). Scientists need to determine intermediate levels of nervous system organization that are related to an AO and work both upstream and downstream using mechanistic approaches. Possibly more than any other organ, the brain will require networks of pathways/AOPs to allow sufficient predictive accuracy. Advancements in neurobiological techniques should be incorporated into these AOP-base neurotoxicological assessments, including interactions between many regions of the brain simultaneously. Coupled with advancements in optogenetic manipulation, complex functions of the nervous system (such as acquisition, attention, sensory perception, etc.) can be examined in real time. The integration of neurophysiological changes with changes in gene/protein expression can begin to provide the mechanistic underpinnings for biological changes. Establishment of linkages between changes in cellular physiology and those at the level of the AO will allow construction of biological pathways (AOPs) and allow development of higher throughput assays to test for changes to critical physiological circuits. To allow mechanistic/predictive toxicology of the nervous system to be protective of human populations, neuroelectrophysiology has a critical role in our future.
Collapse
Affiliation(s)
- David W. Herr
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, CPHEA/ORD, U.S. Environmental Protection Agency, Washington, NC, United States
| |
Collapse
|
3
|
Orczyk JJ, Barczak A, Costa-Faidella J, Kajikawa Y. Cross Laminar Traveling Components of Field Potentials due to Volume Conduction of Non-Traveling Neuronal Activity in Macaque Sensory Cortices. J Neurosci 2021; 41:7578-7590. [PMID: 34321312 PMCID: PMC8425975 DOI: 10.1523/jneurosci.3225-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 11/21/2022] Open
Abstract
Field potentials (FPs) reflect neuronal activities in the brain, and often exhibit traveling peaks across recording sites. While traveling FPs are interpreted as propagation of neuronal activity, not all studies directly reveal such propagating patterns of neuronal activation. Neuronal activity is associated with transmembrane currents that form dipoles and produce negative and positive fields. Thereby, FP components reverse polarity between those fields and have minimal amplitudes at the center of dipoles. Although their amplitudes could be smaller, FPs are never flat even around these reversals. What occurs around the reversal has not been addressed explicitly, although those are rationally in the middle of active neurons. We show that sensory FPs around the reversal appeared with peaks traveling across cortical laminae in macaque sensory cortices. Interestingly, analyses of current source density did not depict traveling patterns but lamina-delimited current sinks and sources. We simulated FPs produced by volume conduction of a simplified 2 dipoles' model mimicking sensory cortical laminar current source density components. While FPs generated by single dipoles followed the temporal patterns of the dipole moments without traveling peaks, FPs generated by concurrently active dipole moments appeared with traveling components in the vicinity of dipoles by superimposition of individually non-traveling FPs generated by single dipoles. These results indicate that not all traveling FP are generated by traveling neuronal activity, and that recording positions need to be taken into account to describe FP peak components around active neuronal populations.SIGNIFICANCE STATEMENT Field potentials (FPs) generated by neuronal activity in the brain occur with fields of opposite polarity. Likewise, in the cerebral cortices, they have mirror-imaged waveforms in upper and lower layers. We show that FPs appear like traveling across the cortical layers. Interestingly, the traveling FPs occur without traveling components of current source density, which represents transmembrane currents associated with neuronal activity. These seemingly odd findings are explained using current source density models of multiple dipoles. Concurrently active, non-traveling dipoles produce FPs as mixtures of FPs produced by individual dipoles, and result in traveling FP waveforms as the mixing ratio depends on the distances from those dipoles. The results suggest that not all traveling FP components are associated with propagating neuronal activity.
Collapse
Affiliation(s)
- John J Orczyk
- Translational Neuroscience Division, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962
| | - Annamaria Barczak
- Translational Neuroscience Division, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962
| | - Jordi Costa-Faidella
- Translational Neuroscience Division, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962
- Brainlab - Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Catalonia 08035, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia 08035, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain, Barcelona, Catalonia 08950
| | - Yoshinao Kajikawa
- Translational Neuroscience Division, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962
- Department of Psychiatry, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
4
|
Loomis S, McCarthy A, Dijk DJ, Gilmour G, Winsky-Sommerer R. Food restriction induces functional resilience to sleep restriction in rats. Sleep 2020; 43:5855399. [PMID: 32518958 PMCID: PMC7551307 DOI: 10.1093/sleep/zsaa079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/03/2020] [Indexed: 11/12/2022] Open
Abstract
STUDY OBJECTIVES Sleep restriction (SR) leads to performance decrements across cognitive domains but underlying mechanisms remain largely unknown. The impact of SR on performance in rodents is often assessed using tasks in which food is the reward. Investigating how the drives of hunger and sleep interact to modulate performance may provide insights into mechanisms underlying sleep loss-related performance decrements. METHODS Three experiments were conducted in male adult Wistar rats to assess: (1) effects of food restriction on performance in the simple response latency task (SRLT) across the diurnal cycle (n = 30); (2) interaction of food restriction and SR (11 h) on SRLT performance, sleep electroencephalogram, and event-related potentials (ERP) (n = 10-13); and (3) effects of food restriction and SR on progressive ratio (PR) task performance to probe the reward value of food reinforcement (n = 19). RESULTS Food restriction increased premature responding on the SRLT at the end of the light period of the diurnal cycle. SR led to marked impairments in SRLT performance in the ad libitum-fed group, which were absent in the food-restricted group. After SR, food-restricted rats displayed a higher amplitude of cue-evoked ERP components during the SRLT compared with the ad libitum group. SR did not affect PR performance, while food restriction improved performance. CONCLUSIONS Hunger may induce a functional resilience to negative effects of sleep loss during subsequent task performance, possibly by maintaining attention to food-related cues.
Collapse
Affiliation(s)
- Sally Loomis
- Eli Lilly & Co. Ltd, Erl Wood Manor, Sunninghill Road, Windlesham, Surrey, UK.,Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | - Andrew McCarthy
- Eli Lilly & Co. Ltd, Erl Wood Manor, Sunninghill Road, Windlesham, Surrey, UK
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK.,UK Dementia Research Institute, University of Surrey, Surrey, UK
| | - Gary Gilmour
- Eli Lilly & Co. Ltd, Erl Wood Manor, Sunninghill Road, Windlesham, Surrey, UK
| | - Raphaelle Winsky-Sommerer
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| |
Collapse
|
5
|
Zempeltzi MM, Kisse M, Brunk MGK, Glemser C, Aksit S, Deane KE, Maurya S, Schneider L, Ohl FW, Deliano M, Happel MFK. Task rule and choice are reflected by layer-specific processing in rodent auditory cortical microcircuits. Commun Biol 2020; 3:345. [PMID: 32620808 PMCID: PMC7335110 DOI: 10.1038/s42003-020-1073-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 06/11/2020] [Indexed: 01/16/2023] Open
Abstract
The primary auditory cortex (A1) is an essential, integrative node that encodes the behavioral relevance of acoustic stimuli, predictions, and auditory-guided decision-making. However, the realization of this integration with respect to the cortical microcircuitry is not well understood. Here, we characterize layer-specific, spatiotemporal synaptic population activity with chronic, laminar current source density analysis in Mongolian gerbils (Meriones unguiculatus) trained in an auditory decision-making Go/NoGo shuttle-box task. We demonstrate that not only sensory but also task- and choice-related information is represented in the mesoscopic neuronal population code of A1. Based on generalized linear-mixed effect models we found a layer-specific and multiplexed representation of the task rule, action selection, and the animal's behavioral options as accumulating evidence in preparation of correct choices. The findings expand our understanding of how individual layers contribute to the integrative circuit in the sensory cortex in order to code task-relevant information and guide sensory-based decision-making.
Collapse
Affiliation(s)
| | - Martin Kisse
- Leibniz Institute for Neurobiology, D-39118, Magdeburg, Germany
| | | | - Claudia Glemser
- Leibniz Institute for Neurobiology, D-39118, Magdeburg, Germany
| | - Sümeyra Aksit
- Leibniz Institute for Neurobiology, D-39118, Magdeburg, Germany
| | - Katrina E Deane
- Leibniz Institute for Neurobiology, D-39118, Magdeburg, Germany
| | - Shivam Maurya
- Leibniz Institute for Neurobiology, D-39118, Magdeburg, Germany
| | - Lina Schneider
- Leibniz Institute for Neurobiology, D-39118, Magdeburg, Germany
| | - Frank W Ohl
- Leibniz Institute for Neurobiology, D-39118, Magdeburg, Germany
- Institute of Biology, Otto von Guericke University, D-39120, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39106, Magdeburg, Germany
| | | | - Max F K Happel
- Leibniz Institute for Neurobiology, D-39118, Magdeburg, Germany.
- Center for Behavioral Brain Sciences (CBBS), 39106, Magdeburg, Germany.
| |
Collapse
|