1
|
Goh RCW, Mu MD, Yung WH, Ke Y. The midline thalamic nucleus reuniens promotes compulsive-like grooming in rodents. Transl Psychiatry 2025; 15:67. [PMID: 39994171 PMCID: PMC11850824 DOI: 10.1038/s41398-025-03283-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 01/22/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025] Open
Abstract
Obsessive-compulsive disorder (OCD), a disabling and notoriously treatment-resistant neuropsychiatric disorder, affects 2-3% of the general population and is characterized by recurring, intrusive thoughts (obsessions) and repetitive, ritualistic behaviors (compulsions). Although long associated with dysfunction within the cortico-striato-thalamic-cortical circuits, the thalamic role in OCD pathogenesis remains highly understudied in the literature. Here, we identified a rat thalamic nucleus - the reuniens (NRe) - that mediates persistent, compulsive self-grooming behavior. Optogenetic activation of this nucleus triggers immediate, excessive grooming with strong irresistibility, increases anxiety, and induces negative affective valence. A thalamic-hypothalamic pathway linking NRe to the dorsal premammillary nucleus (PMd) was discovered to mediate excessive self-grooming behavior and render it a defensive coping response to stress, mirroring the compulsions faced by OCD patients. Given the close resemblance between this self-grooming behavior and the clinical manifestations of OCD, the results from this study highlight the role of NRe in mediating OCD-like compulsive behaviors. This can be attributed to NRe's position at the nexus of an extensive frontal-striatal-thalamic network regulating cognition, emotion, and stress-related behaviors, suggesting NRe as a potential novel target for intervention.
Collapse
Affiliation(s)
- Romeo Chen Wei Goh
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Ming-Dao Mu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Wing-Ho Yung
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
| | - Ya Ke
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China.
| |
Collapse
|
2
|
Rivera Núñez MV, McMakin DL, Mattfeld AT. Nucleus reuniens: Modulating emotional overgeneralization in peri-adolescents with anxiety. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2025; 25:173-187. [PMID: 39390288 DOI: 10.3758/s13415-024-01226-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/03/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Anxiety affects 4.4-million children in the USA with an onset between childhood and adolescence, a period marked by neural changes that impact emotions and memory. Negative overgeneralization - or responding similarly to innocuous events that share features with past aversive experiences - is common in anxiety but remains mechanistically underspecified. The nucleus reuniens (RE) has been considered a crucial candidate in the modulation of memory specificity. Our study investigated its activation and functional connectivity with the medial prefrontal cortex (mPFC) and hippocampus (HPC) as neurobiological mechanisms of negative overgeneralization in anxious youth. METHODS As part of a secondary data analysis, we examined data from 34 participants between 9 and 14 years of age (mean age ± SD, 11.4 ± 2.0 years; 16 females) with varying degrees of anxiety severity. During the Study session participants rated images as negative, neutral, and positive. After 12 h, participants returned for a Test session, where they performed a memory recognition test with repeated (targets) and similar (lures) images. Labeling negative relative to neutral lures as "old" (false alarms) was our operational definition of negative overgeneralization. RESULTS Negative relative to neutral false alarmed stimuli displayed elevated RE activation (at Study and Test) and increased functional connectivity with the Cornu Ammonis (CA) 1 (at Test). Elevated anxiety severity was associated with reductions in the RE-mPFC functional coupling for neutral relative to negative stimuli. Exploratory analyses revealed similar patterns in activation and functional connectivity with positive stimuli. CONCLUSIONS Our findings demonstrate the importance of the RE in negative overgeneralization and anxiety.
Collapse
Affiliation(s)
| | - Dana L McMakin
- Center for Children and Families, Florida International University, Miami, FL, 33199, USA
| | - Aaron T Mattfeld
- Center for Children and Families, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
3
|
Panzer E, Guimares-Olmo I, Pereira de Vasconcelos A, Stéphan A, Cassel JC. In relentless pursuit of the white whale: A role for the ventral midline thalamus in behavioral flexibility and adaption? Neurosci Biobehav Rev 2024; 163:105762. [PMID: 38857666 DOI: 10.1016/j.neubiorev.2024.105762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
The reuniens (Re) nucleus is located in the ventral midline thalamus. It has fostered increasing interest, not only for its participation in a variety of cognitive functions (e.g., spatial working memory, systemic consolidation, reconsolidation, extinction of fear or generalization), but also for its neuroanatomical positioning as a bidirectional relay between the prefrontal cortex (PFC) and the hippocampus (HIP). In this review we compile and discuss recent studies having tackled a possible implication of the Re nucleus in behavioral flexibility, a major PFC-dependent executive function controlling goal-directed behaviors. Experiments considered explored a possible role for the Re nucleus in perseveration, reversal learning, fear extinction, and set-shifting. They point to a contribution of this nucleus to behavioral flexibility, mainly by its connections with the PFC, but possibly also by those with the hippocampus, and even with the amygdala, at least for fear-related behavior. As such, the Re nucleus could be a crucial crossroad supporting a PFC-orchestrated ability to cope with new, potentially unpredictable environmental contingencies, and thus behavioral flexibility and adaption.
Collapse
Affiliation(s)
- Elodie Panzer
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg F-67000, France; LNCA, UMR 7364 - CNRS, Strasbourg F-67000, France
| | - Isabella Guimares-Olmo
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg F-67000, France; LNCA, UMR 7364 - CNRS, Strasbourg F-67000, France
| | - Anne Pereira de Vasconcelos
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg F-67000, France; LNCA, UMR 7364 - CNRS, Strasbourg F-67000, France
| | - Aline Stéphan
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg F-67000, France; LNCA, UMR 7364 - CNRS, Strasbourg F-67000, France
| | - Jean-Christophe Cassel
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg F-67000, France; LNCA, UMR 7364 - CNRS, Strasbourg F-67000, France.
| |
Collapse
|
4
|
Rivera Núñez MV, McMakin D, Mattfeld AT. Nucleus Reuniens: Modulating Negative Overgeneralization in Periadolescents with Anxiety. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.567068. [PMID: 38014058 PMCID: PMC10680726 DOI: 10.1101/2023.11.14.567068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Background Anxiety affects 4.4-million children in the United States with an onset between childhood and adolescence, a period marked by neural changes that impact emotions and memory. Negative overgeneralization - or responding similarly to innocuous events that share features with past aversive experiences - is common in anxiety but remains mechanistically underspecified. The nucleus reuniens (RE) has been considered a crucial candidate in the modulation of memory specificity. Our study investigated its activation and functional connectivity with the medial prefrontal cortex (mPFC) and hippocampus (HPC) as neurobiological mechanisms of negative overgeneralization in anxious youth. Methods As part of a secondary data analysis, we examined data from 34 participants between 9-14 years (mean age ± SD, 11.4 ± 2.0 years, 16 females) with varying degrees of anxiety severity. During the Study session participants rated images as negative, neutral, and positive. After 12-hours, participants returned for a Test session, where they performed a memory recognition test with repeated (targets) and similar (lures) images. Labeling negative relative to neutral lures as "old" (false alarms) was our operational definition of negative overgeneralization. Results Negative relative to neutral false alarmed stimuli displayed elevated RE activation (at Study and Test) and increased functional connectivity with the CA1 (at Test only). Elevated anxiety severity was associated with reductions in the RE-mPFC functional coupling for neutral relative to negative stimuli. Exploratory analyses revealed similar patterns in activation and functional connectivity with positive stimuli. Conclusions Our findings demonstrate the importance of the RE in the overgeneralization of memories in anxious youth.
Collapse
|
5
|
Bozic I, Rusterholz T, Mikutta C, Del Rio-Bermudez C, Nissen C, Adamantidis A. Coupling between the prelimbic cortex, nucleus reuniens, and hippocampus during NREM sleep remains stable under cognitive and homeostatic demands. Eur J Neurosci 2023; 57:106-128. [PMID: 36310348 DOI: 10.1111/ejn.15853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 02/02/2023]
Abstract
The interplay between the medial prefrontal cortex and hippocampus during non-rapid eye movement (NREM) sleep contributes to the consolidation of contextual memories. To assess the role of the thalamic nucleus reuniens (Nre) in this interaction, we investigated the coupling of neuro-oscillatory activities among prelimbic cortex, Nre, and hippocampus across sleep states and their role in the consolidation of contextual memories using multi-site electrophysiological recordings and optogenetic manipulations. We showed that ripples are time-locked to the Up state of cortical slow waves, the transition from UP to DOWN state in thalamic slow waves, the troughs of cortical spindles, and the peaks of thalamic spindles during spontaneous sleep, rebound sleep and sleep following a fear conditioning task. In addition, spiking activity in Nre increased before hippocampal ripples, and the phase-locking of hippocampal ripples and thalamic spindles during NREM sleep was stronger after acquisition of a fear memory. We showed that optogenetic inhibition of Nre neurons reduced phase-locking of ripples to cortical slow waves in the ventral hippocampus whilst their activation altered the preferred phase of ripples to slow waves in ventral and dorsal hippocampi. However, none of these optogenetic manipulations of Nre during sleep after acquisition of fear conditioning did alter sleep-dependent memory consolidation. Collectively, these results showed that Nre is central in modulating hippocampus and cortical rhythms during NREM sleep.
Collapse
Affiliation(s)
- Ivan Bozic
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Thomas Rusterholz
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Christian Mikutta
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.,Privatklinik Meiringen, Meiringen, Switzerland.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Carlos Del Rio-Bermudez
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Christoph Nissen
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Antoine Adamantidis
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Yasuoka A, Nagai T, Lee S, Miyaguchi H, Saito Y, Abe K, Asakura T. Mastication stimuli enhance the learning ability of weaning-stage rats, altering the hippocampal neuron transcriptome and micromorphology. Front Behav Neurosci 2022; 16:1006359. [PMID: 36263297 PMCID: PMC9574334 DOI: 10.3389/fnbeh.2022.1006359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Mastication stimuli are known to relieve senile dementia in human and animal studies. However, few studies have focused on its effect on weaning-stage animals and the underlying molecular processes. In this study, 3-week-old male rats were raised on a powdered (P-group) or chow (C-group) diet for 8 days, and their behavior was examined using the Y-maze and novel object recognition tests. In the Y-maze test, the C-group rats showed a larger alternation ratio than the P-group rats. In the novel object recognition test, the C-group rats exhibited a significantly larger discrimination index for novel objects than for familiar objects, but the P-group rats did not. We then compared the hippocampal neuron morphology and transcriptome between the groups. C-group rats exhibited larger dendrite branch numbers in the apical dendrites of pyramidal cells in the cornu ammonis 1 (CA1) region and a larger spine density in the basal dendrites of CA1 neurons than the P-group rats. Using DNA microarray analysis, we identified 621 (P < C) and 96 (P > C) genes that were differentially expressed between the groups. These genes were enriched in functional terms related to dendrite growth and included the Igf2, RhoA, and Rho GEF genes, most of which were upregulated in the C-group. These results suggest that the mastication stimuli during the weaning period can enhance the learning ability of rats by increasing the dendrite branches of hippocampal CA1 neurons and by regulating genes related to dendrite growth.
Collapse
Affiliation(s)
- Akihito Yasuoka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Human Nutrition, Seitoku University, Chiba, Japan
| | - Toshitada Nagai
- Department of Applied Biological Science, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Seonmi Lee
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hitonari Miyaguchi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshikazu Saito
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Keiko Abe
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
| | - Tomiko Asakura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- *Correspondence: Tomiko Asakura,
| |
Collapse
|
7
|
Vertes RP, Linley SB, Rojas AKP. Structural and functional organization of the midline and intralaminar nuclei of the thalamus. Front Behav Neurosci 2022; 16:964644. [PMID: 36082310 PMCID: PMC9445584 DOI: 10.3389/fnbeh.2022.964644] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/07/2022] [Indexed: 12/03/2022] Open
Abstract
The midline and intralaminar nuclei of the thalamus form a major part of the "limbic thalamus;" that is, thalamic structures anatomically and functionally linked with the limbic forebrain. The midline nuclei consist of the paraventricular (PV) and paratenial nuclei, dorsally and the rhomboid and nucleus reuniens (RE), ventrally. The rostral intralaminar nuclei (ILt) consist of the central medial (CM), paracentral (PC) and central lateral (CL) nuclei. We presently concentrate on RE, PV, CM and CL nuclei of the thalamus. The nucleus reuniens receives a diverse array of input from limbic-related sites, and predominantly projects to the hippocampus and to "limbic" cortices. The RE participates in various cognitive functions including spatial working memory, executive functions (attention, behavioral flexibility) and affect/fear behavior. The PV receives significant limbic-related afferents, particularly the hypothalamus, and mainly distributes to "affective" structures of the forebrain including the bed nucleus of stria terminalis, nucleus accumbens and the amygdala. Accordingly, PV serves a critical role in "motivated behaviors" such as arousal, feeding/consummatory behavior and drug addiction. The rostral ILt receives both limbic and sensorimotor-related input and distributes widely over limbic and motor regions of the frontal cortex-and throughout the dorsal striatum. The intralaminar thalamus is critical for maintaining consciousness and directly participates in various sensorimotor functions (visuospatial or reaction time tasks) and cognitive tasks involving striatal-cortical interactions. As discussed herein, while each of the midline and intralaminar nuclei are anatomically and functionally distinct, they collectively serve a vital role in several affective, cognitive and executive behaviors - as major components of a brainstem-diencephalic-thalamocortical circuitry.
Collapse
Affiliation(s)
- Robert P. Vertes
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, United States
- Department of Psychology, Florida Atlantic University, Boca Raton, FL, United States
| | - Stephanie B. Linley
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, United States
- Department of Psychology, Florida Atlantic University, Boca Raton, FL, United States
- Department of Psychological Science, University of North Georgia, Dahlonega, GA, United States
| | - Amanda K. P. Rojas
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, United States
| |
Collapse
|
8
|
Jhuang YC, Chang CH. Differential roles of nucleus reuniens and perirhinal cortex in Pavlovian trace fear conditioning in rats. Cereb Cortex 2022; 33:3498-3510. [PMID: 35952337 DOI: 10.1093/cercor/bhac287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/14/2022] Open
Abstract
The nucleus reuniens (RE) and the perirhinal cortex (PRC) are two major relay stations that interconnect the hippocampus (HPC) and the medial prefrontal cortex (mPFC). Previous studies have shown that both the RE and the PRC are involved in the acquisition of trace fear conditioning. However, the respective contribution of the two regions is unclear. In this study, we used pharmacological approach to compare their roles. Our data suggested that inactivation of the RE or the PRC during conditioning partially impaired, whereas inactivation of both areas totally abolished, the encoding of trace fear. We next examined whether the impaired encoding of trace fear under RE inactivation can be rescued with enhanced cholinergic tone in the PRC, and vice versa. Against our hypothesis, regardless of whether the RE was on-line or not, animals failed to encode trace fear when further engaging cholinergic activities in the PRC. Conversely, depending on PRC activation level during conditioning, further recruiting cholinergic activities in the RE led to a down-shift of fear response during retrieval. Our results revealed that the RE and the PRC were necessary for the encoding of trace fear. Moreover, there was differential importance of cholinergic modulation during the process.
Collapse
Affiliation(s)
- Yi-Ci Jhuang
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chun-Hui Chang
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu 30013, Taiwan.,Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
9
|
Torromino G, Loffredo V, Cavezza D, Sonsini G, Esposito F, Crevenna AH, Gioffrè M, De Risi M, Treves A, Griguoli M, De Leonibus E. Thalamo-hippocampal pathway regulates incidental memory capacity in mice. Nat Commun 2022; 13:4194. [PMID: 35859057 PMCID: PMC9300669 DOI: 10.1038/s41467-022-31781-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 07/04/2022] [Indexed: 12/27/2022] Open
Abstract
Incidental memory can be challenged by increasing either the retention delay or the memory load. The dorsal hippocampus (dHP) appears to help with both consolidation from short-term (STM) to long-term memory (LTM), and higher memory loads, but the mechanism is not fully understood. Here we find that female mice, despite having the same STM capacity of 6 objects and higher resistance to distraction in our different object recognition task (DOT), when tested over 1 h or 24 h delays appear to transfer to LTM only 4 objects, whereas male mice have an STM capacity of 6 objects in this task. In male mice the dHP shows greater activation (as measured by c-Fos expression), whereas female mice show greater activation of the ventral midline thalamus (VMT). Optogenetic inhibition of the VMT-dHP pathway during off-line memory consolidation enables 6-object LTM retention in females, while chemogenetic VMT-activation impairs it in males. Thus, removing or enhancing sub-cortical inhibitory control over the hippocampus leads to differences in incidental memory. Incidental memory is affected by retention delay, and by memory load. Here the authors show that female and male mice process high memory load through different activation of thalamic-cortical pathways, that makes their incidental memory resistant to distraction and to memory decay, respectively.
Collapse
Affiliation(s)
- G Torromino
- Telethon Institute of Genetics and Medicine, Telethon Foundation, Pozzuoli (Naples), Italy.,Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Monterotondo (Rome), Italy
| | - V Loffredo
- Telethon Institute of Genetics and Medicine, Telethon Foundation, Pozzuoli (Naples), Italy.,Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Monterotondo (Rome), Italy.,PhD Program in Behavioral Neuroscience, Sapienza University of Rome, Rome, Italy
| | - D Cavezza
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Monterotondo (Rome), Italy
| | - G Sonsini
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Monterotondo (Rome), Italy
| | - F Esposito
- Telethon Institute of Genetics and Medicine, Telethon Foundation, Pozzuoli (Naples), Italy
| | - A H Crevenna
- Neurobiology and Epigenetics Unit, European Molecular Biology Laboratory (EMBL), Monterotondo (Rome), Italy
| | - M Gioffrè
- Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council, Naples, Italy
| | - M De Risi
- Telethon Institute of Genetics and Medicine, Telethon Foundation, Pozzuoli (Naples), Italy.,Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Monterotondo (Rome), Italy
| | - A Treves
- SISSA - Cognitive Neuroscience, Trieste, Italy
| | - M Griguoli
- European Brain Research Institute (EBRI), Rome, Italy.,Institute of Molecular Biology and Pathology (IBPM), National Research Council, Rome, Italy
| | - E De Leonibus
- Telethon Institute of Genetics and Medicine, Telethon Foundation, Pozzuoli (Naples), Italy. .,Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Monterotondo (Rome), Italy.
| |
Collapse
|
10
|
Yu X, Jembere F, Takehara-Nishiuchi K. Prefrontal projections to the nucleus reuniens signal behavioral relevance of stimuli during associative learning. Sci Rep 2022; 12:11995. [PMID: 35835794 PMCID: PMC9283438 DOI: 10.1038/s41598-022-15886-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/30/2022] [Indexed: 12/04/2022] Open
Abstract
The nucleus reuniens (RE) is necessary for memories dependent on the interaction between the medial prefrontal cortex (mPFC) and hippocampus (HPC). One example is trace eyeblink conditioning, in which the mPFC exhibits differential activity to neutral conditioned stimuli (CS) depending on their contingency with an aversive unconditioned stimulus (US). To test if this relevancy signal is routed to the RE, we photometrically recorded mPFC axon terminals within the RE and tracked their changes with learning. As a comparison, we measured prefrontal terminal activity in the mediodorsal thalamus (MD), which lacks connectivity with the HPC. In naïve male rats, prefrontal terminals within the RE were not strongly activated by tone or light. As the rats associated one of the stimuli (CS+) with the US, terminals gradually increased their response to the CS+ but not the other stimulus (CS-). In contrast, stimulus-evoked responses of prefrontal terminals within the MD were strong even before conditioning. They also became augmented only to the CS+ in the first conditioning session; however, the degree of activity differentiation did not improve with learning. These findings suggest that associative learning selectively increased mPFC output to the RE, signaling the behavioral relevance of sensory stimuli.
Collapse
Affiliation(s)
- Xiaotian Yu
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada.,Collaborative Program in Neuroscience, University of Toronto, Toronto, Canada
| | - Fasika Jembere
- Human Biology Program, University of Toronto, Toronto, Canada
| | - Kaori Takehara-Nishiuchi
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada. .,Department of Psychology, University of Toronto, Toronto, Canada. .,Collaborative Program in Neuroscience, University of Toronto, Toronto, Canada.
| |
Collapse
|
11
|
Totty MS, Maren S. Neural Oscillations in Aversively Motivated Behavior. Front Behav Neurosci 2022; 16:936036. [PMID: 35846784 PMCID: PMC9284508 DOI: 10.3389/fnbeh.2022.936036] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Fear and anxiety-based disorders are highly debilitating and among the most prevalent psychiatric disorders. These disorders are associated with abnormal network oscillations in the brain, yet a comprehensive understanding of the role of network oscillations in the regulation of aversively motivated behavior is lacking. In this review, we examine the oscillatory correlates of fear and anxiety with a particular focus on rhythms in the theta and gamma-range. First, we describe neural oscillations and their link to neural function by detailing the role of well-studied theta and gamma rhythms to spatial and memory functions of the hippocampus. We then describe how theta and gamma oscillations act to synchronize brain structures to guide adaptive fear and anxiety-like behavior. In short, that hippocampal network oscillations act to integrate spatial information with motivationally salient information from the amygdala during states of anxiety before routing this information via theta oscillations to appropriate target regions, such as the prefrontal cortex. Moreover, theta and gamma oscillations develop in the amygdala and neocortical areas during the encoding of fear memories, and interregional synchronization reflects the retrieval of both recent and remotely encoded fear memories. Finally, we argue that the thalamic nucleus reuniens represents a key node synchronizing prefrontal-hippocampal theta dynamics for the retrieval of episodic extinction memories in the hippocampus.
Collapse
|
12
|
Ornelas LC, Van Voorhies K, Besheer J. The role of the nucleus reuniens in regulating contextual conditioning with the predator odor TMT in female rats. Psychopharmacology (Berl) 2021; 238:3411-3421. [PMID: 34390359 PMCID: PMC8629918 DOI: 10.1007/s00213-021-05957-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023]
Abstract
RATIONALE Experiencing intrusive distressing memories of a traumatic event(s) is a prominent symptom profile for post-traumatic stress disorder (PTSD). Understanding the neurobiological mechanisms associated with this symptom profile can be invaluable for effective treatment for PTSD. OBJECTIVES Here, we investigated the functional role of the nucleus reuniens (RE), a midline thalamic in modulating stressor-related memory. METHODS Female Long Evans rats were implanted with a cannula aimed at the RE. The RE was pharmacologically inactivated via muscimol (0.5 mM) prior to exposure to the predator odor stressor trimethylthiazoline (TMT; synthetically derived fox feces component) or water (controls) in a distinct context with bedding material (experiment 1) or no bedding (experiment 2). To measure context reactivity, the index of the contextual memory, 2 weeks following exposure to TMT, rats were re-exposed to the TMT-paired context (in the absence of TMT). RESULTS In experiment 1, during context re-exposure (with bedding), inactivation of the RE had no effect on context reactivity. In experiment 2, during context re-exposure (no bedding), rats previously exposed to TMT showed decreased immobility compared to controls, indicating reactivity to the context and likely related to theincreased exploration of the environment. Rats in the TMT group that received RE inactivation showed increased immobility relative to rats that received aCSF, suggesting that muscimol pre-treatment blunted context reactivity. CONCLUSION In conclusion, recruitment of the RE in stressor-related contextual memory appears to be dependent on the contextual environment and whether the animal is able to engage in different stress coping strategies.
Collapse
Affiliation(s)
- Laura C. Ornelas
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Kalynn Van Voorhies
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Joyce Besheer
- Bowles Center for Alcohol Studies, Chapel Hill, NC, USA. .,Department of Psychiatry, University of North Carolina At Chapel Hill, Chapel Hill, NC, 27599-7171, USA.
| |
Collapse
|
13
|
Schwabe MR, Lincoln CM, Ivers MM, Frick KM. Chemogenetic inactivation of the nucleus reuniens impairs object placement memory in female mice. Neurobiol Learn Mem 2021; 185:107521. [PMID: 34536525 PMCID: PMC8595750 DOI: 10.1016/j.nlm.2021.107521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/17/2021] [Accepted: 09/10/2021] [Indexed: 11/30/2022]
Abstract
Episodic memory is a complex process requiring input from several regions of the brain. Emerging evidence suggests that coordinated activity between the dorsal hippocampus (DH) and medial prefrontal cortex (mPFC) is required for episodic memory consolidation. However, the mechanisms through which the DH and mPFC interact to promote memory consolidation remain poorly understood. A growing body of research suggests that the nucleus reuniens of the thalamus (RE) is one of several structures that facilitate communication between the DH and mPFC during memory and may do so through bidirectional excitatory projections to both regions. Furthermore, recent work from other labs indicates that the RE is necessary for spatial working memory. However, it is not clear to what extent the RE is necessary for memory of object locations. The goal of this study was to determine whether activity in the RE is necessary for spatial memory as measured by the object placement (OP) task in female mice. A kappa-opioid receptor DREADD (KORD) virus was used to inactivate excitatory neurons in the RE pre- or post-training to establish a role for the RE in spatial memory acquisition and consolidation, respectively. RE inactivation prior to, or immediately after, object training blocked OP memory formation relative to chance and to control mice. Moreover, expression of the immediate early gene EGR-1 was reduced in the RE 1 hour after an object training trial, supporting the conclusion that reduced neuronal activity in the RE impairs the formation of object location memories. In summary, the findings of this study support a key role for the RE in spatial memory acquisition and consolidation.
Collapse
Affiliation(s)
- Miranda R Schwabe
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States
| | - Carnita M Lincoln
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States
| | - Margaret M Ivers
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States.
| |
Collapse
|
14
|
Griffin AL. The nucleus reuniens orchestrates prefrontal-hippocampal synchrony during spatial working memory. Neurosci Biobehav Rev 2021; 128:415-420. [PMID: 34217746 DOI: 10.1016/j.neubiorev.2021.05.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022]
Abstract
Spatial working memory, the ability to temporarily maintain an internal representation of spatial information for use in guiding upcoming decisions, has been shown to be dependent upon a network of brain structures that includes the hippocampus, a region known to be critical for spatial navigation and episodic memory, and the prefrontal cortex (PFC), a region known to be critical for executive function and goal directed behavior. Oscillatory synchronization between the hippocampus and the prefrontal cortex (PFC) is known to increase in situations of high working memory demand. Most of our knowledge about the anatomical connectivity between the PFC and hippocampus comes from the rodent literature. Thus, most of the findings that will be discussed here model human working memory using spatial working memory-dependent maze navigation tasks in rodents. It has been demonstrated that the ventral midline thalamic nucleus reuniens (Re) is reciprocally connected to both the infralimbic and prelimbic subregions of the PFC, collectively referred to as the medial PFC (mPFC), and the hippocampus. Given that the Re serves as a major anatomical route between the mPFC and hippocampus, it is perhaps not surprising that Re has been shown to be critical for spatial working memory. This review will describe the latest findings and ideas on how the Re contributes to prefrontal-hippocampal synchronization and spatial working memory in rodents. The review will conclude with possible future directions that will advance the understanding of the mechanisms that enable the Re to orchestrate long range synchrony in the prefrontal-hippocampal network.
Collapse
Affiliation(s)
- Amy L Griffin
- University of Delaware, Newark, DE, 19711, United States.
| |
Collapse
|
15
|
Trask S, Pullins SE, Ferrara NC, Helmstetter FJ. The anterior retrosplenial cortex encodes event-related information and the posterior retrosplenial cortex encodes context-related information during memory formation. Neuropsychopharmacology 2021; 46:1386-1392. [PMID: 33580135 PMCID: PMC8134488 DOI: 10.1038/s41386-021-00959-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 12/25/2022]
Abstract
The retrosplenial cortex (RSC) is extensively interconnected with the dorsal hippocampus and has several important roles in learning and memory. Recent work has demonstrated that certain types of context-dependent learning are selectively impaired when the posterior, but not the anterior, region of the RSC is damaged, suggesting that the role of the RSC in memory formation may not be uniform along its rostro-caudal axis. The current experiments tested the idea that the anterior and posterior portions of the rat RSC contribute to different aspects of memory formation. We first confirmed that brief optogenetic inhibition of either the anterior or posterior RSC resulted in decreased local cellular activity as indexed by immediate early gene zif268 expression and that this decrease was restricted to the target region within RSC. We then found that silencing the anterior or posterior RSC during trace fear training trials had different effects on memory: While inhibiting neural activity in the anterior RSC had a selective impact on behavior evoked by the auditory CS, inhibition of the posterior RSC selectively impaired memory for the context in which training was conducted. These results contribute to a growing literature that supports functionally distinct roles in learning and memory for subregions of the RSC.
Collapse
Affiliation(s)
- Sydney Trask
- grid.267468.90000 0001 0695 7223Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53201 USA
| | - Shane E. Pullins
- grid.267468.90000 0001 0695 7223Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53201 USA
| | - Nicole C. Ferrara
- grid.267468.90000 0001 0695 7223Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53201 USA
| | - Fred J. Helmstetter
- grid.267468.90000 0001 0695 7223Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53201 USA
| |
Collapse
|
16
|
Urrieta E, Escobar ML. Metaplastic regulation of neocortical long-term depression in vivo is sensitive to distinct phases of conditioned taste aversion. Neurobiol Learn Mem 2021; 182:107449. [PMID: 33915300 DOI: 10.1016/j.nlm.2021.107449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/12/2021] [Accepted: 04/22/2021] [Indexed: 10/21/2022]
Abstract
Metaplasticity refers to the persistent modification, by previous activity, in the ability to induce synaptic plasticity. Accumulated evidence has proposed that metaplasticity contributes to network function and cognitive processes such as learning and memory. In this regard, it has been observed that training in several behavioral tasks modifies the possibility to induce subsequent synaptic plasticity, such as long-term potentiation (LTP) and long-term depression (LTD). For instance, our previous studies have shown that conditioned taste aversion (CTA) training prevents the induction of in vivo LTP in the projection from the basolateral nucleus of the amygdala to the insular cortex (BLA-IC). Likewise, we reported that extinction of CTA allows induction but not maintenance of LTP in the same pathway. Besides, we showed that it is possible to express in vivo low-frequency stimulation LTD in the BLA-IC projection and that its induction prior to CTA training facilitates the extinction of this task. However, until now, little is known about the participation of LTD on metaplastic processes. The present study aimed to analyze whether CTA training modifies the expression of in vivo LTD in the BLA-IC projection. To do so, animals received low-frequency stimulation to induce IC-LTD 48 h after CTA training. Our results show that CTA training occludes the subsequent induction of LTD in the BLA-IC pathway in a retrieval-dependent manner. These findings reveal that CTA elicits a metaplastic regulation of long-lasting changes in the IC synaptic strength, as well as that specific phases of learning differentially take part in adjusting the expression of synaptic plasticity in neocortical regions.
Collapse
Affiliation(s)
- Esteban Urrieta
- División de Investigación y Estudios de Posgrado, Facultad de Psicología, Universidad Nacional Autónoma de México, 04510, Mexico
| | - Martha L Escobar
- División de Investigación y Estudios de Posgrado, Facultad de Psicología, Universidad Nacional Autónoma de México, 04510, Mexico.
| |
Collapse
|
17
|
Huang D, Grady FS, Peltekian L, Laing JJ, Geerling JC. Efferent projections of CGRP/Calca-expressing parabrachial neurons in mice. J Comp Neurol 2021; 529:2911-2957. [PMID: 33715169 DOI: 10.1002/cne.25136] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/19/2022]
Abstract
The parabrachial nucleus (PB) is composed of glutamatergic neurons at the midbrain-hindbrain junction. These neurons form many subpopulations, one of which expresses Calca, which encodes the neuropeptide calcitonin gene-related peptide (CGRP). This Calca-expressing subpopulation has been implicated in a variety of homeostatic functions, but the overall distribution of Calca-expressing neurons in this region remains unclear. Also, while previous studies in rats and mice have identified output projections from CGRP-immunoreactive or Calca-expressing neurons, we lack a comprehensive understanding of their efferent projections. We began by identifying neurons with Calca mRNA and CGRP immunoreactivity in and around the PB, including populations in the locus coeruleus and motor trigeminal nucleus. Calca-expressing neurons in the PB prominently express the mu opioid receptor (Oprm1) and are distinct from neighboring neurons that express Foxp2 and Pdyn. Next, we used Cre-dependent anterograde tracing with synaptophysin-mCherry to map the efferent projections of these neurons. Calca-expressing PB neurons heavily target subregions of the amygdala, bed nucleus of the stria terminalis, basal forebrain, thalamic intralaminar and ventral posterior parvicellular nuclei, and hindbrain, in different patterns depending on the injection site location within the PB region. Retrograde axonal tracing revealed that the previously unreported hindbrain projections arise from a rostral-ventral subset of CGRP/Calca neurons. Finally, we show that these efferent projections of Calca-expressing neurons are distinct from those of neighboring PB neurons that express Pdyn. This information provides a detailed neuroanatomical framework for interpreting experimental work involving CGRP/Calca-expressing neurons and opioid action in the PB region.
Collapse
Affiliation(s)
- Dake Huang
- Department of Neurology, University of Iowa, Iowa, USA
| | | | | | | | | |
Collapse
|
18
|
Cassel JC, Ferraris M, Quilichini P, Cholvin T, Boch L, Stephan A, Pereira de Vasconcelos A. The reuniens and rhomboid nuclei of the thalamus: A crossroads for cognition-relevant information processing? Neurosci Biobehav Rev 2021; 126:338-360. [PMID: 33766671 DOI: 10.1016/j.neubiorev.2021.03.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 01/29/2023]
Abstract
Over the past twenty years, the reuniens and rhomboid (ReRh) nuclei, which constitute the ventral midline thalamus, have received constantly growing attention. Since our first review article about the functional contributions of ReRh nuclei (Cassel et al., 2013), numerous (>80) important papers have extended anatomical knowledge, including at a developmental level, introduced new and very original electrophysiological insights on ReRh functions, and brought novel results on cognitive and non-cognitive implications of the ReRh. The current review will cover these recent articles, more on Re than on Rh, and their contribution will be approached according to their affiliation with work before 2013. These neuroanatomical, electrophysiological or behavioral findings appear coherent and point to the ReRh nuclei as two major components of a multistructural system supporting numerous cognitive (and non-cognitive) functions. They gate the flow of information, perhaps especially from the medial prefrontal cortex to the hippocampus and back, and coordinate activity and processing across these two (and possibly other) brain regions of major cognitive relevance.
Collapse
Affiliation(s)
- Jean-Christophe Cassel
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, F-67000 Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000 Strasbourg, France.
| | - Maëva Ferraris
- Aix Marseille Université, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Pascale Quilichini
- Aix Marseille Université, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Thibault Cholvin
- Institute for Physiology I, University Clinics Freiburg, 79104 Freiburg, Germany
| | - Laurine Boch
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, F-67000 Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000 Strasbourg, France
| | - Aline Stephan
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, F-67000 Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000 Strasbourg, France
| | - Anne Pereira de Vasconcelos
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, F-67000 Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000 Strasbourg, France
| |
Collapse
|
19
|
Ferraris M, Cassel JC, Pereira de Vasconcelos A, Stephan A, Quilichini PP. The nucleus reuniens, a thalamic relay for cortico-hippocampal interaction in recent and remote memory consolidation. Neurosci Biobehav Rev 2021; 125:339-354. [PMID: 33631314 DOI: 10.1016/j.neubiorev.2021.02.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022]
Abstract
The consolidation of declarative memories is believed to occur mostly during sleep and involves a dialogue between two brain regions, the hippocampus and the medial prefrontal cortex. The information encoded during experience by neuronal assemblies is replayed during sleep leading to the progressive strengthening and integration of the memory trace in the prefrontal cortex. The gradual transfer of information from the hippocampus to the medial prefrontal cortex for long-term storage requires the synchronization of cortico-hippocampal networks by different oscillations, like ripples, spindles, and slow oscillations. Recent studies suggest the involvement of a third partner, the nucleus reuniens, in memory consolidation. Its bidirectional connections with the hippocampus and medial prefrontal cortex place the reuniens in a key position to relay information between the two structures. Indeed, many topical works reveal the original role that the nucleus reuniens occupies in different recent and remote memories consolidation. This review aimed to examine these contributions, as well as its functional embedment in this complex memory network, and provide some insights on the possible mechanisms.
Collapse
Affiliation(s)
- Maëva Ferraris
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Jean-Christophe Cassel
- Laboratoire De Neurosciences Cognitives Et Adaptatives, Université De Strasbourg, F-67000, Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000, Strasbourg, France
| | - Anne Pereira de Vasconcelos
- Laboratoire De Neurosciences Cognitives Et Adaptatives, Université De Strasbourg, F-67000, Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000, Strasbourg, France
| | - Aline Stephan
- Laboratoire De Neurosciences Cognitives Et Adaptatives, Université De Strasbourg, F-67000, Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000, Strasbourg, France
| | | |
Collapse
|
20
|
Linley SB, Athanason AC, Rojas AK, Vertes RP. Role of the reuniens and rhomboid thalamic nuclei in anxiety‐like avoidance behavior in the rat. Hippocampus 2021; 31:756-769. [DOI: 10.1002/hipo.23302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/08/2020] [Accepted: 01/02/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Stephanie B. Linley
- Center for Complex Systems and Brain Sciences Florida Atlantic University Boca Raton Florida USA
- Department of Psychology Florida Atlantic University Boca Raton Florida USA
| | | | - Amanda K.P. Rojas
- Center for Complex Systems and Brain Sciences Florida Atlantic University Boca Raton Florida USA
| | - Robert P. Vertes
- Center for Complex Systems and Brain Sciences Florida Atlantic University Boca Raton Florida USA
- Department of Psychology Florida Atlantic University Boca Raton Florida USA
| |
Collapse
|
21
|
Troyner F, Bertoglio LJ. Nucleus reuniens of the thalamus controls fear memory reconsolidation. Neurobiol Learn Mem 2020; 177:107343. [PMID: 33242589 DOI: 10.1016/j.nlm.2020.107343] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/08/2020] [Accepted: 11/16/2020] [Indexed: 01/09/2023]
Abstract
The nucleus reuniens has been shown to support the acquisition, consolidation, maintenance, destabilization upon retrieval, and extinction of aversive memories. However, the direct participation of this thalamic subregion in memory reconsolidation is yet to be examined. The present study addressed this question in contextually fear-conditioned rats. Post-reactivation infusion of the GABAA receptor agonist muscimol, the glutamate N2A-containing NMDA receptor antagonist TCN-201, or the protein synthesis inhibitor anisomycin into the NR induced significant impairments in memory reconsolidation. Administering muscimol or TCN-201 and anisomycin locally, or associating locally infused muscimol or TCN-201 with systemically administered clonidine, an α2-receptor adrenergic agonist that attenuates the noradrenergic tonus associated with memory reconsolidation, produced no further reduction in freezing times when compared with the muscimol-vehicle, TCN-201-vehicle, vehicle-anisomycin, and vehicle-clonidine groups. This pattern of results indicates that such treatment combinations produced no additive/synergistic effects on reconsolidation. It is plausible that NR inactivation and antagonism of glutamate N2A-containing NMDA receptors weakened/prevented the subsequent action of anisomycin and clonidine because they disrupted the early stages of signal transduction pathways involved in memory reconsolidation. It is noteworthy that these pharmacological interventions, either alone or combined, induced no contextual memory specificity changes, as assessed in a later test in a novel and unpaired context. Besides, omitting memory reactivation precluded the impairing effects of muscimol, TCN-201, anisomycin, and clonidine on reconsolidation. Together, the present findings demonstrate interacting mechanisms through which the NR can regulate contextual fear memory restabilization.
Collapse
Affiliation(s)
- Fernanda Troyner
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil
| | - Leandro Jose Bertoglio
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil.
| |
Collapse
|