1
|
Stokes MS, Kim YJ, Kim Y, Koul S, Chiu SP, Dasovich M, Zuniga J, Nandu T, Huang D, Mathews TP, Solmonson A, Camacho CV, Kraus WL. NAD + Sensing by PARP7 Regulates the C/EBPβ-Dependent Transcription Program in Adipose Tissue In Vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.07.647692. [PMID: 40291749 PMCID: PMC12027069 DOI: 10.1101/2025.04.07.647692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
We have identified PARP7, an NAD + -dependent mono(ADP-ribosyl) transferase, as a key regulator of the C/EBPβ-dependent proadipogenic transcription program. Moreover, PARP7 is required for efficient adipogenesis and downstream biological functions, including involution of the lactating mammary gland. PARP7 serves as a coregulator of C/EBPβ, and depletion of PARP7 causes a dramatic reduction in C/EBPβ binding across the genome. PARP7 functions as a sensor of nuclear NAD + levels to control gene expression. At the relatively high nuclear NAD + concentrations in undifferentiated preadipocytes, PARP7 is catalytically active for auto- mono(ADP-ribosyl)ation (autoMARylation). As nuclear NAD + concentrations decline post- differentiation, autoMARylation decreases dramatically. AutoMARylation promotes instability of PARP7 through an E3 ligase-ubiquitin-proteasome pathway mediated by the ADP-ribose (ADPR)-binding ubiquitin E3 ligases DTX2 and RNF114. Genetic depletion of PARP7 in mice promotes a dramatic reduction in a wide array of lipids in the mammary gland fat pads and milk from lactating females, as well as a significant decrease in nicotinamide mononucleotide (NMN), a key nutrient in mother's milk. The latter is due to reduced expression of Nampt , the gene encoding NAMPT, the enzyme that produces NMN, which is a direct transcriptional target of PARP7 and C/EBPβ. Collectively, our results extend the biology of PARP7 to adipogenesis and perinatal health. Moreover, our results describe the molecular events that regulate these downstream biological functions.
Collapse
|
2
|
Swilley C, Lin Y, Zheng Y, Xu X, Liu M, Jarome T, Hodes GE, Xie H. Sex linked behavioral and hippocampal transcriptomic changes in mice with cell-type specific Egr1 loss. Front Neurosci 2023; 17:1240209. [PMID: 37928724 PMCID: PMC10623684 DOI: 10.3389/fnins.2023.1240209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
The transcription factor EGR1 is instrumental in numerous neurological processes, encompassing learning and memory as well as the reaction to stress. Egr1 complete knockout mice demonstrate decreased depressive or anxiety-like behavior and impaired performance in spatial learning and memory. Nevertheless, the specific functions of Egr1 in distinct cell types have been largely underexplored. In this study, we cataloged the behavioral and transcriptomic character of Nestin-Cre mediated Egr1 conditional knockout (Egr1cKO) mice together with their controls. Although the conditional knockout did not change nociceptive or anxiety responses, it triggered changes in female exploratory activity during anxiety testing. Hippocampus-dependent spatial learning in the object location task was unaffected, but female Egr1cKO mice did exhibit poorer retention during testing on a contextual fear conditioning task compared to males. RNA-seq data analyses revealed that the presence of the floxed Egr1 cassette or Nestin-Cre driver alone exerts a subtle influence on hippocampal gene expression. The sex-related differences were amplified in Nestin-Cre mediated Egr1 conditional knockout mice and female mice are more sensitive to the loss of Egr1 gene. Differentially expressed genes resulted from the loss of Egr1 in neuronal cell lineage were significantly associated with the regulation of Wnt signaling pathway, extracellular matrix, and axon guidance. Altogether, our results demonstrate that Nestin-Cre and the loss of Egr1 in neuronal cell lineage have distinct impacts on hippocampal gene expression in a sex-specific manner.
Collapse
Affiliation(s)
- Cody Swilley
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Yu Lin
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
- Genetics, Bioinformatics and Computational Biology Program, Virginia Tech, Blacksburg, VA, United States
| | - Yuze Zheng
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
| | - Xiguang Xu
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Min Liu
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Timothy Jarome
- School of Animal Sciences, Virginia Tech, Blacksburg, VA, United States
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
| | - Georgia E. Hodes
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
| | - Hehuang Xie
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
- Genetics, Bioinformatics and Computational Biology Program, Virginia Tech, Blacksburg, VA, United States
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
3
|
Rasmussen M, Alvik K, Kannen V, Olafsen NE, Erlingsson LAM, Grimaldi G, Takaoka A, Grant DM, Matthews J. Loss of PARP7 Increases Type I Interferon Signaling in EO771 Breast Cancer Cells and Prevents Mammary Tumor Growth by Increasing Antitumor Immunity. Cancers (Basel) 2023; 15:3689. [PMID: 37509350 PMCID: PMC10377955 DOI: 10.3390/cancers15143689] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/07/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
PARP7 is a member of the ADP-ribosyltransferase diphtheria toxin-like (ARTD) family and acts as a repressor of type I interferon (IFN) signaling. PARP7 inhibition causes tumor regression by enhancing antitumor immunity, which is dependent on the stimulator of interferon genes (STING) pathway, TANK-binding kinase 1 (TBK1) activity, and cytotoxic CD8+ T cells. To better understand PARP7's role in cancer, we generated and characterized PARP7 knockout (Parp7KO) EO771 mouse mammary cancer cells in vitro and in a preclinical syngeneic tumor model using catalytic mutant Parp7H532A mice. Loss of PARP7 expression or inhibition of its activity increased type I IFN signaling, as well as the levels of interferon-stimulated gene factor 3 (ISGF3) and specifically unphosphorylated-ISGF3 regulated target genes. This was partly because PARP7's modification of the RelA subunit of nuclear factor κ-B (NF-κB). PARP7 loss had no effect on tumor growth in immunodeficient mice. In contrast, injection of wildtype cells into Parp7H532A mice resulted in smaller tumors compared with cells injected into Parp7+/+ mice. Parp7H532A mice injected with Parp7KO cells failed to develop tumors and those that developed regressed. Our data highlight the importance of PARP7 in the immune cells and further support targeting PARP7 for anticancer therapy.
Collapse
Affiliation(s)
- Marit Rasmussen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Sognsvannsveien 9, 0372 Oslo, Norway
| | - Karoline Alvik
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Sognsvannsveien 9, 0372 Oslo, Norway
| | - Vinicius Kannen
- Department of Pharmacology and Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Ninni E Olafsen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Sognsvannsveien 9, 0372 Oslo, Norway
| | - Linnea A M Erlingsson
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Sognsvannsveien 9, 0372 Oslo, Norway
| | - Giulia Grimaldi
- Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Akinori Takaoka
- Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, 7 Chome Kita 15 Jonishi, Sapporo 060-8628, Japan
| | - Denis M Grant
- Department of Pharmacology and Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Jason Matthews
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Sognsvannsveien 9, 0372 Oslo, Norway
- Department of Pharmacology and Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
4
|
Kaplow IM, Lawler AJ, Schäffer DE, Srinivasan C, Sestili HH, Wirthlin ME, Phan BN, Prasad K, Brown AR, Zhang X, Foley K, Genereux DP, Karlsson EK, Lindblad-Toh K, Meyer WK, Pfenning AR. Relating enhancer genetic variation across mammals to complex phenotypes using machine learning. Science 2023; 380:eabm7993. [PMID: 37104615 PMCID: PMC10322212 DOI: 10.1126/science.abm7993] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/23/2023] [Indexed: 04/29/2023]
Abstract
Protein-coding differences between species often fail to explain phenotypic diversity, suggesting the involvement of genomic elements that regulate gene expression such as enhancers. Identifying associations between enhancers and phenotypes is challenging because enhancer activity can be tissue-dependent and functionally conserved despite low sequence conservation. We developed the Tissue-Aware Conservation Inference Toolkit (TACIT) to associate candidate enhancers with species' phenotypes using predictions from machine learning models trained on specific tissues. Applying TACIT to associate motor cortex and parvalbumin-positive interneuron enhancers with neurological phenotypes revealed dozens of enhancer-phenotype associations, including brain size-associated enhancers that interact with genes implicated in microcephaly or macrocephaly. TACIT provides a foundation for identifying enhancers associated with the evolution of any convergently evolved phenotype in any large group of species with aligned genomes.
Collapse
Affiliation(s)
- Irene M. Kaplow
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Alyssa J. Lawler
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Daniel E. Schäffer
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Chaitanya Srinivasan
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Heather H. Sestili
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Morgan E. Wirthlin
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - BaDoi N. Phan
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kavya Prasad
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Ashley R. Brown
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Xiaomeng Zhang
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Kathleen Foley
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Diane P. Genereux
- Broad Institute, Cambridge, MA, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Elinor K. Karlsson
- Broad Institute, Cambridge, MA, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kerstin Lindblad-Toh
- Broad Institute, Cambridge, MA, USA
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Wynn K. Meyer
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Andreas R. Pfenning
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
5
|
TIPARP is involved in the regulation of intraocular pressure. Commun Biol 2022; 5:1386. [PMID: 36536086 PMCID: PMC9763400 DOI: 10.1038/s42003-022-04346-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Elevated intraocular pressure (IOP) is the major risk factor for glaucoma. The molecular mechanism of elevated IOP is unclear, which impedes glaucoma therapy. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-inducible Poly-ADP-ribose Polymerase (TIPARP), a member of the PARP family, catalyses mono-ADP-ribosylation. Here we showed that TIPARP was widely expressed in the cornea, trabecular meshwork, iris, retina, optic nerve, sclera, and choroid of human eyes. The expression of TIPARP was significantly upregulated in the blood and trabecular meshwork of patients with primary open angle glaucoma compared with that of healthy controls. Transcriptome analysis revealed that the expression of genes related to extracellular matrix deposition and cell adhesion was decreased in TIPARP-upregulated human trabecular meshwork (HTM) cells. Moreover, western blot analysis showed that collagen types I and IV, fibronectin, and α-SMA were increased in TIPARP-downregulated or TIPARP-inhibited HTM cells. In addition, cross-linked actin networks were produced, and vinculin was upregulated in these cells. Subconjunctival injection of the TIPARP inhibitor RBN-2397 increased the IOP in Sprague-Dawley rats. Therefore, we identified TIPARP as a regulator of IOP through modulation of extracellular matrix and cell cytoskeleton proteins in HTM cells. These results indicate that TIPARP is a potential therapeutic target for ocular hypertension and glaucoma.
Collapse
|
6
|
Salminen A. Aryl hydrocarbon receptor (AhR) reveals evidence of antagonistic pleiotropy in the regulation of the aging process. Cell Mol Life Sci 2022; 79:489. [PMID: 35987825 PMCID: PMC9392714 DOI: 10.1007/s00018-022-04520-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/14/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022]
Abstract
The antagonistic pleiotropy hypothesis is a well-known evolutionary theory to explain the aging process. It proposes that while a particular gene may possess beneficial effects during development, it can exert deleterious properties in the aging process. The aryl hydrocarbon receptor (AhR) has a significant role during embryogenesis, but later in life, it promotes several age-related degenerative processes. For instance, AhR factor (i) controls the pluripotency of stem cells and the stemness of cancer stem cells, (ii) it enhances the differentiation of embryonal stem cells, especially AhR signaling modulates the differentiation of hematopoietic stem cells and progenitor cells, (iii) it also stimulates the differentiation of immunosuppressive Tregs, Bregs, and M2 macrophages, and finally, (iv) AhR signaling participates in the differentiation of many peripheral tissues. On the other hand, AhR signaling is involved in many processes promoting cellular senescence and pathological processes, e.g., osteoporosis, vascular dysfunction, and the age-related remodeling of the immune system. Moreover, it inhibits autophagy and aggravates extracellular matrix degeneration. AhR signaling also stimulates oxidative stress, promotes excessive sphingolipid synthesis, and disturbs energy metabolism by catabolizing NAD+ degradation. The antagonistic pleiotropy of AhR signaling is based on the complex and diverse connections with major signaling pathways in a context-dependent manner. The major regulatory steps include, (i) a specific ligand-dependent activation, (ii) modulation of both genetic and non-genetic responses, (iii) a competition and crosstalk with several transcription factors, such as ARNT, HIF-1α, E2F1, and NF-κB, and (iv) the epigenetic regulation of target genes with binding partners. Thus, not only mTOR signaling but also the AhR factor demonstrates antagonistic pleiotropy in the regulation of the aging process.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
7
|
Challa S, Stokes MS, Kraus WL. MARTs and MARylation in the Cytosol: Biological Functions, Mechanisms of Action, and Therapeutic Potential. Cells 2021; 10:313. [PMID: 33546365 PMCID: PMC7913519 DOI: 10.3390/cells10020313] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
Abstract
Mono(ADP-ribosyl)ation (MARylation) is a regulatory post-translational modification of proteins that controls their functions through a variety of mechanisms. MARylation is catalyzed by mono(ADP-ribosyl) transferase (MART) enzymes, a subclass of the poly(ADP-ribosyl) polymerase (PARP) family of enzymes. Although the role of PARPs and poly(ADP-ribosyl)ation (PARylation) in cellular pathways, such as DNA repair and transcription, is well studied, the role of MARylation and MARTs (i.e., the PARP 'monoenzymes') are not well understood. Moreover, compared to PARPs, the development of MART-targeted therapeutics is in its infancy. Recent studies are beginning to shed light on the structural features, catalytic targets, and biological functions of MARTs. The development of new technologies to study MARTs have uncovered essential roles for these enzymes in the regulation of cellular processes, such as RNA metabolism, cellular transport, focal adhesion, and stress responses. These insights have increased our understanding of the biological functions of MARTs in cancers, neuronal development, and immune responses. Furthermore, several novel inhibitors of MARTs have been developed and are nearing clinical utility. In this review, we summarize the biological functions and molecular mechanisms of MARTs and MARylation, as well as recent advances in technology that have enabled detection and inhibition of their activity. We emphasize PARP-7, which is at the forefront of the MART subfamily with respect to understanding its biological roles and the development of therapeutically useful inhibitors. Collectively, the available studies reveal a growing understanding of the biochemistry, chemical biology, physiology, and pathology of MARTs.
Collapse
Affiliation(s)
- Sridevi Challa
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - MiKayla S. Stokes
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Program in Genetics, Development, and Disease, Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - W. Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Program in Genetics, Development, and Disease, Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
8
|
Palavalli Parsons LH, Challa S, Gibson BA, Nandu T, Stokes MS, Huang D, Lea JS, Kraus WL. Identification of PARP-7 substrates reveals a role for MARylation in microtubule control in ovarian cancer cells. eLife 2021; 10:e60481. [PMID: 33475085 PMCID: PMC7884071 DOI: 10.7554/elife.60481] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 01/20/2021] [Indexed: 12/22/2022] Open
Abstract
PARP-7 (TiPARP) is a mono(ADP-ribosyl) transferase whose protein substrates and biological activities are poorly understood. We observed that PARP7 mRNA levels are lower in ovarian cancer patient samples compared to non-cancerous tissue, but PARP-7 protein nonetheless contributes to several cancer-related biological endpoints in ovarian cancer cells (e.g. growth, migration). Global gene expression analyses in ovarian cancer cells subjected to PARP-7 depletion indicate biological roles for PARP-7 in cell-cell adhesion and gene regulation. To identify the MARylated substrates of PARP-7 in ovarian cancer cells, we developed an NAD+ analog-sensitive approach, which we coupled with mass spectrometry to identify the PARP-7 ADP-ribosylated proteome in ovarian cancer cells, including cell-cell adhesion and cytoskeletal proteins. Specifically, we found that PARP-7 MARylates α-tubulin to promote microtubule instability, which may regulate ovarian cancer cell growth and motility. In sum, we identified an extensive PARP-7 ADP-ribosylated proteome with important roles in cancer-related cellular phenotypes.
Collapse
Affiliation(s)
- Lavanya H Palavalli Parsons
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical CenterDallasUnited States
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical CenterDallasUnited States
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Sridevi Challa
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical CenterDallasUnited States
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Bryan A Gibson
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical CenterDallasUnited States
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Tulip Nandu
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical CenterDallasUnited States
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical CenterDallasUnited States
| | - MiKayla S Stokes
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical CenterDallasUnited States
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Dan Huang
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical CenterDallasUnited States
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Cardiology, Clinical Center for Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Jayanthi S Lea
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical CenterDallasUnited States
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical CenterDallasUnited States
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
9
|
Rosiles-Abonce A, Rubio C, Taddei E, Rosiles D, Rubio-Osornio M. Antiepileptogenic Effect of Retinoic Acid. Curr Neuropharmacol 2021; 19:383-391. [PMID: 32351181 PMCID: PMC8033965 DOI: 10.2174/1570159x18666200429232104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/17/2020] [Accepted: 04/24/2020] [Indexed: 11/24/2022] Open
Abstract
Retinoic acid, a metabolite of vitamin A, acts through either genomic or nongenomic actions. The genomic action of retinoids exerts effects on gene transcription through interaction with retinoid receptors such as retinoic acid receptors (RARα, β, and γ) and retinoid X receptors (RXRα, β, and γ) that are primarily concentrated in the amygdala, pre-frontal cortex, and hippocampal areas in the brain. In response to retinoid binding, RAR/RXR heterodimers undergo major conformational changes and orchestrate the transcription of specific gene networks. Previous experimental studies have reported that retinoic acid exerts an antiepileptogenic effect through diverse mechanisms, including the modulation of gap junctions, neurotransmitters, long-term potentiation, calcium channels and some genes. To our knowledge, there are no previous or current clinical trials evaluating the use of retinoic acid for seizure control.
Collapse
Affiliation(s)
| | | | | | | | - Moisés Rubio-Osornio
- Address correspondence to this author at the Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico; E-mail:
| |
Collapse
|
10
|
Sanderson DJ, Cohen MS. Mechanisms governing PARP expression, localization, and activity in cells. Crit Rev Biochem Mol Biol 2020; 55:541-554. [PMID: 32962438 DOI: 10.1080/10409238.2020.1818686] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Poly-(ADP)-ribose polymerases (PARPs) are a family of 17 enzymes in humans that have diverse roles in cell physiology including DNA damage repair, transcription, innate immunity, and regulation of signaling pathways. The modular domain architecture of PARPs gives rise to this functional diversity. PARPs catalyze the transfer of ADP-ribose from nicotinamide adenine dinucleotide (NAD+) to targets-proteins and poly-nucleic acids. This enigmatic post-translational modification comes in two varieties: the transfer of a single unit of ADP-ribose, known as mono-ADP-ribosylation (MARylation) or the transfer of multiple units of ADP-ribose, known as poly-ADP-ribosylation (PARylation). Emerging data shows that PARPs are regulated at multiple levels to control when and where PARP-mediated M/PARylation occurs in cells. In this review, we will discuss the latest knowledge regarding the regulation of PARPs in cells: from transcription and protein stability to subcellular localization and modulation of catalytic activity.
Collapse
Affiliation(s)
- Daniel J Sanderson
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Michael S Cohen
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|