1
|
Mogavero MP, Salemi M, Lanza G, Rinaldi A, Marchese G, Ravo M, Salluzzo MG, Antoci A, DelRosso LM, Bruni O, Ferini-Strambi L, Ferri R. Unveiling the pathophysiology of restless legs syndrome through transcriptome analysis. iScience 2024; 27:109568. [PMID: 38617564 PMCID: PMC11015462 DOI: 10.1016/j.isci.2024.109568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/22/2024] [Accepted: 03/22/2024] [Indexed: 04/16/2024] Open
Abstract
The aim of this study was to analyze signaling pathways associated with differentially expressed messenger RNAs in people with restless legs syndrome (RLS). Seventeen RLS patients and 18 controls were enrolled. Coding RNA expression profiling of 12,857 gene transcripts by next-generation sequencing was performed. Enrichment analysis by pathfindR tool was carried-out, with p-adjusted ≤0.001 and fold-change ≥2.5. Nine main different network groups were significantly dysregulated in RLS: infections, inflammation, immunology, neurodegeneration, cancer, neurotransmission and biological, blood and metabolic mechanisms. Genetic predisposition plays a key role in RLS and evidence indicates its inflammatory nature; the high involvement of mainly neurotropic viruses and the TORCH complex might trigger inflammatory/immune reactions in genetically predisposed subjects and activate a series of biological pathways-especially IL-17, receptor potential channels, nuclear factor kappa-light-chain-enhancer of activated B cells, NOD-like receptor, mitogen-activated protein kinase, p53, mitophagy, and ferroptosis-involved in neurotransmitter mechanisms, synaptic plasticity, axon guidance, neurodegeneration, carcinogenesis, and metabolism.
Collapse
Affiliation(s)
- Maria P. Mogavero
- Vita-Salute San Raffaele University, 20132 Milan, Italy
- San Raffaele Scientific Institute, Division of Neuroscience, Sleep Disorders Center, 20127 Milan, Italy
| | | | - Giuseppe Lanza
- Oasi Research Institute-IRCCS, 94018 Troina, Italy
- University of Catania, Department of Surgery and Medical-Surgical Specialties, 95123 Catania, Italy
| | - Antonio Rinaldi
- Genomix4Life Srl, 84081 Baronissi, Italy
- Genome Research Center for Health-CRGS, 84081 Baronissi, Italy
| | - Giovanna Marchese
- Genomix4Life Srl, 84081 Baronissi, Italy
- Genome Research Center for Health-CRGS, 84081 Baronissi, Italy
| | - Maria Ravo
- Genomix4Life Srl, 84081 Baronissi, Italy
- Genome Research Center for Health-CRGS, 84081 Baronissi, Italy
| | | | | | | | - Oliviero Bruni
- Sapienza University of Rome, Developmental and Social Psychology, 00185 Rome, Italy
| | - Luigi Ferini-Strambi
- Vita-Salute San Raffaele University, 20132 Milan, Italy
- San Raffaele Scientific Institute, Division of Neuroscience, Sleep Disorders Center, 20127 Milan, Italy
| | | |
Collapse
|
2
|
Nagaoka K, Nagayasu K, Shirakawa H, Kaneko S. Acetaminophen improves tardive akathisia induced by dopamine D2 receptor antagonists. J Pharmacol Sci 2023; 151:9-16. [DOI: 10.1016/j.jphs.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/15/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
|
3
|
Silvani A, Ghorayeb I, Manconi M, Li Y, Clemens S. Putative Animal Models of Restless Legs Syndrome: A Systematic Review and Evaluation of Their Face and Construct Validity. Neurotherapeutics 2023; 20:154-178. [PMID: 36536233 PMCID: PMC10119375 DOI: 10.1007/s13311-022-01334-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Restless legs syndrome (RLS) is a sensorimotor disorder that severely affects sleep. It is characterized by an urge to move the legs, which is often accompanied by periodic limb movements during sleep. RLS has a high prevalence in the population and is usually a life-long condition. While its origins remain unclear, RLS is initially highly responsive to treatment with dopaminergic agonists that target D2-like receptors, in particular D2 and D3, but the long-term response is often unsatisfactory. Over the years, several putative animal models for RLS have been developed, mainly based on the epidemiological and neurochemical link with iron deficiency, treatment efficacy of D2-like dopaminergic agonists, or genome-wide association studies that identified risk factors in the patient population. Here, we present the first systematic review of putative animal models of RLS, provide information about their face and construct validity, and report their role in deciphering the underlying pathophysiological mechanisms that may cause or contribute to RLS. We propose that identifying the causal links between genetic risk factors, altered organ functions, and changes to molecular pathways in neural circuitry will eventually lead to more effective new treatment options that bypass the side effects of the currently used therapeutics in RLS, especially for long-term therapy.
Collapse
Affiliation(s)
- Alessandro Silvani
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Ravenna Campus, Ravenna, Italy
| | - Imad Ghorayeb
- Département de Neurophysiologie Clinique, Pôle Neurosciences Cliniques, CHU de Bordeaux, Bordeaux, France
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, Université de Bordeaux, Bordeaux, France
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, CNRS, Bordeaux, France
| | - Mauro Manconi
- Sleep Medicine Unit, Neurocenter of Southern Switzerland, EOC, Ospedale Civico, Lugano, Switzerland
- Department of Neurology, University Hospital, Inselspital, Bern, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Yuqing Li
- Department of Neurology, College of Medicine, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Stefan Clemens
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
4
|
Lyu S, Xing H, Liu Y, Girdhar P, Yokoi F, Li Y. Further Studies on the Role of BTBD9 in the Cerebellum, Sleep-like Behaviors and the Restless Legs Syndrome. Neuroscience 2022; 505:78-90. [PMID: 36244636 PMCID: PMC10367443 DOI: 10.1016/j.neuroscience.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/15/2022] [Accepted: 10/09/2022] [Indexed: 11/26/2022]
Abstract
Genetic analyses have linked BTBD9 to restless legs syndrome (RLS) and sleep regulation. Btbd9 knockout mice show RLS-like motor restlessness. Previously, we found hyperactivity of cerebellar Purkinje cells (PCs) in Btbd9 knockout mice, which may contribute to the motor restlessness observed. However, underlying mechanisms for PC hyperactivity in Btbd9 knockout mice are unknown. Here, we used dissociated PC recording, brain slice recording and western blot to address this question. Our dissociated recording shows that knockout PCs had increased TEA-sensitive, Ca2+-dependent K+ currents. Applying antagonist to large conductance Ca2+-activated K+ (BK) channels further isolated the increased current as BK current. Consistently, we found increased amplitude of afterhyperpolarization and elevated BK protein levels in the knockout mice. Dissociated recording also shows a decrease in TEA-insensitive, Ca2+-dependent K+ currents. The result is consistent with reduced amplitude of tail currents, mainly composed of small conductance Ca2+-activated K+ (SK) currents, in slice recording. Our results suggest that BK and SK channels may be responsible for the hyperactivity of knockout PCs. Recently, BTBD9 protein was shown to associate with SYNGAP1 protein. We found a decreased cerebellar level of SYNGAP1 in Btbd9 knockout mice. However, Syngap1 heterozygous knockout mice showed nocturnal, instead of diurnal, motor restlessness. Our results suggest that SYNGAP1 deficiency may not contribute directly to the RLS-like motor restlessness observed in Btbd9 knockout mice. Finally, we found that PC-specific Btbd9 knockout mice exhibited deficits in motor coordination and balance similar to Btbd9 knockout mice, suggesting that the motor effect of BTBD9 in PCs is cell-autonomous.
Collapse
Affiliation(s)
- Shangru Lyu
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Hong Xing
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Yuning Liu
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Pallavi Girdhar
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Fumiaki Yokoi
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Yuqing Li
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
5
|
Jiang J, Chen M, Huang H, Chen Y. The Aetiology of Tourette Syndrome and Chronic Tic Disorder in Children and Adolescents: A Comprehensive Systematic Review of Case-Control Studies. Brain Sci 2022; 12:brainsci12091202. [PMID: 36138938 PMCID: PMC9496979 DOI: 10.3390/brainsci12091202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/28/2022] [Accepted: 08/31/2022] [Indexed: 12/02/2022] Open
Abstract
(1) Introduction: Tourette syndrome (TS) and chronic tic disorder (CTD) are common neurodevelopmental/-psychiatric disorders. The aetiological factors that contribute to the pathogenesis of TS/CTD are still poorly understood. The possible risk factors for TS/CTD are considered to be a combination of genetic, immunological, psychological and environmental factors. A comprehensive systematic review was conducted to assess the association between aetiological factors and TS/CTD. (2) Methods: Electronic databases, including PubMed, Embase, Web of Science, Wanfang data, and CNKI, were searched to identify the etiological factors of children and adolescents (≤18 years) with TS/CTD based on a case-control study. Quality assessments were performed according to the Newcastle-Ottawa scale (NOS). (3) Results: According to sample sizes and NOS values, recent evidence may support that genetic factors (BTBD9 and AADAC), immunological factors (streptococcus and mycoplasma pneumoniae infections), environmental factors (conflict, history of perinatal diseases, and family history of neurological and psychiatric diseases and recurrent respiratory infections) and psychological factors (major life events) are associated with the pathogenesis of TS/CTD. (4) Conclusions: Some risk factors in different categories may be the etiological factors of TS/CTD, but there is a lack of studies on the interaction among the factors, which may require more attention in the future.
Collapse
|
6
|
Salminen AV, Clemens S, García-Borreguero D, Ghorayeb I, Li Y, Manconi M, Ondo W, Rye D, Siegel JM, Silvani A, Winkelman JW, Allen RP, Ferré S. Consensus guidelines on the construct validity of rodent models of restless legs syndrome. Dis Model Mech 2022; 15:dmm049615. [PMID: 35946581 PMCID: PMC9393041 DOI: 10.1242/dmm.049615] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/10/2022] [Indexed: 12/16/2022] Open
Abstract
Our understanding of the causes and natural course of restless legs syndrome (RLS) is incomplete. The lack of objective diagnostic biomarkers remains a challenge for clinical research and for the development of valid animal models. As a task force of preclinical and clinical scientists, we have previously defined face validity parameters for rodent models of RLS. In this article, we establish new guidelines for the construct validity of RLS rodent models. To do so, we first determined and agreed on the risk, and triggering factors and pathophysiological mechanisms that influence RLS expressivity. We then selected 20 items considered to have sufficient support in the literature, which we grouped by sex and genetic factors, iron-related mechanisms, electrophysiological mechanisms, dopaminergic mechanisms, exposure to medications active in the central nervous system, and others. These factors and biological mechanisms were then translated into rodent bioequivalents deemed to be most appropriate for a rodent model of RLS. We also identified parameters by which to assess and quantify these bioequivalents. Investigating these factors, both individually and in combination, will help to identify their specific roles in the expression of rodent RLS-like phenotypes, which should provide significant translational implications for the diagnosis and treatment of RLS.
Collapse
Affiliation(s)
- Aaro V. Salminen
- Institute of Neurogenomics, Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Institute of Human Genetics, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Stefan Clemens
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | | | - Imad Ghorayeb
- Département de Neurophysiologie Clinique, Pôle Neurosciences Cliniques, CHU de Bordeaux, 33076 Bordeaux, France
- Université de Bordeaux, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, 33076 Bordeaux, France
- CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, 33076 Bordeaux, France
| | - Yuqing Li
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mauro Manconi
- Sleep Medicine Unit, Regional Hospital of Lugano, Neurocenter of Southern Switzerland, 6900 Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
- Department of Neurology, University Hospital Inselspital, 3010 Bern, Switzerland
| | - William Ondo
- Houston Methodist Hospital Neurological Institute, Weill Cornell Medical School, Houston, TX 77070, USA
| | - David Rye
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jerome M. Siegel
- Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, CA 90095, USA
- Neurobiology Research, Veterans Administration Greater Los Angeles Healthcare System, North Hills, CA 91343, USA
| | - Alessandro Silvani
- Department of Biomedical and Neuromotor Sciences Alma Mater Studiorum, Università di Bologna, 48121 Ravenna Campus, Ravenna, Italy
| | - John W. Winkelman
- Departments of Psychiatry and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Richard P. Allen
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21224, USA
| | - Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | | |
Collapse
|
7
|
Khachatryan SG, Ferri R, Fulda S, Garcia‐Borreguero D, Manconi M, Muntean M, Stefani A. Restless legs syndrome: Over 50 years of European contribution. J Sleep Res 2022; 31:e13632. [PMID: 35808955 PMCID: PMC9542244 DOI: 10.1111/jsr.13632] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/28/2022]
Abstract
Restless legs syndrome (RLS) is a sensorimotor neurological disorder characterised by an urge to move the limbs with a circadian pattern (occurring in the evening/at night), more prominent at rest, and relieved with movements. RLS is one of the most prevalent sleep disorders, occurring in 5%-10% of the European population. Thomas Willis first described RLS clinical cases already in the 17th century, and Karl-Axel Ekbom described the disease as a modern clinical entity in the 20th century. Despite variable severity, RLS can markedly affect sleep (partly through the presence of periodic leg movements) and quality of life, with a relevant socio-economic impact. Thus, its recognition and treatment are essential. However, screening methods present limitations and should be improved. Moreover, available RLS treatment options albeit providing sustained relief to many patients are limited in number. Additionally, the development of augmentation with dopamine agonists represents a major treatment problem. A better understanding of RLS pathomechanisms can bring to light novel treatment possibilities. With emerging new avenues of research in pharmacology, imaging, genetics, and animal models of RLS, this is an interesting and constantly growing field of research. This review will update the reader on the current state of RLS clinical practice and research, with a special focus on the contribution of European researchers.
Collapse
Affiliation(s)
- Samson G. Khachatryan
- Department of Neurology and NeurosurgeryNational Institute of HealthYerevanArmenia
- Sleep Disorders CenterSomnus Neurology ClinicYerevanArmenia
| | | | - Stephany Fulda
- Sleep Medicine UnitNeurocenter of Southern Switzerland, Ospedale CivicoLuganoSwitzerland
| | | | - Mauro Manconi
- Sleep Medicine UnitNeurocenter of Southern Switzerland, Ospedale CivicoLuganoSwitzerland
- Department of NeurologyUniversity HospitalInselspitalBernSwitzerland
| | - Maria‐Lucia Muntean
- Center for Parkinson's Disease and Movement DisordersParacelsus‐Elena KlinikKasselGermany
| | - Ambra Stefani
- Sleep Disorders Clinic, Department of NeurologyMedical University of InnsbruckInnsbruckAustria
| |
Collapse
|
8
|
Xing H, Yokoi F, Walker AL, Torres-Medina R, Liu Y, Li Y. Electrophysiological characterization of the striatal cholinergic interneurons in Dyt1 ΔGAG knock-in mice. DYSTONIA 2022; 1:10557. [PMID: 36329866 PMCID: PMC9629210 DOI: 10.3389/dyst.2022.10557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
DYT1 dystonia is an inherited early-onset movement disorder characterized by sustained muscle contractions causing twisting, repetitive movements, and abnormal postures. Most DYT1 patients have a heterozygous trinucleotide GAG deletion mutation (ΔGAG) in DYT1/TOR1A, coding for torsinA. Dyt1 heterozygous ΔGAG knock-in (KI) mice show motor deficits and reduced striatal dopamine receptor 2 (D2R). Striatal cholinergic interneurons (ChIs) are essential in regulating striatal motor circuits. Multiple dystonia rodent models, including KI mice, show altered ChI firing and modulation. However, due to the errors in assigning KI mice, it is essential to replicate these findings in genetically confirmed KI mice. Here, we found irregular and decreased spontaneous firing frequency in the acute brain slices from Dyt1 KI mice. Quinpirole, a D2R agonist, showed less inhibitory effect on the spontaneous ChI firing in Dyt1 KI mice, suggesting decreased D2R function on the striatal ChIs. On the other hand, a muscarinic receptor agonist, muscarine, inhibited the ChI firing in both wild-type (WT) and Dyt1 KI mice. Trihexyphenidyl, a muscarinic acetylcholine receptor M1 antagonist, had no significant effect on the firing. Moreover, the resting membrane property and functions of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, μ-opioid receptors, and large-conductance calcium-activated potassium (BK) channels were unaffected in Dyt1 KI mice. The results suggest that the irregular and low-frequency firing and decreased D2R function are the main alterations of striatal ChIs in Dyt1 KI mice. These results appear consistent with the reduced dopamine release and high striatal acetylcholine tone in the previous reports.
Collapse
Affiliation(s)
- Hong Xing
- Norman Fixel Institute of Neurological Diseases and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| | - Fumiaki Yokoi
- Norman Fixel Institute of Neurological Diseases and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| | - Ariel Luz Walker
- Norman Fixel Institute of Neurological Diseases and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| | - Rosemarie Torres-Medina
- Norman Fixel Institute of Neurological Diseases and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| | - Yuning Liu
- Norman Fixel Institute of Neurological Diseases and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| | - Yuqing Li
- Norman Fixel Institute of Neurological Diseases and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| |
Collapse
|
9
|
Rubio MA, Herrando-Grabulosa M, Gaja-Capdevila N, Vilches JJ, Navarro X. Characterization of somatosensory neuron involvement in the SOD1 G93A mouse model. Sci Rep 2022; 12:7600. [PMID: 35534694 PMCID: PMC9085861 DOI: 10.1038/s41598-022-11767-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/14/2022] [Indexed: 11/09/2022] Open
Abstract
SOD1G93A mice show loss of cutaneous small fibers, as in ALS patients. Our objective is to characterize the involvement of different somatosensory neuron populations and its temporal progression in the SOD1G93A mice. We aim to further define peripheral sensory involvement, analyzing at the same time points the neuronal bodies located in the dorsal root ganglia (DRG) and the distal part of their axons in the skin, in order to shed light in the mechanisms of sensory involvement in ALS. We performed immunohistochemical analysis of peptidergic (CGRP), non-peptidergic (IB4) fibers in epidermis, as well as sympathetic sudomotor fibers (VIP) in the footpads of SOD1G93A mice and wild type littermates at 4, 8, 12 and 16 weeks of age. We also immunolabeled and quantified neuronal bodies of IB4, CGRP and parvalbumin (PV) positive sensory neurons in lumbar DRG. We detected a reduction of intraepidermal nerve fiber density in the SOD1G93A mice of both peptidergic and non-peptidergic axons, compared with the WT, being the non-peptidergic the fewest. Sweat gland innervation was similarly affected in the SOD1G93A mouse at 12 weeks. Nonetheless, the number of DRG neurons from different sensory populations remained unchanged during all stages. Cutaneous sensory axons are affected in the SOD1G93A mouse, with non-peptidergic being slightly more vulnerable than peptidergic axons. Loss or lack of growth of the distal portion of sensory axons with preservation of the corresponding neuronal bodies suggest a distal axonopathy.
Collapse
Affiliation(s)
- Miguel A Rubio
- Neuromuscular Unit, Department of Neurology, Hospital del Mar, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences and CIBERNED, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Mireia Herrando-Grabulosa
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences and CIBERNED, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Nuria Gaja-Capdevila
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences and CIBERNED, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jorge J Vilches
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences and CIBERNED, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Xavier Navarro
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences and CIBERNED, Universitat Autònoma de Barcelona, Bellaterra, Spain. .,Unitat de Fisiologia Medica, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| |
Collapse
|
10
|
Kong YF, Li MK, Yuan YX, Yang ZY, Yu WY, Zhao PZ, Zhou JY. Detection of Parent-of-Origin Effects for the Variants Associated With Behavioral Disinhibition in the MCTFR Data. Front Genet 2022; 13:831685. [PMID: 35559008 PMCID: PMC9086303 DOI: 10.3389/fgene.2022.831685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Behavioral disinhibition is one of the important characteristics of many mental diseases. It has been reported in literature that serious behavioral disinhibition will affect people's health and greatly reduce people's quality of life. Meanwhile, behavioral disinhibition can easily lead to illegal drug abuse and violent crimes, etc., which will bring great harm to the society. At present, large-scale genome-wide association analysis has identified many loci associated with behavioral disinhibition. However, these studies have not incorporated the parent-of-origin effects (POE) into analysis, which may ignore or underestimate the genetic effects of loci on behavioral disinhibition. Therefore, in this article, we analyzed the five phenotypes related to behavioral disinhibition in the Minnesota Center for Twin and Family Research data (nicotine, alcohol consumption, alcohol dependence, illicit drugs, and non-substance use related behavioral disinhibition), to further explore the POE of variants on behavioral disinhibition. We applied a linear mixed model to test for the POE at a genome-wide scale on five transformed phenotypes, and found nine SNPs with statistically significant POE at the significance level of 5 × 10-8. Among them, SNPs rs4141854, rs9394515, and rs4711553 have been reported to be associated with two neurological disorders (restless legs syndrome and Tourette's syndrome) which are related to behavioral disinhibition; SNPs rs12960235 and rs715351 have been found to be associated with head and neck squamous cell carcinoma, skin cancer and type I diabetes, while both SNPs have not been identified to be related to behavioral disinhibition in literature; SNPs rs704833, rs6837925, rs1863548, and rs11067062 are novel loci identified in this article, and their function annotations have not been reported in literature. Follow-up study in molecular genetics is needed to verify whether they are surely related to behavioral disinhibition.
Collapse
Affiliation(s)
- Yi-Fan Kong
- Department of Biostatistics, State Key Laboratory of Organ Failure Research, Ministry of Education, and Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
- Guangdong-Hong Hong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, China
| | - Meng-Kai Li
- Department of Biostatistics, State Key Laboratory of Organ Failure Research, Ministry of Education, and Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
- Guangdong-Hong Hong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, China
| | - Yu-Xin Yuan
- Department of Biostatistics, State Key Laboratory of Organ Failure Research, Ministry of Education, and Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zi-Ying Yang
- Department of Biostatistics, State Key Laboratory of Organ Failure Research, Ministry of Education, and Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wen-Yi Yu
- Department of Biostatistics, State Key Laboratory of Organ Failure Research, Ministry of Education, and Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Pei-Zhen Zhao
- Department of Biostatistics, State Key Laboratory of Organ Failure Research, Ministry of Education, and Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Ji-Yuan Zhou
- Department of Biostatistics, State Key Laboratory of Organ Failure Research, Ministry of Education, and Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
- Guangdong-Hong Hong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, China
| |
Collapse
|
11
|
Drakatos P, Olaithe M, Verma D, Ilic K, Cash D, Fatima Y, Higgins S, Young AH, Chaudhuri KR, Steier J, Skinner T, Bucks R, Rosenzweig I. Periodic limb movements during sleep: a narrative review. J Thorac Dis 2022; 13:6476-6494. [PMID: 34992826 PMCID: PMC8662505 DOI: 10.21037/jtd-21-1353] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 10/20/2021] [Indexed: 01/02/2023]
Abstract
Objective Using narrative review techniques, this paper evaluates the evidence for separable underlying patho-mechanisms of periodic limb movements (PLMs) to separable PLM motor patterns and phenotypes, in order to elucidate potential new treatment modalities. Background Periodic limb movement disorder (PLMD) is estimated to occur in 5–8% of the paediatric population and 4–11% of the general adult population. Due to significant sleep fragmentation, PLMD can lead to functional impairment, including hyperactivity and delayed language development in children, and poor concentration and work performance in adults. Longitudinal data demonstrate that those with PLMD are at greater risk of depression and anxiety, and a 4-fold greater risk of developing dementia. PLMD has been extensively studied over the past two decades, and several key insights into the genetic, pathophysiological, and neural correlates have been proposed. Amongst these proposals is the concept of separable PLM phenotypes, proposed on the basis of nocturnal features such as the ratio of limb movements and distribution throughout the night. PLM phenotype and presentation, however, varies significantly depending on the scoring utilized and the nocturnal features examined, across age, and co-morbid clinical conditions. Furthermore, associations between these phenotypes with major neurologic and psychiatric disorders remain controversial. Methods In order to elucidate potential divergent biological pathways that may help clarify important new treatment modalities, this paper utilizes narrative review and evaluates the evidence linking PLM motor patterns and phenotypes with hypothesised underlying patho-mechanisms. Distinctive, underlying patho-mechanisms include: a pure motor mechanism originating in the spinal cord, iron deficiency, dopamine system dysfunction, thalamic glutamatergic hyperactivity, and a more cortical-subcortical interplay. In support of the latter hypothesis, PLM rhythmicity appears tightly linked to the microarchitecture of sleep, not dissimilarly to the apnoeic/hypopneic events seen in obstructive sleep apnea (OSA). Conclusions This review closes with a proposal for greater investigation into the identification of potential, divergent biological pathways. To do so would require prospective, multimodal imaging clinical studies which may delineate differential responses to treatment in restless legs syndrome (RLS) without PLMS and PLMS without RLS. This could pave the way toward important new treatment modalities.
Collapse
Affiliation(s)
- Panagis Drakatos
- Sleep and Brain Plasticity Centre, CNS, IoPPN, King's College London, London, UK.,Sleep Disorders Centre, Guy's and St Thomas' Hospital, GSTT NHS, London, UK.,Faculty of Life and Sciences Medicine, King's College London, London, UK
| | - Michelle Olaithe
- School of Psychological Science, University of Western Australia, Perth, Western Australia, Australia
| | - Dhun Verma
- Sleep and Brain Plasticity Centre, CNS, IoPPN, King's College London, London, UK
| | - Katarina Ilic
- Sleep and Brain Plasticity Centre, CNS, IoPPN, King's College London, London, UK.,BRAIN, Imaging Centre, CNS, King's College London, London, UK
| | - Diana Cash
- Sleep and Brain Plasticity Centre, CNS, IoPPN, King's College London, London, UK.,BRAIN, Imaging Centre, CNS, King's College London, London, UK
| | - Yaqoot Fatima
- Institute for Social Science Research, University of Queensland, Brisbane, Australia.,Centre for Rural and Remote Health, James Cook University, Mount Isa, Australia
| | - Sean Higgins
- Sleep and Brain Plasticity Centre, CNS, IoPPN, King's College London, London, UK.,Sleep Disorders Centre, Guy's and St Thomas' Hospital, GSTT NHS, London, UK
| | - Allan H Young
- School of Academic Psychiatry, King's College London, London, UK
| | - K Ray Chaudhuri
- King's College London and Parkinson's Foundation Centre of Excellence, King's College Hospital, London, UK
| | - Joerg Steier
- Sleep Disorders Centre, Guy's and St Thomas' Hospital, GSTT NHS, London, UK.,Faculty of Life and Sciences Medicine, King's College London, London, UK
| | - Timothy Skinner
- Institute of Psychology, University of Copenhagen, Copenhagen, Denmark.,La Trobe Rural Health School, La Trobe University, Bendigo, Victoria, Australia
| | - Romola Bucks
- School of Psychological Science, University of Western Australia, Perth, Western Australia, Australia.,The Raine Study, University of Western Australia, Perth, Australia
| | - Ivana Rosenzweig
- Sleep and Brain Plasticity Centre, CNS, IoPPN, King's College London, London, UK.,Sleep Disorders Centre, Guy's and St Thomas' Hospital, GSTT NHS, London, UK
| |
Collapse
|
12
|
Sleep Disturbances Linked to Genetic Disorders. Sleep Med Clin 2022; 17:77-86. [DOI: 10.1016/j.jsmc.2021.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Abstract
Restless legs syndrome (RLS) is a common sensorimotor disorder characterized by an urge to move that appears during rest or is exacerbated by rest, that occurs in the evening or night and that disappears during movement or is improved by movement. Symptoms vary considerably in age at onset, frequency and severity, with severe forms affecting sleep, quality of life and mood. Patients with RLS often display periodic leg movements during sleep or resting wakefulness. RLS is considered to be a complex condition in which predisposing genetic factors, environmental factors and comorbidities contribute to the expression of the disorder. RLS occurs alone or with comorbidities, for example, iron deficiency and kidney disease, but also with cardiovascular diseases, diabetes mellitus and neurological, rheumatological and respiratory disorders. The pathophysiology is still unclear, with the involvement of brain iron deficiency, dysfunction in the dopaminergic and nociceptive systems and altered adenosine and glutamatergic pathways as hypotheses being investigated. RLS is poorly recognized by physicians and it is accordingly often incorrectly diagnosed and managed. Treatment guidelines recommend initiation of therapy with low doses of dopamine agonists or α2δ ligands in severe forms. Although dopaminergic treatment is initially highly effective, its long-term use can result in a serious worsening of symptoms known as augmentation. Other treatments include opioids and iron preparations.
Collapse
|
14
|
Yokoi F, Chen HX, Oleas J, Dang MT, Xing H, Dexter KM, Li Y. Characterization of the direct pathway in Dyt1 ΔGAG heterozygous knock-in mice and dopamine receptor 1-expressing-cell-specific Dyt1 conditional knockout mice. Behav Brain Res 2021; 411:113381. [PMID: 34038798 PMCID: PMC8323984 DOI: 10.1016/j.bbr.2021.113381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 04/29/2021] [Accepted: 05/21/2021] [Indexed: 10/21/2022]
Abstract
DYT1 dystonia is a movement disorder mainly caused by a trinucleotide deletion (ΔGAG) in DYT1 (TOR1A), coding for torsinA. DYT1 dystonia patients show trends of decreased striatal ligand-binding activities to dopamine receptors 1 (D1R) and 2 (D2R). Dyt1 ΔGAG knock-in (KI) mice, which have the corresponding ΔGAG deletion, similarly exhibit reduced striatal D1R and D2R-binding activities and their expression levels. While the consequences of D2R reduction have been well characterized, relatively little is known about the effect of D1R reduction. Here, locomotor responses to D1R and D2R antagonists were examined in Dyt1 KI mice. Dyt1 KI mice showed significantly less responsiveness to both D1R antagonist SCH 23390 and D2R antagonist raclopride. The electrophysiological recording indicated that Dyt1 KI mice showed a significantly increased paired-pulse ratio of the striatal D1R-expressing medium spiny neurons and altered miniature excitatory postsynaptic currents. To analyze the in vivo torsinA function in the D1R-expressing neurons further, Dyt1 conditional knockout (Dyt1 d1KO) mice in these neurons were generated. Dyt1 d1KO mice had decreased spontaneous locomotor activity and reduced numbers of slips in the beam-walking test. Dyt1 d1KO male mice showed abnormal gait. Dyt1 d1KO mice showed defective striatal D1R maturation. Moreover, the mutant striatal D1R-expressing medium spiny neurons had increased capacitance, decreased sEPSC frequency, and reduced intrinsic excitability. The results suggest that torsinA in the D1R-expressing cells plays an important role in the electrophysiological function and motor performance. Medical interventions to the direct pathway may affect the onset and symptoms of this disorder.
Collapse
Affiliation(s)
- Fumiaki Yokoi
- Norman Fixel Institute for Neurological Diseases, McKnight Brain Institute, and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, 32610-0236, USA.
| | - Huan-Xin Chen
- Norman Fixel Institute for Neurological Diseases, McKnight Brain Institute, and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, 32610-0236, USA
| | - Janneth Oleas
- Norman Fixel Institute for Neurological Diseases, McKnight Brain Institute, and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, 32610-0236, USA
| | - Mai Tu Dang
- Norman Fixel Institute for Neurological Diseases, McKnight Brain Institute, and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, 32610-0236, USA
| | - Hong Xing
- Norman Fixel Institute for Neurological Diseases, McKnight Brain Institute, and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, 32610-0236, USA
| | - Kelly M Dexter
- Norman Fixel Institute for Neurological Diseases, McKnight Brain Institute, and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, 32610-0236, USA
| | - Yuqing Li
- Norman Fixel Institute for Neurological Diseases, McKnight Brain Institute, and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, 32610-0236, USA.
| |
Collapse
|
15
|
Ferré S, Guitart X, Quiroz C, Rea W, García-Malo C, Garcia-Borreguero D, Allen RP, Earley CJ. Akathisia and Restless Legs Syndrome: Solving the Dopaminergic Paradox. Sleep Med Clin 2021; 16:249-267. [PMID: 33985651 DOI: 10.1016/j.jsmc.2021.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Akathisia is an urgent need to move that is associated with treatment with dopamine receptor blocking agents (DRBAs) and with restless legs syndrome (RLS). The pathogenetic mechanism of akathisia has not been resolved. This article proposes that it involves an increased presynaptic dopaminergic transmission in the ventral striatum and concomitant strong activation of postsynaptic dopamine D1 receptors, which form complexes (heteromers) with dopamine D3 and adenosine A1 receptors. It also proposes that in DRBA-induced akathisia, increased dopamine release depends on inactivation of autoreceptors, whereas in RLS it depends on a brain iron deficiency-induced down-regulation of striatal presynaptic A1 receptors.
Collapse
Affiliation(s)
- Sergi Ferré
- Integrative Neurobiology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Triad Building, 333 Cassell Drive, Baltimore, MD 21224, USA.
| | - Xavier Guitart
- Integrative Neurobiology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Triad Building, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - César Quiroz
- Integrative Neurobiology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Triad Building, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - William Rea
- Integrative Neurobiology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Triad Building, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Celia García-Malo
- Sleep Research Institute, Paseo de la Habana 151, Madrid 28036, Spain
| | | | - Richard P Allen
- Department of Neurology, Johns Hopkins University, Johns Hopkins Bayview Medical Center, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA
| | - Christopher J Earley
- Department of Neurology, Johns Hopkins University, Johns Hopkins Bayview Medical Center, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA
| |
Collapse
|
16
|
Alteration of the cholinergic system and motor deficits in cholinergic neuron-specific Dyt1 knockout mice. Neurobiol Dis 2021; 154:105342. [PMID: 33757902 DOI: 10.1016/j.nbd.2021.105342] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/11/2021] [Accepted: 03/18/2021] [Indexed: 12/30/2022] Open
Abstract
Dystonia is a neurological movement disorder characterized by sustained or intermittent muscle contractions, repetitive movement, and sometimes abnormal postures. DYT1 dystonia is one of the most common genetic dystonias, and most patients carry heterozygous DYT1 ∆GAG mutations causing a loss of a glutamic acid of the protein torsinA. Patients can be treated with anticholinergics, such as trihexyphenidyl, suggesting an abnormal cholinergic state. Early work on the cell-autonomous effects of Dyt1 deletion with ChI-specific Dyt1 conditional knockout mice (Dyt1 Ch1KO) revealed abnormal electrophysiological responses of striatal ChIs to muscarine and quinpirole, motor deficits, and no changes in the number or size of the ChIs. However, the Chat-cre line that was used to derive Dyt1 Ch1KO mice contained a neomycin cassette and was reported to have ectopic cre-mediated recombination. In this study, we generated a Dyt1 Ch2KO mouse line by removing the neomycin cassette in Dyt1 Ch1KO mice. The Dyt1 Ch2KO mice showed abnormal paw clenching behavior, motor coordination and balance deficits, impaired motor learning, reduced striatal choline acetyltransferase protein level, and a reduced number of striatal ChIs. Furthermore, the mutant striatal ChIs had a normal muscarinic inhibitory function, impaired quinpirole-mediated inhibition, and altered current density. Our findings demonstrate a cell-autonomous effect of Dyt1 deletion on the striatal ChIs and a critical role for the striatal ChIs and corticostriatal pathway in the pathogenesis of DYT1 dystonia.
Collapse
|
17
|
Liu Y, Xing H, Yokoi F, Vaillancourt DE, Li Y. Investigating the role of striatal dopamine receptor 2 in motor coordination and balance: Insights into the pathogenesis of DYT1 dystonia. Behav Brain Res 2021; 403:113137. [PMID: 33476687 DOI: 10.1016/j.bbr.2021.113137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/29/2020] [Accepted: 01/13/2021] [Indexed: 12/16/2022]
Abstract
DYT1 or DYT-TOR1A dystonia is early-onset, generalized dystonia. Most DYT1 dystonia patients have a heterozygous trinucleotide GAG deletion in DYT1 or TOR1A gene, with a loss of a glutamic acid residue of the protein torsinA. DYT1 dystonia patients show reduced striatal dopamine D2 receptor (D2R) binding activity. We previously reported reduced striatal D2R proteins and impaired corticostriatal plasticity in Dyt1 ΔGAG heterozygous knock-in (Dyt1 KI) mice. It remains unclear how the D2R reduction contributes to the pathogenesis of DYT1 dystonia. Recent knockout studies indicate that D2R on cholinergic interneurons (Chls) has a significant role in corticostriatal plasticity, while D2R on medium spiny neurons (MSNs) plays a minor role. To determine how reduced D2Rs on ChIs and MSNs affect motor performance, we generated ChI- or MSN-specific D2R conditional knockout mice (Drd2 ChKO or Drd2 sKO). The striatal ChIs in the Drd2 ChKO mice showed an increased firing frequency and impaired quinpirole-induced inhibition, suggesting a reduced D2R function on the ChIs. Drd2 ChKO mice had an age-dependent deficient performance on the beam-walking test similar to the Dyt1 KI mice. The Drd2 sKO mice, conversely, had a deficit on the rotarod but not the beam-walking test. Our findings suggest that D2Rs on Chls and MSNs have critical roles in motor control and balance. The similarity of the beam-walking deficit between the Drd2 ChKO and Dyt1 KI mice supports our earlier notion that D2R reduction on striatal ChIs contributes to the pathophysiology and the motor symptoms of DYT1 dystonia.
Collapse
Affiliation(s)
- Yuning Liu
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States; Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Hong Xing
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Fumiaki Yokoi
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - David E Vaillancourt
- Department of Applied Physiology and Kinesiology, Biomedical Engineering, and Neurology, University of Florida, Gainesville, FL, United States
| | - Yuqing Li
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States; Genetics Institute, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
18
|
Lv Q, Wang X, Asakawa T, Wang XP. Pharmacologic Treatment of Restless Legs Syndrome. Curr Neuropharmacol 2021; 19:372-382. [PMID: 33380302 PMCID: PMC8033969 DOI: 10.2174/1570159x19666201230150127] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/24/2020] [Accepted: 12/19/2020] [Indexed: 01/14/2023] Open
Abstract
Restless legs syndrome (RLS)/Willis-Ekbom disease is a neurologic disorder characterized by a strong desire to move when at rest (usually in the evening) and paraesthesia in their lower legs. The most widely used therapies for first-line treatment of RLS are dopaminergic drugs; however, their long-term use can lead to augmentation. α2δ Ligands, opioids, iron, glutamatergic drugs, adenosine, and sleep aids have been investigated as alternatives. The pathogenesis of RLS is not well understood. Despite the efficacy of dopaminergic drugs in the treatment of this disorder, unlike in Parkinson's disease dopaminergic cell loss in the substantia nigra has not been observed in RLS. The etiology of RLS is likely complex, involving multiple neural pathways. RLS-related genes identified in genome-wide association studies can provide insight into the mechanistic basis and pathophysiology of RLS. Here we review the current treatments and knowledge of the mechanisms underlying RLS.
Collapse
Affiliation(s)
| | | | - Tetsuya Asakawa
- Address correspondence to these authors at the Department of Neurology, TongRen Hospital, Shanghai Jiao Tong University School of Medicine, No.1111 Xianxia Road, 200336, Shanghai, China; Tel: +86-021-52039999-72223; Fax: +86-021-52039999-72223; E-mail: and Department of Neurosurgery, Hamamatsu University School of Medicine, Handayama, 1-20-1, Higashi-ku, Hamamatsu-city, Shizuoka 431-3192, Japan; Tel: + 81-53-435-2283; Fax: + 81-53-435-2282;, E-mail:
| | - Xiao Ping Wang
- Address correspondence to these authors at the Department of Neurology, TongRen Hospital, Shanghai Jiao Tong University School of Medicine, No.1111 Xianxia Road, 200336, Shanghai, China; Tel: +86-021-52039999-72223; Fax: +86-021-52039999-72223; E-mail: and Department of Neurosurgery, Hamamatsu University School of Medicine, Handayama, 1-20-1, Higashi-ku, Hamamatsu-city, Shizuoka 431-3192, Japan; Tel: + 81-53-435-2283; Fax: + 81-53-435-2282;, E-mail:
| |
Collapse
|
19
|
Lyu S, Xing H, Liu Y, Girdhar P, Zhang K, Yokoi F, Xiao R, Li Y. Deficiency of Meis1, a transcriptional regulator, in mice and worms: Neurochemical and behavioral characterizations with implications in the restless legs syndrome. J Neurochem 2020; 155:522-537. [PMID: 32910473 PMCID: PMC7894994 DOI: 10.1111/jnc.15177] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/04/2020] [Accepted: 08/28/2020] [Indexed: 12/21/2022]
Abstract
Restless legs syndrome is a sleep-related sensorimotor neurological disease affecting up to 10% of the population. Genetic analyses have identified Myeloid Ecotropic viral Integration Site 1 (MEIS1), a transcriptional regulator, to be associated with not only the restless legs syndrome but also self-reported symptoms of insomnia and sleep. This study is to determine if Meis1 deficiency in mice can lead to restless legs syndrome-like phenotypes, and if it is the case, what the underlying mechanisms are. We used two genetic model systems, Caenorhabditis elegans and mice. Egg retention assay and fluorescent reporters were used with C. elegans. For mice, we performed behavioral tests, serum and brain iron detection, qRT-PCR, western blot, immunohistochemistry, and in vitro brain-slice recording. Our results showed that with C. elegans, the function of dop-3, an orthologue of DRD2, was diminished after the knockdown of unc-62, an ortholog of MEIS1. Additionally, unc-62 knockdown led to enhanced transcription of the orthologue of tyrosine hydroxylase, cat-2. Meis1 knockout mice were hyperactive and had a rest-phase-specific increased probability of waking. Moreover, Meis1 knockout mice had increased serum ferritin and altered striatal dopaminergic and cholinergic systems. Specifically, Meis1 knockout mice showed an increased mRNA level but decreased protein level of tyrosine hydroxylase in the striatum. Furthermore, Meis1 knockout mice had increased striatal dopamine turnover and decreased spontaneous firing regularity of striatal cholinergic interneurons. Our data suggest that Meis1 knockout mice have restless legs syndrome-like motor restlessness and changes in serum ferritin levels. The symptoms may be related to dysfunctional dopaminergic and cholinergic systems.
Collapse
Affiliation(s)
- Shangru Lyu
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Hong Xing
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Yuning Liu
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Pallavi Girdhar
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Keer Zhang
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Fumiaki Yokoi
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Rui Xiao
- Department of Aging and Geriatric Research, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Yuqing Li
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
20
|
Lyu S, Doroodchi A, Xing H, Sheng Y, DeAndrade MP, Yang Y, Johnson TL, Clemens S, Yokoi F, Miller MA, Xiao R, Li Y. BTBD9 and dopaminergic dysfunction in the pathogenesis of restless legs syndrome. Brain Struct Funct 2020; 225:1743-1760. [PMID: 32468214 DOI: 10.1007/s00429-020-02090-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 05/13/2020] [Indexed: 01/17/2023]
Abstract
Restless legs syndrome (RLS) is characterized by an urge to move legs, usually accompanied by uncomfortable sensations. RLS symptoms generally happen at night and can be relieved by movements. Genetic studies have linked polymorphisms in BTBD9 to a higher risk of RLS. Knockout of BTBD9 homolog in mice (Btbd9) and fly results in RLS-like phenotypes. A dysfunctional dopaminergic system is associated with RLS. However, the function of BTBD9 in the dopaminergic system and RLS is not clear. Here, we made use of the simple Caenorhabditis elegans nervous system. Loss of hpo-9, the worm homolog of BTBD9, resulted in hyperactive egg-laying behavior. Analysis of genetic interactions between hpo-9 and genes for dopamine receptors (dop-1, dop-3) indicated that hpo-9 and dop-1 worked similarly. Reporter assays of dop-1 and dop-3 revealed that hpo-9 knockout led to a significant increase of DOP-3 expression. This appears to be evolutionarily conserved in mice with an increased D2 receptor (D2R) mRNA in the striatum of the Btbd9 knockout mice. Furthermore, the striatal D2R protein was significantly decreased and Dynamin I was increased. Overall, activities of DA neurons in the substantia nigra were not altered, but the peripheral D1R pathway was potentiated in the Btbd9 knockout mice. Finally, we generated and characterized the dopamine neuron-specific Btbd9 knockout mice and detected an active-phase sleepiness, suggesting that dopamine neuron-specific loss of Btbd9 is sufficient to disturb the sleep. Our results suggest that increased activities in the D1R pathway, decreased activities in the D2R pathway, or both may contribute to RLS.
Collapse
Affiliation(s)
- Shangru Lyu
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, College of Medicine, University of Florida, PO Box 100236, Gainesville, FL, 32610-0236, USA
| | - Atbin Doroodchi
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Hong Xing
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, College of Medicine, University of Florida, PO Box 100236, Gainesville, FL, 32610-0236, USA
| | - Yi Sheng
- Department of Aging and Geriatric Research, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Mark P DeAndrade
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, College of Medicine, University of Florida, PO Box 100236, Gainesville, FL, 32610-0236, USA
| | - Youfeng Yang
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Tracy L Johnson
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Stefan Clemens
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Fumiaki Yokoi
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, College of Medicine, University of Florida, PO Box 100236, Gainesville, FL, 32610-0236, USA
| | - Michael A Miller
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Rui Xiao
- Department of Aging and Geriatric Research, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Yuqing Li
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, College of Medicine, University of Florida, PO Box 100236, Gainesville, FL, 32610-0236, USA.
| |
Collapse
|
21
|
Lyu S, Xing H, DeAndrade MP, Perez PD, Yokoi F, Febo M, Walters AS, Li Y. The Role of BTBD9 in the Cerebellum, Sleep-like Behaviors and the Restless Legs Syndrome. Neuroscience 2020; 440:85-96. [PMID: 32446853 DOI: 10.1016/j.neuroscience.2020.05.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 04/27/2020] [Accepted: 05/14/2020] [Indexed: 12/28/2022]
Abstract
Recent genome-wide association studies (GWAS) have found cerebellum as a top hit for sleep regulation. Restless legs syndrome (RLS) is a sleep-related sensorimotor disorder characterized by uncomfortable sensations in the extremities, generally at night, which are often relieved by movements. Clinical studies have found that RLS patients have structural and functional abnormalities in the cerebellum. However, whether and how cerebellar pathology contributes to sleep regulation and RLS is not known. GWAS identified polymorphisms in BTBD9 conferring a higher risk of sleep disruption and RLS. Knockout of the BTBD9 homolog in mice (Btbd9) and fly results in motor restlessness and sleep disruption. We performed manganese-enhanced magnetic resonance imaging on the Btbd9 knockout mice and found decreased neural activities in the cerebellum, especially in lobules VIII, X, and the deep cerebellar nuclei. Electrophysiological recording of Purkinje cells (PCs) from Btbd9 knockout mice revealed an increased number of non-tonic PCs. Tonic PCs showed increased spontaneous activity and intrinsic excitability. To further investigate the cerebellar contribution to RLS and sleep-like behaviors, we generated PC-specific Btbd9 knockout mice (Btbd9 pKO) and performed behavioral studies. Btbd9 pKO mice showed significant motor restlessness during the rest phase but not in the active phase. Btbd9 pKO mice also had an increased probability of waking at rest. Unlike the Btbd9 knockout mice, there was no increased thermal sensation in the Btbd9 pKO. Our results indicate that the Btbd9 knockout influences the PC activity; dysfunction in the cerebellum may contribute to the motor restlessness found in the Btbd9 knockout mice.
Collapse
Affiliation(s)
- Shangru Lyu
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Hong Xing
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Mark P DeAndrade
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Pablo D Perez
- Department of Psychiatry, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Fumiaki Yokoi
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Marcelo Febo
- Department of Psychiatry, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Arthur S Walters
- Division of Sleep Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yuqing Li
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
22
|
Lyu S, DeAndrade MP, Unger EL, Mueller S, Oksche A, Walters AS, Li Y. Mu opioid receptor knockout mouse: Phenotypes with implications on restless legs syndrome. J Neurosci Res 2020; 98:1532-1548. [PMID: 32424971 DOI: 10.1002/jnr.24637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 04/12/2020] [Accepted: 04/17/2020] [Indexed: 12/19/2022]
Abstract
Restless legs syndrome (RLS) is characterized by an irresistible need to move the legs while sitting or lying at night with insomnia as a frequent consequence. Human RLS has been associated with abnormalities in the endogenous opioid system, the dopaminergic system, the iron regulatory system, anemia, and inflammatory and auto-immune disorders. Our previous work indicates that mice lacking all three subtypes of opioid receptors have a phenotype similar to that of human RLS. To study the roles of each opioid receptor subtype in RLS, we first used mu opioid receptor knockout (MOR KO) mice based on our earlier studies using postmortem brain and cell culture. The KO mice showed decreased hemoglobin, hematocrit, and red blood cells (RBCs), with an appearance of microcytic RBCs indicating anemia. Together with decreased serum iron and transferrin, but increased ferritin levels, the anemia is similar to that seen with chronic inflammation in humans. A decreased serum iron level was also observed in the wildtype mice treated with an MOR antagonist. Iron was increased in the liver and spleen of the KO mice. Normal circadian variations in the dopaminergic and serotoninergic systems were absent in the KO mice. The KO mice showed hyperactivity and increased thermal sensitivity in wakefulness primarily during what would normally be the sleep phase similar to that seen in human RLS. Deficits in endogenous opioid system transmission could predispose to anemia of inflammation and loss of circadian variations in dopaminergic or serotonergic systems, thereby contributing to an RLS-like phenotype.
Collapse
Affiliation(s)
- Shangru Lyu
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Mark P DeAndrade
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Erica L Unger
- Department of Biology, Lebanon Valley College, Annville, PA, USA
| | | | - Alexander Oksche
- Mundipharma Research Limited, Cambridge, UK.,Rudolf-Buchheim-Institut für Pharmakologie, University of Giessen, Giessen, Germany
| | - Arthur S Walters
- Division of Sleep Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yuqing Li
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
23
|
Li L, Zhang W, Liu Y, Liu X, Cai L, Kang J, Zhang Y, Chen W, Dong C, Zhang Y, Wang M, Wei W, Jia L. The CRL3 BTBD9 E3 ubiquitin ligase complex targets TNFAIP1 for degradation to suppress cancer cell migration. Signal Transduct Target Ther 2020; 5:42. [PMID: 32327643 PMCID: PMC7181851 DOI: 10.1038/s41392-020-0140-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 01/24/2023] Open
Abstract
Tumor necrosis factor alpha-induced protein 1 (TNFAIP1) modulates a plethora of important biological processes, including tumorigenesis and cancer cell migration. However, the regulatory mechanism of TNFAIP1 degradation remains largely elusive. In the present study, with a label-free quantitative proteomic approach, TNFAIP1 was identified as a novel ubiquitin target of the Cullin-RING E3 ubiquitin ligase (CRL) complex. More importantly, Cul3-ROC1 (CRL3), a subfamily of CRLs, was identified to specifically interact with TNFAIP1 and promote its polyubiquitination and degradation. Mechanistically, BTBD9, a specific adaptor component of CRL3 complex, was further defined to bind and promote the ubiquitination and degradation of TNFAIP1 in cells. As such, downregulation of BTBD9 promoted lung cancer cell migration by upregulating the expression of TNFAIP1, whereas TNFAIP1 deletion abrogated this effect. Finally, bioinformatics and clinical sample analyses revealed that BTBD9 was downregulated while TNFAIP1 was overexpressed in human lung cancer, which was associated with poor overall survival of patients. Taken together, these findings reveal a previously unrecognized mechanism by which the CRL3BTBD9 ubiquitin ligase controls TNFAIP1 degradation to regulate cancer cell migration.
Collapse
Affiliation(s)
- Lihui Li
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Wenjuan Zhang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Yue Liu
- Department of Laboratory Medicine, Huadong Hospital, Affiliated to Fudan University, Shanghai, China
| | - Xiaojun Liu
- Cancer Institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Lili Cai
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jihui Kang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yunjing Zhang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenlian Chen
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Changsheng Dong
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanmei Zhang
- Department of Laboratory Medicine, Huadong Hospital, Affiliated to Fudan University, Shanghai, China
| | - Mingsong Wang
- Xinhua Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
24
|
Abstract
Restless legs syndrome (RLS) is a neurological disorder characterized by an urge to move and uncomfortable sensations. Genetic studies have identified polymorphisms in up to 19 risk loci, including MEIS1 and BTBD9. Rodents deficient in either homolog show RLS-like phenotypes. However, whether MEIS1 and BTBD9 interact in vivo is unclear. Here, with C. elegans, we observed that the hyperactive egg-laying behavior caused by loss of BTBD9 homolog was counteracted by knockdown of MEIS1 homolog. This was further investigated in mutant mice with Btbd9, Meis1, or both knocked out. The double knockout mice showed an earlier onset of the motor deficit in the wheel running test but did not have increased sensitivity to the heat stimuli as observed in single KOs. Meis1 protein level was not influenced by Btbd9 deficiency, and Btbd9 transcription was not affected by Meis1 haploinsufficiency. Our results demonstrate that MEIS1 and BTBD9 do not regulate each other.
Collapse
|
25
|
Abstract
Sleep is a ubiquitous and complex behavior in both its manifestation and regulation. Despite its essential role in maintaining optimal performance, health, and well-being, the genetic mechanisms underlying sleep remain poorly understood. Here, we review the forward genetic approaches undertaken in the last four years to elucidate the genes and gene pathways affecting sleep and its regulation. Despite an increasing number of studies and mining large databases, a coherent picture on “sleep” genes has yet to emerge. We highlight the results achieved by using unbiased genetic screens mainly in humans, mice, and fruit flies with an emphasis on normal sleep and make reference to lessons learned from the circadian field.
Collapse
Affiliation(s)
- Maxime Jan
- Centre for Integrative Genomics, University of Lausanne, Lausanne, 1015, Switzerland
| | - Bruce F O'Hara
- Department of Biology, University of Kentucky, Lexington, 40515, USA
| | - Paul Franken
- Centre for Integrative Genomics, University of Lausanne, Lausanne, 1015, Switzerland
| |
Collapse
|
26
|
Yokoi F, Oleas J, Xing H, Liu Y, Dexter KM, Misztal C, Gerard M, Efimenko I, Lynch P, Villanueva M, Alsina R, Krishnaswamy S, Vaillancourt DE, Li Y. Decreased number of striatal cholinergic interneurons and motor deficits in dopamine receptor 2-expressing-cell-specific Dyt1 conditional knockout mice. Neurobiol Dis 2020; 134:104638. [PMID: 31618684 PMCID: PMC7323754 DOI: 10.1016/j.nbd.2019.104638] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 10/07/2019] [Accepted: 10/11/2019] [Indexed: 12/28/2022] Open
Abstract
DYT1 early-onset generalized torsion dystonia is a hereditary movement disorder characterized by abnormal postures and repeated movements. It is caused mainly by a heterozygous trinucleotide deletion in DYT1/TOR1A, coding for torsinA. The mutation may lead to a partial loss of torsinA function. Functional alterations of the basal ganglia circuits have been implicated in this disease. Striatal dopamine receptor 2 (D2R) levels are significantly decreased in DYT1 dystonia patients and in the animal models of DYT1 dystonia. D2R-expressing cells, such as the medium spiny neurons in the indirect pathway, striatal cholinergic interneurons, and dopaminergic neurons in the basal ganglia circuits, contribute to motor performance. However, the function of torsinA in these neurons and its contribution to the motor symptoms is not clear. Here, D2R-expressing-cell-specific Dyt1 conditional knockout (d2KO) mice were generated and in vivo effects of torsinA loss in the corresponding cells were examined. The Dyt1 d2KO mice showed significant reductions of striatal torsinA, acetylcholine metabolic enzymes, Tropomyosin receptor kinase A (TrkA), and cholinergic interneurons. The Dyt1 d2KO mice also showed significant reductions of striatal D2R dimers and tyrosine hydroxylase without significant alteration in striatal monoamine contents or the number of dopaminergic neurons in the substantia nigra. The Dyt1 d2KO male mice showed motor deficits in the accelerated rotarod and beam-walking tests without overt dystonic symptoms. Moreover, the Dyt1 d2KO male mice showed significant correlations between striatal monoamines and locomotion. The results suggest that torsinA in the D2R-expressing cells play a critical role in the development or survival of the striatal cholinergic interneurons, expression of striatal D2R mature form, and motor performance. Medical interventions to compensate for the loss of torsinA function in these neurons may affect the onset and symptoms of this disease.
Collapse
Affiliation(s)
- Fumiaki Yokoi
- Norman Fixel Institue for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, United States.
| | - Janneth Oleas
- Norman Fixel Institue for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, United States
| | - Hong Xing
- Norman Fixel Institue for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, United States
| | - Yuning Liu
- Norman Fixel Institue for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, United States
| | - Kelly M Dexter
- Norman Fixel Institue for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, United States
| | - Carly Misztal
- Norman Fixel Institue for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, United States
| | - Melinda Gerard
- Norman Fixel Institue for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, United States
| | - Iakov Efimenko
- Norman Fixel Institue for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, United States
| | - Patrick Lynch
- Norman Fixel Institue for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, United States
| | - Matthew Villanueva
- Norman Fixel Institue for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, United States
| | - Raul Alsina
- Norman Fixel Institue for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, United States
| | - Shiv Krishnaswamy
- Norman Fixel Institue for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, United States
| | - David E Vaillancourt
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611-8205, United States; J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611-8205, United States; Department of Neurology and Center for Movement Disorders and Neurorestoration, College of Medicine, University of Florida, Gainesville, FL 32611-8205, United States
| | - Yuqing Li
- Norman Fixel Institue for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, United States.
| |
Collapse
|
27
|
Lyu S, Xing H, DeAndrade MP, Perez PD, Zhang K, Liu Y, Yokoi F, Febo M, Li Y. The role of BTBD9 in the cerebral cortex and the pathogenesis of restless legs syndrome. Exp Neurol 2019; 323:113111. [PMID: 31715135 DOI: 10.1016/j.expneurol.2019.113111] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/09/2019] [Accepted: 11/07/2019] [Indexed: 01/18/2023]
Abstract
Restless legs syndrome (RLS) is a nocturnal neurological disorder affecting up to 10% of the population. It is characterized by an urge to move and uncomfortable sensations in the legs which can be relieved by movements. Mutations in BTBD9 may confer a higher risk of RLS. We developed Btbd9 knockout mice as an animal model. Functional alterations in the cerebral cortex, especially the sensorimotor cortex, have been found in RLS patients in several imaging studies. However, the role of cerebral cortex in the pathogenesis of RLS remains unclear. To explore this, we used in vivo manganese-enhanced MRI and found that the Btbd9 knockout mice had significantly increased neural activities in the primary somatosensory cortex (S1) and the rostral piriform cortex. Morphometry study revealed a decreased thickness in a part of S1 representing the hindlimb (S1HL) and M1. The electrophysiological recording showed Btbd9 knockout mice had enhanced short-term plasticity at the corticostriatal terminals to D1 medium spiny neurons (MSNs). Furthermore, we specifically knocked out Btbd9 in the cerebral cortex of mice (Btbd9 cKO). The Btbd9 cKO mice showed a rest-phase specific motor restlessness, decreased thermal sensation, and a thinner S1HL and M1. Both Btbd9 knockout and Btbd9 cKO exhibited motor deficits. Our results indicate that systematic BTBD9 deficiency leads to both functional and morphometrical changes of the cerebral cortex, and an alteration in the corticostriatal pathway to D1 MSNs. Loss of BTBD9 only in the cerebral cortex is sufficient to cause similar phenotypes as observed in the Btbd9 complete knockout mice.
Collapse
Affiliation(s)
- Shangru Lyu
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Hong Xing
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Mark P DeAndrade
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Pablo D Perez
- Department of Psychiatry, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Keer Zhang
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Yuning Liu
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Fumiaki Yokoi
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Marcelo Febo
- Department of Psychiatry, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Yuqing Li
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|