1
|
Holmberg JC, Riley VA, Sokolov AM, Mukherjee S, Feliciano DM. Protocol for electroporating and isolating murine (sub)ventricular zone cells for single-nuclei omics. STAR Protoc 2024; 5:103095. [PMID: 38823010 PMCID: PMC11179414 DOI: 10.1016/j.xpro.2024.103095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/14/2024] [Accepted: 05/08/2024] [Indexed: 06/03/2024] Open
Abstract
In vivo genetic modification of neural stem cells is necessary to model the origins and pathogenesis of neurological disorders. Electroporation is a technique that applies a transient electrical field to direct charged molecules into living cells to genetically modify the mouse brain. Here, we provide a protocol to electroporate the neural stem cells surrounding the neonatal ventricles. We describe subsequent steps to isolate and prepare nuclei from the cells and their cellular progeny for single-nuclei omics. For complete details on the use and execution of this protocol, please refer to Riley et al.1.
Collapse
Affiliation(s)
- Jennie C Holmberg
- Department of Biological Sciences, Clemson University, Clemson, SC 29631, USA.
| | - Victoria A Riley
- Department of Biological Sciences, Clemson University, Clemson, SC 29631, USA
| | - Aidan M Sokolov
- Department of Biological Sciences, Clemson University, Clemson, SC 29631, USA
| | - Sulagna Mukherjee
- Department of Biological Sciences, Clemson University, Clemson, SC 29631, USA
| | - David M Feliciano
- Department of Biological Sciences, Clemson University, Clemson, SC 29631, USA; Center for Human Genetics, Clemson University, Greenwood, SC 29646, USA.
| |
Collapse
|
2
|
Yang C, Shitamukai A, Yang S, Kawaguchi A. Advanced Techniques Using In Vivo Electroporation to Study the Molecular Mechanisms of Cerebral Development Disorders. Int J Mol Sci 2023; 24:14128. [PMID: 37762431 PMCID: PMC10531473 DOI: 10.3390/ijms241814128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
The mammalian cerebral cortex undergoes a strictly regulated developmental process. Detailed in situ visualizations, imaging of these dynamic processes, and in vivo functional gene studies significantly enhance our understanding of brain development and related disorders. This review introduces basic techniques and recent advancements in in vivo electroporation for investigating the molecular mechanisms underlying cerebral diseases. In utero electroporation (IUE) is extensively used to visualize and modify these processes, including the forced expression of pathological mutants in human diseases; thus, this method can be used to establish animal disease models. The advent of advanced techniques, such as genome editing, including de novo knockout, knock-in, epigenetic editing, and spatiotemporal gene regulation, has further expanded our list of investigative tools. These tools include the iON expression switch for the precise control of timing and copy numbers of exogenous genes and TEMPO for investigating the temporal effects of genes. We also introduce the iGONAD method, an improved genome editing via oviductal nucleic acid delivery approach, as a novel genome-editing technique that has accelerated brain development exploration. These advanced in vivo electroporation methods are expected to provide valuable insights into pathological conditions associated with human brain disorders.
Collapse
Affiliation(s)
- Chen Yang
- Human Anatomy and Histology and Embryology, School of Basic Medicine, Harbin Medical University, Harbin 150081, China
- Department of Human Morphology, Okayama University Graduate School of Medicine, Density and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Atsunori Shitamukai
- Department of Human Morphology, Okayama University Graduate School of Medicine, Density and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Shucai Yang
- Human Anatomy and Histology and Embryology, School of Basic Medicine, Harbin Medical University, Harbin 150081, China
| | - Ayano Kawaguchi
- Department of Human Morphology, Okayama University Graduate School of Medicine, Density and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
3
|
Sun Y, Che J, Zhang J. Emerging non-proinflammatory roles of microglia in healthy and diseased brains. Brain Res Bull 2023; 199:110664. [PMID: 37192719 DOI: 10.1016/j.brainresbull.2023.110664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 04/04/2023] [Accepted: 05/13/2023] [Indexed: 05/18/2023]
Abstract
Microglia, the resident myeloid cells of the central nervous system, are the first line of defense against foreign pathogens, thereby confining the extent of brain injury. However, the role of microglia is not limited to macrophage-like functions. In addition to proinflammatory response mediation, microglia are involved in neurodevelopmental remodeling and homeostatic maintenance in the absence of disease. An increasing number of studies have also elucidated microglia-mediated regulation of tumor growth and neural repair in diseased brains. Here, we review the non-proinflammatory roles of microglia, with the aim of promoting a deeper understanding of the functions of microglia in healthy and diseased brains and contributing to the development of novel therapeutics that target microglia in neurological disorders.
Collapse
Affiliation(s)
- Yinying Sun
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, 200032, Shanghai China.
| | - Ji Che
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, 200032, Shanghai China.
| | - Jun Zhang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, 200032, Shanghai China; Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai China.
| |
Collapse
|
4
|
Hattori Y, Kato D, Murayama F, Koike S, Asai H, Yamasaki A, Naito Y, Kawaguchi A, Konishi H, Prinz M, Masuda T, Wake H, Miyata T. CD206 + macrophages transventricularly infiltrate the early embryonic cerebral wall to differentiate into microglia. Cell Rep 2023; 42:112092. [PMID: 36753421 DOI: 10.1016/j.celrep.2023.112092] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/05/2022] [Accepted: 01/26/2023] [Indexed: 02/09/2023] Open
Abstract
The relationships between tissue-resident microglia and early macrophages, especially their lineage segregation outside the yolk sac, have been recently explored, providing a model in which a conversion from macrophages seeds microglia during brain development. However, spatiotemporal evidence to support such microglial seeding in situ and to explain how it occurs has not been obtained. By cell tracking via slice culture, intravital imaging, and Flash tag-mediated or genetic labeling, we find that intraventricular CD206+ macrophages, which are abundantly observed along the inner surface of the mouse cerebral wall, frequently enter the pallium at embryonic day 12. Immunofluorescence of the tracked cells show that postinfiltrative macrophages in the pallium acquire microglial properties while losing the CD206+ macrophage phenotype. We also find that intraventricular macrophages are supplied transepithelially from the roof plate. This study demonstrates that the "roof plate→ventricle→pallium" route is an essential path for microglial colonization into the embryonic mouse brain.
Collapse
Affiliation(s)
- Yuki Hattori
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| | - Daisuke Kato
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Futoshi Murayama
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Sota Koike
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hisa Asai
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Ayato Yamasaki
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yu Naito
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Department of Pathology, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo 113-8677, Japan
| | - Ayano Kawaguchi
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Department of Human Morphology, Okayama University Graduate School of Medicine, Density and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Hiroyuki Konishi
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79106 Freiburg, Germany
| | - Takahiro Masuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Hiroaki Wake
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Department of Physiological Sciences, The Graduate School for Advanced Study, Okazaki 444-0864, Japan; Division of Multicellular Circuit Dynamics, National Institute for Physiological Sciences, National Institute of Natural Sciences, Okazaki 444-8585, Japan; Center of Optical Scattering Image Science, Kobe University, Kobe 657-8501, Japan
| | - Takaki Miyata
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
5
|
Tsujikawa K, Hamanaka K, Riku Y, Hattori Y, Hara N, Iguchi Y, Ishigaki S, Hashizume A, Miyatake S, Mitsuhashi S, Miyazaki Y, Kataoka M, Jiayi L, Yasui K, Kuru S, Koike H, Kobayashi K, Sahara N, Ozaki N, Yoshida M, Kakita A, Saito Y, Iwasaki Y, Miyashita A, Iwatsubo T, Ikeuchi T, Miyata T, Sobue G, Matsumoto N, Sahashi K, Katsuno M. Actin-binding protein filamin-A drives tau aggregation and contributes to progressive supranuclear palsy pathology. SCIENCE ADVANCES 2022; 8:eabm5029. [PMID: 35613261 PMCID: PMC9132466 DOI: 10.1126/sciadv.abm5029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
While amyloid-β lies upstream of tau pathology in Alzheimer's disease, key drivers for other tauopathies, including progressive supranuclear palsy (PSP), are largely unknown. Various tau mutations are known to facilitate tau aggregation, but how the nonmutated tau, which most cases with PSP share, increases its propensity to aggregate in neurons and glial cells has remained elusive. Here, we identified genetic variations and protein abundance of filamin-A in the PSP brains without tau mutations. We provided in vivo biochemical evidence that increased filamin-A levels enhance the phosphorylation and insolubility of tau through interacting actin filaments. In addition, reduction of filamin-A corrected aberrant tau levels in the culture cells from PSP cases. Moreover, transgenic mice carrying human filamin-A recapitulated tau pathology in the neurons. Our data highlight that filamin-A promotes tau aggregation, providing a potential mechanism by which filamin-A contributes to PSP pathology.
Collapse
Affiliation(s)
- Koyo Tsujikawa
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Neurology, Japanese Red Cross Aichi Medical Center Nagoya Daini Hospital, Nagoya, Japan
- Department of Neurology , National Hospital Organization Suzuka National Hospital, Suzuka, Japan
| | - Kohei Hamanaka
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuichi Riku
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Yuki Hattori
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norikazu Hara
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yohei Iguchi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinsuke Ishigaki
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Research Division of Dementia and Neurodegenerative Disease, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsushi Hashizume
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Clinical Research Education, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Clinical Genetics Department, Yokohama City University Hospital, Yokohama, Japan
| | - Satomi Mitsuhashi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Genomic Function and Diversity, Medical Research Institute Tokyo Medical and Dental University, Tokyo, Japan
| | - Yu Miyazaki
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mayumi Kataoka
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Li Jiayi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keizo Yasui
- Department of Neurology, Japanese Red Cross Aichi Medical Center Nagoya Daini Hospital, Nagoya, Japan
| | - Satoshi Kuru
- Department of Neurology , National Hospital Organization Suzuka National Hospital, Suzuka, Japan
| | - Haruki Koike
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki, Japan
| | - Naruhiko Sahara
- Department of Functional Brain Imaging, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yuko Saito
- Department of Neurology and Neuropathology (The Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Yasushi Iwasaki
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Akinori Miyashita
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | | | - Takaki Miyata
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Gen Sobue
- Research Division of Dementia and Neurodegenerative Disease, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kentaro Sahashi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Clinical Research Education, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Corresponding author.
| |
Collapse
|
6
|
Hattori Y, Naito Y, Tsugawa Y, Nonaka S, Wake H, Nagasawa T, Kawaguchi A, Miyata T. Transient microglial absence assists postmigratory cortical neurons in proper differentiation. Nat Commun 2020; 11:1631. [PMID: 32242005 PMCID: PMC7118101 DOI: 10.1038/s41467-020-15409-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/06/2020] [Indexed: 02/07/2023] Open
Abstract
In the developing cortex, postmigratory neurons accumulate in the cortical plate (CP) to properly differentiate consolidating subtype identities. Microglia, despite their extensive surveying activity, temporarily disappear from the midembryonic CP. However, the mechanism and significance of this absence are unknown. Here, we show that microglia bidirectionally migrate via attraction by CXCL12 released from the meninges and subventricular zone and thereby exit the midembryonic CP. Upon nonphysiological excessive exposure to microglia in vivo or in vitro, young postmigratory and in vitro-grown CP neurons showed abnormal differentiation with disturbed expression of the subtype-associated transcription factors and genes implicated in functional neuronal maturation. Notably, this effect is primarily attributed to interleukin 6 and type I interferon secreted by microglia. These results suggest that “sanctuarization” from microglia in the midembryonic CP is required for neurons to appropriately fine-tune the expression of molecules needed for proper differentiation, thus securing the establishment of functional cortical circuit. Microglia temporarily disappear from the cortical plate in the midembryonic stage. This study demonstrated that microglial transient absence from the cortical plate is required for postmigratory neurons to appropriately fine-tune the expression of molecules needed for their proper differentiation.
Collapse
Affiliation(s)
- Yuki Hattori
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan. .,Japan Society for the Promotion of Science, Tokyo, Japan.
| | - Yu Naito
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Yoji Tsugawa
- Department of Aging Intervention, National Center for Geriatrics and Gerontology, Obu, Japan.,Laboratory of Molecular Biotechnology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.,Drug Discovery Research, iBody Inc., Nagoya, Japan
| | - Shigenori Nonaka
- Spatiotemporal Regulations Group, Exploratory Research Center on Life and Living Systems, Okazaki, Japan.,Laboratory for Spatiotemporal Regulations, National Institute for Basic Biology, Okazaki, Japan
| | - Hiroaki Wake
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, The Graduate School for Advanced Study, Okazaki, Japan.,Division of System Neuroscience, Graduate School of Medicine, Kobe University, Kobe, Japan.,Department of Anatomy and Molecular Cell Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Takashi Nagasawa
- Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Ayano Kawaguchi
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Takaki Miyata
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan.
| |
Collapse
|