1
|
Spectral properties of physiological mirror activity: an investigation of frequency features and common input between homologous muscles. Sci Rep 2022; 12:15965. [PMID: 36153347 PMCID: PMC9509371 DOI: 10.1038/s41598-022-20413-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/13/2022] [Indexed: 11/25/2022] Open
Abstract
During unilateral contractions, muscular activation can be detected in both active and resting limbs. In healthy populations, the latter is referred to as physiological mirror activity (pMA). The study of pMA holds implications for clinical applications as well as the understanding of bilateral motor control. However, the underlying mechanisms of pMA remain to be fully resolved. A commonality of prevailing explanatory approaches is the concept of shared neural input. With this study, we, therefore, aimed to investigate neural input in the form of multiple analyses of surface electromyography (sEMG) recordings in the frequency domain. For this purpose, 14 healthy, right-handed males aged 18–35 years were recruited. All participants performed a pinch-force task with the dominant hand in a blockwise manner. In total, 9 blocks of 5 contractions each were completed at 80% of maximum force output. Muscle activity was recorded via sEMG of the first dorsal interosseous muscle of the active and resting hand. We analyzed (1) spectral features as well as (2) intermuscular coherence (IMC). Our results demonstrate a blockwise increase in median frequency, mean frequency, and peak frequency in both hands. Frequency ratio analyses revealed a higher low-frequency component in the resting hand. Although we were able to demonstrate IMC on an individual level, results varied greatly and grand-averaged IMC failed to reach significance. Taken together, our findings imply an overlap of spectral properties between active and passive hands during repeated unilateral contractions. Combined with evidence from previous studies, this suggests a common neural origin between active and resting hands during unilateral contractions possibly resulting from a reduction in interhemispheric inhibition due to high force demands. Nevertheless, the exploratory nature of this study necessitates the classification of our results through follow-up studies.
Collapse
|
2
|
Colomer-Poveda D, Zijdewind I, Dolstra J, Márquez G, Hortobágyi T. Voluntary suppression of associated activity decreases force steadiness in the active hand. Eur J Neurosci 2021; 54:5075-5091. [PMID: 34184345 DOI: 10.1111/ejn.15371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/19/2021] [Indexed: 11/30/2022]
Abstract
Unilateral muscle contractions are often accompanied by the activation of the ipsilateral hemisphere, producing associated activity (AA) in the contralateral homologous muscles. However, the functional role of AA is not fully understood. We determined the effects of voluntary suppression of AA in the first dorsal interosseous (FDI), on force steadiness during a constant force isometric contraction of the contralateral FDI. Participants (n = 17, 25.5 years) performed two trials of isometric FDI contractions as steadily as possible. In Trial 1, they did not receive feedback or explicit instructions for suppressing the AA in the contralateral homologous FDI. In Trial 2, participants received feedback and were asked to voluntarily suppress the AA in the contralateral nontarget FDI. During both trials, corticospinal excitability and motor cortical inhibition were measured. The results show that participants effectively suppressed the AA in the nontarget contralateral FDI (-71%), which correlated with reductions in corticospinal excitability (-57%), and the suppression was also accompanied by increases in inhibition (27%) in the ipsilateral motor cortex. The suppression of AA impaired force steadiness, but the decrease in force steadiness did not correlate with the magnitude of suppression. The results show that voluntary suppression of AA decreases force steadiness in the active hand. However, due to the lack of association between suppression and decreased steadiness, we interpret these data to mean that specific elements of the ipsilateral brain activation producing AA in younger adults are neither contributing nor detrimental to unilateral motor control during a steady isometric contraction.
Collapse
Affiliation(s)
| | - Inge Zijdewind
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jurian Dolstra
- Department of Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gonzalo Márquez
- Department of Physical Education and Sport, Faculty of Sports Sciences and Physical Education, University of A Coruna, A Coruna, Spain
| | - Tibor Hortobágyi
- Department of Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Institute of Sport Sciences and Physical Education, Faculty of Sciences, University of Pécs, Pécs, Hungary.,Somogy County Kaposi Mór Teaching Hospital, Kaposvár, Hungary
| |
Collapse
|
3
|
Tisseyre J, Amarantini D, Tallet J. Behavioural and cerebral asymmetries of mirror movements are specific to rhythmic task and related to higher attentional and executive control. Behav Brain Res 2021; 412:113429. [PMID: 34175358 DOI: 10.1016/j.bbr.2021.113429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 05/31/2021] [Accepted: 06/21/2021] [Indexed: 11/28/2022]
Abstract
Mirror movements (MM) refer to the involuntary movements or contractions occurring in homologous muscles contralateral to the unilateral voluntary movements. This behavioural manifestation increases in elderly. In right-handed adults, some studies report asymmetry in MM production, with greater MM in the right dominant hand during voluntary movements of the left non-dominant hand than the opposite. However, other studies report contradictory results, suggesting that MM asymmetry could depend on the characteristics of the task. The present study investigates the behavioural asymmetry of MM and its associated cerebral correlates during a rhythmic task and a non-rhythmic task using low-force contractions (i.e., 25 % MVC). We determined the quantity and the intensity of MM using electromyography (EMG) and cerebral correlates through electroencephalography (EEG) in right-handed healthy young and middle-aged adults during unimanual rhythmic vs. non-rhythmic tasks. Overall, results revealed (1) behavioural asymmetry of MM specific to the rhythmic task and irrespective of age, (2) cerebral asymmetry of motor activations specific to the rhythmic task and irrespective of age and (3) greater attentional and executive activations in the rhythmic task compared to the non-rhythmic task. In line with our hypotheses, behavioural and cerebral motor asymmetries of MM seem to be specific to the rhythmic task. Results are discussed in terms of cognitive-motor interactions: greater attentional and executive control required in the rhythmic tasks could contribute to the increased occurrence of involuntary movements in both young and middle-aged adults.
Collapse
Affiliation(s)
- Joseph Tisseyre
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France.
| | - David Amarantini
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Jessica Tallet
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| |
Collapse
|
4
|
Carr JC, Bemben MG, Stock MS, DeFreitas JM. Ipsilateral and contralateral responses following unimanual fatigue with and without illusionary mirror visual feedback. J Neurophysiol 2021; 125:2084-2093. [PMID: 33909484 DOI: 10.1152/jn.00077.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Illusionary mirror visual feedback alters interhemispheric communication and influences cross-limb interactions. Combining forceful unimanual contractions with the mirror illusion is a convenient way to provoke robust alterations within ipsilateral motor networks. It is unknown, however, if the mirror illusion affects cross-limb fatigability. We examine this concept by comparing the ipsilateral and contralateral handgrip force and electromyographic (EMG) responses following unimanual fatigue with and without illusionary mirror visual feedback. Participants underwent three experimental sessions (mirror, no-mirror, and control), performing a unimanual fatigue protocol with and without illusionary mirror visual feedback. Maximal handgrip force and EMG activity were measured before and after each session for both hands during maximal unimanual and bimanual contractions. The associated EMG activity from the inactive forearm during unimanual contraction was also examined. The novel findings demonstrate greater relative fatigability during bimanual versus unimanual contraction following unimanual fatigue (-31.8% vs. -23.4%, P < 0.01) and the mirror illusion attenuates this difference (-30.3% vs. -26.3%, P = 0.169). The results show no evidence for a cross-over effect of fatigue with (+0.62%, -2.72%) or without (+0.26%, -2.49%) the mirror illusion during unimanual or bimanual contraction. The mirror illusion resulted in significantly lower levels of associated EMG activity in the contralateral forearm. There were no sex differences for any of the measures of fatigability. These results demonstrate that the mirror illusion influences contraction-dependent fatigue during maximal handgrip contractions. Alterations in facilitatory and inhibitory transcallosal drive likely explain these findings.NEW & NOTEWORTHY Illusionary mirror visual feedback is a promising clinical tool for motor rehabilitation, yet many features of its influence on motor output are unknown. We show that maximal bimanual force output is compromised to a greater extent than unimanual force output following unimanual fatigue, yet illusionary mirror visual feedback attenuates this difference. The mirror illusion also reduces the unintended EMG activity of the inactive, contralateral forearm during unimanual contraction.
Collapse
Affiliation(s)
- Joshua C Carr
- Department of Kinesiology, Texas Christian University, Fort Worth, Texas.,Department of Medical Education, TCU and UNTHSC School of Medicine, Fort Worth, Texas
| | - Michael G Bemben
- Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma
| | - Matt S Stock
- School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, Florida.,Neuromuscular Plasticity Laboratory, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, Florida
| | - Jason M DeFreitas
- Applied Neuromuscular Physiology Laboratory, Oklahoma State University, Stillwater, Oklahoma
| |
Collapse
|
5
|
Stevens RH, Galloway TL. Parsing Neurodynamic Information Streams to Estimate the Frequency, Magnitude and Duration of Team Uncertainty. Front Syst Neurosci 2021; 15:606823. [PMID: 33597850 PMCID: PMC7882625 DOI: 10.3389/fnsys.2021.606823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/04/2021] [Indexed: 11/30/2022] Open
Abstract
Neurodynamic organizations are information-based abstractions, expressed in bits, of the structure of long duration EEG amplitude levels. Neurodynamic information (NI, the variable of neurodynamic organization) is thought to continually accumulate as EEG amplitudes cycle through periods of persistent activation and deactivation in response to the activities and uncertainties of teamwork. Here we show that (1) Neurodynamic information levels were a better predictor of uncertainty and novice and expert behaviors than were the EEG power levels from which NI was derived. (2) Spatial and temporal parsing of team NI from experienced submarine navigation and healthcare teams showed that it was composed of discrete peaks with durations up to 20–60 s, and identified the involvement of activated delta waves when precise motor control was needed. (3) The relationship between NI and EEG power was complex varying by brain regions, EEG frequencies, and global vs. local brain interactions. The presence of an organizational system of information that parallels the amplitude of EEG rhythms is important as it provides a greatly reduced data dimension while retaining the essential system features, i.e., linkages to higher scale behaviors that span temporal and spatial scales of teamwork. In this way the combinatorial explosion of EEG rhythmic variables at micro levels become compressed into an intermediate system of information and organization which links to macro-scale team and team member behaviors. These studies provide an avenue for understanding how complex organizations arise from the dynamics of underlying micro-scale variables. The study also has practical implications for how micro-scale variables might be better represented, both conceptually and in terms of parsimony, for training machines to recognize human behaviors that span scales of teams.
Collapse
Affiliation(s)
- Ronald H Stevens
- University of California Los Angeles (UCLA) School of Medicine, Brain Research Institute, Culver City, CA, United States.,The Learning Chameleon, Inc., Culver City, CA, United States
| | | |
Collapse
|