1
|
Ross G, Huang WA, Reiling J, Zhang M, Park J, Radtke-Schuller S, Hopfinger J, Zuberer A, Frohlich F. Switching state to engage and sustain attention: Dynamic synchronization of the frontoparietal network. Prog Neurobiol 2025; 250:102777. [PMID: 40389123 DOI: 10.1016/j.pneurobio.2025.102777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 05/09/2025] [Accepted: 05/12/2025] [Indexed: 05/21/2025]
Abstract
Sustained attention (SA) is essential for maintaining focus over time, with disruptions linked to various neurological and psychiatric disorders. The oscillatory dynamics and functional connectivity in the dorsal frontoparietal network (dFPN) are crucial in SA. However, the neuronal mechanisms that control the level of SA, especially in response to heightened attentional demands, remain poorly understood. To examine the role of rhythmic synchronization in the dFPN in SA, we recorded local field potential and single unit activity in ferrets that performed the 5-Choice Serial Reaction Time Task (5-CSRTT) under both low and high attentional load. Under high attentional load, dFPN exhibited a pronounced state shift that corresponded with behavioral changes in the animal. Prior to the onset of the target stimulus, animals transitioned from a stationary state, characterized by frontal theta oscillations and dFPN theta connectivity, to an active exploration state associated with sensory processing. This shift was indexed by a suppression of inhibitory alpha oscillations and an increase in excitatory theta and gamma oscillations in parietal cortex. We further show that dFPN theta connectivity predicts performance fluctuations under high attentional load. Together, these results suggest that behavioral strategies for maintaining SA are tightly linked to neuronal state dynamics in the dFPN. Importantly, these findings identify rhythmic synchronization within the FPN as a potential neural target for novel therapeutic strategies for disrupted attention.
Collapse
Affiliation(s)
- Grace Ross
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - Wei A Huang
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - Jared Reiling
- Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, MI, USA
| | - Mengsen Zhang
- Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, MI, USA
| | - Jimin Park
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Susanne Radtke-Schuller
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joseph Hopfinger
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Agnieszka Zuberer
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Flavio Frohlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA; Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA; Department of Neurology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
2
|
Cortes N, Ladret HJ, Abbas-Farishta R, Casanova C. The pulvinar as a hub of visual processing and cortical integration. Trends Neurosci 2024; 47:120-134. [PMID: 38143202 DOI: 10.1016/j.tins.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/26/2023] [Accepted: 11/26/2023] [Indexed: 12/26/2023]
Abstract
The pulvinar nucleus of the thalamus is a crucial component of the visual system and plays significant roles in sensory processing and cognitive integration. The pulvinar's extensive connectivity with cortical regions allows for bidirectional communication, contributing to the integration of sensory information across the visual hierarchy. Recent findings underscore the pulvinar's involvement in attentional modulation, feature binding, and predictive coding. In this review, we highlight recent advances in clarifying the pulvinar's circuitry and function. We discuss the contributions of the pulvinar to signal modulation across the global cortical network and place these findings within theoretical frameworks of cortical processing, particularly the global neuronal workspace (GNW) theory and predictive coding.
Collapse
Affiliation(s)
- Nelson Cortes
- Visual Neuroscience Laboratory, School of Optometry, Université de Montréal, Montreal, QC, Canada
| | - Hugo J Ladret
- Visual Neuroscience Laboratory, School of Optometry, Université de Montréal, Montreal, QC, Canada; Institut de Neurosciences de la Timone, UMR 7289, CNRS and Aix-Marseille Université, Marseille, 13005, France
| | - Reza Abbas-Farishta
- Visual Neuroscience Laboratory, School of Optometry, Université de Montréal, Montreal, QC, Canada
| | - Christian Casanova
- Visual Neuroscience Laboratory, School of Optometry, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
3
|
Tang Y, Gervais C, Moffitt R, Nareddula S, Zimmermann M, Nadew YY, Quinn CJ, Saldarriaga V, Edens P, Chubykin AA. Visual experience induces 4-8 Hz synchrony between V1 and higher-order visual areas. Cell Rep 2023; 42:113482. [PMID: 37999977 PMCID: PMC10790627 DOI: 10.1016/j.celrep.2023.113482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/20/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Visual perceptual experience induces persistent 4-8 Hz oscillations in the mouse primary visual cortex (V1), encoding visual familiarity. Recent studies suggest that higher-order visual areas (HVAs) are functionally specialized and segregated into information streams processing distinct visual features. However, whether visual memories are processed and stored within the distinct streams is not understood. We report here that V1 and lateromedial (LM), but not V1 and anterolateral, become more phase synchronized in 4-8 Hz after the entrainment of visual stimulus that maximally induces responses in LM. Directed information analysis reveals changes in the top-down functional connectivity between V1 and HVAs. Optogenetic inactivation of LM reduces post-stimulus oscillation peaks in V1 and impairs visual discrimination behavior. Our results demonstrate that 4-8 Hz familiarity-evoked oscillations are specific for the distinct visual features and are present in the corresponding HVAs, where they may be used for the inter-areal communication with V1 during memory-related behaviors.
Collapse
Affiliation(s)
- Yu Tang
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue Autism Research Center, Purdue University, West Lafayette, IN 47907, USA
| | - Catherine Gervais
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue Autism Research Center, Purdue University, West Lafayette, IN 47907, USA
| | - Rylann Moffitt
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue Autism Research Center, Purdue University, West Lafayette, IN 47907, USA
| | - Sanghamitra Nareddula
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue Autism Research Center, Purdue University, West Lafayette, IN 47907, USA
| | - Michael Zimmermann
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue Autism Research Center, Purdue University, West Lafayette, IN 47907, USA
| | - Yididiya Y Nadew
- Department of Computer Sciences, Iowa State University, Ames, IA 50011, USA
| | | | - Violeta Saldarriaga
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue Autism Research Center, Purdue University, West Lafayette, IN 47907, USA
| | - Paige Edens
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue Autism Research Center, Purdue University, West Lafayette, IN 47907, USA
| | - Alexander A Chubykin
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue Autism Research Center, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
4
|
Bugos JA, Bidelman GM, Moreno S, Shen D, Lu J, Alain C. Music and Visual Art Training Increase Auditory-Evoked Theta Oscillations in Older Adults. Brain Sci 2022; 12:brainsci12101300. [PMID: 36291234 PMCID: PMC9599228 DOI: 10.3390/brainsci12101300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
Music training was shown to induce changes in auditory processing in older adults. However, most findings stem from correlational studies and fewer examine long-term sustainable benefits. Moreover, research shows small and variable changes in auditory event-related potential (ERP) amplitudes and/or latencies in older adults. Conventional time domain analysis methods, however, are susceptible to latency jitter in evoked responses and may miss important information of brain processing. Here, we used time-frequency analyses to examine training-related changes in auditory-evoked oscillatory activity in healthy older adults (N = 50) assigned to a music training (n = 16), visual art training (n = 17), or a no-treatment control (n = 17) group. All three groups were presented with oddball auditory paradigms with synthesized piano tones or vowels during the acquisition of high-density EEG. Neurophysiological measures were collected at three-time points: pre-training, post-training, and at a three-month follow-up. Training programs were administered for 12-weeks. Increased theta power was found pre and post- training for the music (p = 0.010) and visual art group (p = 0.010) as compared to controls (p = 0.776) and maintained at the three-month follow-up. Results showed training-related plasticity on auditory processing in aging adults. Neuroplastic changes were maintained three months post-training, suggesting music and visual art programs yield lasting benefits that might facilitate encoding, retention, and memory retrieval.
Collapse
Affiliation(s)
- Jennifer A. Bugos
- School of Music, University of South Florida, Tampa, FL 33620, USA
- Correspondence: ; Tel.: +1-352-339-4076
| | - Gavin M. Bidelman
- Department of Speech, Language, and Hearing Sciences, Indiana University, Bloomington, IN 47408, USA
| | - Sylvain Moreno
- School of Interactive Arts and Technology, Simon Fraser University, Burnaby, BC V3T OA3, Canada
- Circle Innovation, Burnaby, BC V3T OA3, Canada
| | - Dawei Shen
- Rotman Research Institute, Toronto, ON M6A 2E1, Canada
| | - Jing Lu
- MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic and Science Technology of China, Chengdu 611731, China
| | - Claude Alain
- Rotman Research Institute, Toronto, ON M6A 2E1, Canada
- Department of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada
| |
Collapse
|
5
|
Pino O, Romano G. Engagement and Arousal effects in predicting the increase of cognitive functioning following a neuromodulation program. ACTA BIO-MEDICA : ATENEI PARMENSIS 2022; 93:e2022248. [PMID: 35775751 PMCID: PMC9335441 DOI: 10.23750/abm.v93i3.13145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND AIM Research in the field of Brain-Computer Interfaces (BCIs) has increased exponentially over the past few years, demonstrating their effectiveness and application in several areas. The main purpose of the present paper was to explore the relevance of user engagement during interaction with a BCI prototype (Neuro-Upper, NU), which aimed at brainwave synchronization through audio-visual entrainment, in the improvement of cognitive performance. METHODS This paper presents findings on data collected from a sample of 18 subjects with clinical disorders who completed about 55 consecutive sessions of 30 min of audio-visual stimulation. The relationship between engagement and improvement of cognitive function (measured through the Intelligence Quotient - IQ) during NU neuromodulation was evaluated through the Index of Cognitive Engagement (ICE) measured by the Pope ratio (Beta / (Alpha + Theta), and Arousal [(High Beta + Low Beta) / (High Alpha + Low Alpha)]. RESULTS A significant correlation between engagement and IQ improvement, but no correlation between arousal and IQ improvement emerged, as expected. CONCLUSIONS Future research aiming at clarifying the role of arousal in psychological disorders and related symptoms will be essential.
Collapse
Affiliation(s)
- Olimpia Pino
- University of Parma, Department of Medicine & Surgery, Neuroscience Unit.
| | | |
Collapse
|
6
|
Assessment of Attentional Processes in Patients with Anxiety-Depressive Disorders Using Virtual Reality. J Pers Med 2021; 11:jpm11121341. [PMID: 34945813 PMCID: PMC8705703 DOI: 10.3390/jpm11121341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 11/30/2022] Open
Abstract
To characterize the attention deficits in one-hundred-fifteen participants, comprising two types of clinical profiles (affective and anxiety disorder), through a test of continuous VR execution. Method: Three tests (i.e., Nesplora Aquarium, BDI, and STAI) were used to obtain a standardized measure of attention, as well as the existence and severity of depression and anxiety, respectively. Results: Significant differences (CI = 95%) were found between the control group and the group with depression, in variables related to the speed of visual processing (p = 0.008) in the absence of distractors (p = 0.041) and during the first dual execution task (p = 0.011). For scores related to sustained attention, patients with depression and those with anxiety did not differ from controls. Our results suggest attentional deficits in both clinical populations when performing a continuous performance test that involved the participation of the central executive system of working memory.
Collapse
|
7
|
Cortes N, Abbas Farishta R, Ladret HJ, Casanova C. Corticothalamic Projections Gate Alpha Rhythms in the Pulvinar. Front Cell Neurosci 2021; 15:787170. [PMID: 34938163 PMCID: PMC8685293 DOI: 10.3389/fncel.2021.787170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/04/2021] [Indexed: 11/30/2022] Open
Abstract
Two types of corticothalamic (CT) terminals reach the pulvinar nucleus of the thalamus, and their distribution varies according to the hierarchical level of the cortical area they originate from. While type 2 terminals are more abundant at lower hierarchical levels, terminals from higher cortical areas mostly exhibit type 1 axons. Such terminals also evoke different excitatory postsynaptic potential dynamic profiles, presenting facilitation for type 1 and depression for type 2. As the pulvinar is involved in the oscillatory regulation between intercortical areas, fundamental questions about the role of these different terminal types in the neuronal communication throughout the cortical hierarchy are yielded. Our theoretical results support that the co-action of the two types of terminals produces different oscillatory rhythms in pulvinar neurons. More precisely, terminal types 1 and 2 produce alpha-band oscillations at a specific range of connectivity weights. Such oscillatory activity is generated by an unstable transition of the balanced state network's properties that it is found between the quiescent state and the stable asynchronous spike response state. While CT projections from areas 17 and 21a are arranged in the model as the empirical proportion of terminal types 1 and 2, the actions of these two cortical connections are antagonistic. As area 17 generates low-band oscillatory activity, cortical area 21a shifts pulvinar responses to stable asynchronous spiking activity and vice versa when area 17 produces an asynchronous state. To further investigate such oscillatory effects through corticothalamo-cortical projections, the transthalamic pathway, we created a cortical feedforward network of two cortical areas, 17 and 21a, with CT connections to a pulvinar-like network with two cortico-recipient compartments. With this model, the transthalamic pathway propagates alpha waves from the pulvinar to area 21a. This oscillatory transfer ceases when reciprocal connections from area 21a reach the pulvinar, closing the CT loop. Taken together, results of our model suggest that the pulvinar shows a bi-stable spiking activity, oscillatory or regular asynchronous spiking, whose responses are gated by the different activation of cortico-pulvinar projections from lower to higher-order areas such as areas 17 and 21a.
Collapse
Affiliation(s)
- Nelson Cortes
- Laboratoire des Neurosciences de la Vision, École d’optométrie, Université de Montréal, Montreal, QC, Canada
| | - Reza Abbas Farishta
- Laboratoire des Neurosciences de la Vision, École d’optométrie, Université de Montréal, Montreal, QC, Canada
| | - Hugo J. Ladret
- Laboratoire des Neurosciences de la Vision, École d’optométrie, Université de Montréal, Montreal, QC, Canada
- Institut de Neurosciences de la Timone, UMR 7289, CNRS and Aix-Marseille Université, Marseille, France
| | - Christian Casanova
- Laboratoire des Neurosciences de la Vision, École d’optométrie, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
8
|
Mease RA, Gonzalez AJ. Corticothalamic Pathways From Layer 5: Emerging Roles in Computation and Pathology. Front Neural Circuits 2021; 15:730211. [PMID: 34566583 PMCID: PMC8458899 DOI: 10.3389/fncir.2021.730211] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/10/2021] [Indexed: 11/29/2022] Open
Abstract
Large portions of the thalamus receive strong driving input from cortical layer 5 (L5) neurons but the role of this important pathway in cortical and thalamic computations is not well understood. L5-recipient "higher-order" thalamic regions participate in cortico-thalamo-cortical (CTC) circuits that are increasingly recognized to be (1) anatomically and functionally distinct from better-studied "first-order" CTC networks, and (2) integral to cortical activity related to learning and perception. Additionally, studies are beginning to elucidate the clinical relevance of these networks, as dysfunction across these pathways have been implicated in several pathological states. In this review, we highlight recent advances in understanding L5 CTC networks across sensory modalities and brain regions, particularly studies leveraging cell-type-specific tools that allow precise experimental access to L5 CTC circuits. We aim to provide a focused and accessible summary of the anatomical, physiological, and computational properties of L5-originating CTC networks, and outline their underappreciated contribution in pathology. We particularly seek to connect single-neuron and synaptic properties to network (dys)function and emerging theories of cortical computation, and highlight information processing in L5 CTC networks as a promising focus for computational studies.
Collapse
Affiliation(s)
- Rebecca A. Mease
- Institute of Physiology and Pathophysiology, Medical Biophysics, Heidelberg University, Heidelberg, Germany
| | | |
Collapse
|
9
|
Baumel Y, Cohen D. State-dependent entrainment of cerebellar nuclear neurons to the local field potential during voluntary movements. J Neurophysiol 2021; 126:112-122. [PMID: 34107223 DOI: 10.1152/jn.00551.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Understanding the relationship between the local field potential (LFP) and single neurons is essential if we are to understand network dynamics and the entrainment of neuronal activity. Here, we investigated the interaction between the LFP and single neurons recorded in the rat cerebellar nuclei (CN), which are part of the sensorimotor network, in freely moving rats. During movement, the LFP displayed persistent oscillations in the theta band frequency, whereas CN neurons displayed intermittent oscillations in the same frequency band contingent on the instantaneous LFP power; the neurons oscillated primarily when the concurrent LFP power was either high or low. Quantification of the relative instantaneous frequency and phase locking showed that CN neurons exhibited phase locked rhythmic activity at a frequency similar to that of the LFP or at a shifted frequency during high and low LFP power, respectively. We suggest that this nonlinear interaction between cerebellar neurons and the LFP power, which occurs solely during movement, contributes to the shaping of cerebellar output patterns.NEW & NOTEWORTHY We studied the interaction between single neurons and the LFP in the cerebellar nuclei of freely moving rats. We show that during movement, the neurons oscillated in the theta frequency band contingent on the concurrent LFP oscillation power in the same band; the neurons oscillated primarily when the LFP power was either high or low. We are the first to demonstrate a nonlinear, state-dependent entrainment of single neurons to the LFP.
Collapse
Affiliation(s)
- Yuval Baumel
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Dana Cohen
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
10
|
Steullet P. Thalamus-related anomalies as candidate mechanism-based biomarkers for psychosis. Schizophr Res 2020; 226:147-157. [PMID: 31147286 DOI: 10.1016/j.schres.2019.05.027] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 02/08/2023]
Abstract
Identification of reliable biomarkers of prognosis in subjects with high risk to psychosis is an essential step to improve care and treatment of this population of help-seekers. Longitudinal studies highlight some clinical criteria, cognitive deficits, patterns of gray matter alterations and profiles of blood metabolites that provide some levels of prediction regarding the conversion to psychosis. Further effort is warranted to validate these results and implement these types of approaches in clinical settings. Such biomarkers may however fall short in entangling the biological mechanisms underlying the disease progression, an essential step in the development of novel therapies. Circuit-based approaches, which map on well-identified cerebral functions, could meet these needs. Converging evidence indicates that thalamus abnormalities are central to schizophrenia pathophysiology, contributing to clinical symptoms, cognitive and sensory deficits. This review highlights the various thalamus-related anomalies reported in individuals with genetic risks and in the different phases of the disorder, from prodromal to chronic stages. Several anomalies are potent endophenotypes, while others exist in clinical high-risk subjects and worsen in those who convert to full psychosis. Aberrant functional coupling between thalamus and cortex, low glutamate content and readouts from resting EEG carry predictive values for transition to psychosis or functional outcome. In this context, thalamus-related anomalies represent a valuable entry point to tackle circuit-based alterations associated with the emergence of psychosis. This review also proposes that longitudinal surveys of neuroimaging, EEG readouts associated with circuits encompassing the mediodorsal, pulvinar in high-risk individuals could unveil biological mechanisms contributing to this psychiatric disorder.
Collapse
Affiliation(s)
- Pascal Steullet
- Center of Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois, Site de Cery, 1008 Prilly-Lausanne, Switzerland.
| |
Collapse
|
11
|
Functional Dissociation of θ Oscillations in the Frontal and Visual Cortices and Their Long-Range Network during Sustained Attention. eNeuro 2019; 6:ENEURO.0248-19.2019. [PMID: 31685677 PMCID: PMC6860984 DOI: 10.1523/eneuro.0248-19.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/21/2019] [Accepted: 10/28/2019] [Indexed: 12/17/2022] Open
Abstract
θ-Band (4–12 Hz) activities in the frontal cortex have been thought to be a key mechanism of sustained attention and goal-related behaviors, forming a phase-coherent network with task-related sensory cortices for integrated neuronal ensembles. However, recent visual task studies found that selective attention attenuates stimulus-related θ power in the visual cortex, suggesting a functional dissociation of cortical θ oscillations. To investigate this contradictory behavior of cortical θ, a visual Go/No-Go task was performed with electroencephalogram (EEG) recording in C57BL/6J mice. During the No-Go period, transient θ oscillations were observed in both the frontal and visual cortices, but θ oscillations of the two areas were prominent in different trial epochs. By separating trial epochs based on subjects’ short-term performance, we found that frontal θ was prominent in good-performance epochs, while visual θ was prominent in bad-performance epochs, exhibiting a functional dissociation of cortical θ rhythms. Furthermore, the two θ rhythms also showed a heterogeneous pattern of phase-amplitude coupling with fast oscillations, reflecting their distinct architecture in underlying neuronal circuitry. Interestingly, in good-performance epochs, where visual θ was relatively weak, stronger fronto-visual long-range synchrony and shorter posterior-to-anterior temporal delay were found. These findings highlight a previously overlooked aspect of long-range synchrony between distinct oscillatory entities in the cerebral cortex and provide empirical evidence of a functional dissociation of cortical θ rhythms.
Collapse
|
12
|
Lee J, Chang SY. Altered Primary Motor Cortex Neuronal Activity in a Rat Model of Harmaline-Induced Tremor During Thalamic Deep Brain Stimulation. Front Cell Neurosci 2019; 13:448. [PMID: 31680866 PMCID: PMC6803555 DOI: 10.3389/fncel.2019.00448] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/19/2019] [Indexed: 01/30/2023] Open
Abstract
Although deep brain stimulation (DBS) is a clinically effective surgical treatment for essential tremor (ET), and its neurophysiological mechanisms are not fully understood. As the motor thalamus is the most popular DBS target for ET, and it is known that the thalamic nucleus plays a key role in relaying information about the external environment to the cerebral cortex, it is important to investigate mechanisms of thalamic DBS in the context of the cerebello-thalamo-cortical neuronal network. To examine this, we measured single-unit neuronal activities in the resting state in M1 during VL thalamic DBS in harmaline-induced tremor rats and analyzed neuronal activity patterns in the thalamo-cortical circuit. Four activity patterns - including oscillatory burst, oscillatory non-burst, irregular burst, and irregular non-burst - were identified by harmaline administration; and those firing patterns were differentially affected by VL thalamic DBS, which seems to drive pathologic cortical signals to signals in normal status. As specific neuronal firing patterns like oscillation or burst are considered important for information processing, our results suggest that VL thalamic DBS may modify pathophysiologic relay information rather than simply inhibit the information transmission.
Collapse
Affiliation(s)
- Jihyun Lee
- Laboratory of Brain & Cognitive Sciences for Convergence Medicine, College of Medicine, Hallym University, Anyang, South Korea
| | - Su-Youne Chang
- Department of Neurologic Surgery, Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
13
|
Helfrich RF, Breska A, Knight RT. Neural entrainment and network resonance in support of top-down guided attention. Curr Opin Psychol 2019; 29:82-89. [PMID: 30690228 DOI: 10.1016/j.copsyc.2018.12.016] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 01/17/2023]
Abstract
Which neural mechanisms provide the functional basis of top-down guided cognitive control? Here, we review recent evidence that suggest that the neural basis of attention is inherently rhythmic. In particular, we discuss two physical properties of self-sustained networks, namely entrainment and resonance, and how these shape the timescale of attentional control. Several recent findings revealed theta-band (3-8 Hz) dynamics in top-down guided behavior. These reports were paralleled by intracranial recordings, which implicated theta oscillations in the organization of functional attention networks. We discuss how the intrinsic network architecture shapes covert attentional sampling as well as overt behavior. Taken together, we posit that theta rhythmicity is an inherent feature of the attention network in support of top-down guided goal-directed behavior.
Collapse
Affiliation(s)
- Randolph F Helfrich
- Helen Wills Neuroscience Institute, UC Berkeley, 132 Barker Hall, Berkeley, CA 94720, USA.
| | - Assaf Breska
- Helen Wills Neuroscience Institute, UC Berkeley, 132 Barker Hall, Berkeley, CA 94720, USA; Dept. of Psychology, UC Berkeley, 2121 Berkeley Way, Berkeley, CA 94720, USA
| | - Robert T Knight
- Helen Wills Neuroscience Institute, UC Berkeley, 132 Barker Hall, Berkeley, CA 94720, USA; Dept. of Psychology, UC Berkeley, 2121 Berkeley Way, Berkeley, CA 94720, USA
| |
Collapse
|