1
|
Zhu M, Li H, Zheng Y, Yang J. Targeting TOP2B as a vulnerability in aging and aging-related diseases. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167044. [PMID: 38296114 DOI: 10.1016/j.bbadis.2024.167044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/17/2023] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
The ongoing trend of rapid aging of the global population has unavoidably resulted in an increase in aging-related diseases. There is an immense amount of interest in the scientific community for the identification of molecular targets that may effectively mitigate the process of aging and aging-related diseases. The enzyme Topoisomerase IIβ (TOP2B) plays a crucial role in resolving the topological challenges that occur during DNA-related processes. It is believed that the disruption of TOP2B function contributes to the aging of cells and tissues, as well as the development of age-related diseases. Consequently, targeting TOP2B appears to be a promising approach for interventions aimed at mitigating the effects of aging. This review focuses on recent advancements in the understanding of the role of TOP2B in the processing of aging and aging-related disorders, thus providing a novel avenue for the development of anti-aging strategies.
Collapse
Affiliation(s)
- Man Zhu
- Laboratory of Aging Research, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hao Li
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, USA.
| | - Yi Zheng
- Laboratory of Aging Research, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Jing Yang
- Laboratory of Aging Research, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
2
|
Jeong J, Lee JH, Carcamo CC, Parker MW, Berger JM. DNA-Stimulated Liquid-Liquid phase separation by eukaryotic topoisomerase ii modulates catalytic function. eLife 2022; 11:e81786. [PMID: 36342377 PMCID: PMC9674351 DOI: 10.7554/elife.81786] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022] Open
Abstract
Type II topoisomerases modulate chromosome supercoiling, condensation, and catenation by moving one double-stranded DNA segment through a transient break in a second duplex. How DNA strands are chosen and selectively passed to yield appropriate topological outcomes - for example, decatenation vs. catenation - is poorly understood. Here, we show that at physiological enzyme concentrations, eukaryotic type IIA topoisomerases (topo IIs) readily coalesce into condensed bodies. DNA stimulates condensation and fluidizes these assemblies to impart liquid-like behavior. Condensation induces both budding yeast and human topo IIs to switch from DNA unlinking to active DNA catenation, and depends on an unstructured C-terminal region, the loss of which leads to high levels of knotting and reduced catenation. Our findings establish that local protein concentration and phase separation can regulate how topo II creates or dissolves DNA links, behaviors that can account for the varied roles of the enzyme in supporting transcription, replication, and chromosome compaction.
Collapse
Affiliation(s)
- Joshua Jeong
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Joyce H Lee
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Claudia C Carcamo
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Matthew W Parker
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
3
|
Khazeem MM, Casement JW, Schlossmacher G, Kenneth NS, Sumbung NK, Chan JYT, McGow JF, Cowell IG, Austin CA. TOP2B Is Required to Maintain the Adrenergic Neural Phenotype and for ATRA-Induced Differentiation of SH-SY5Y Neuroblastoma Cells. Mol Neurobiol 2022; 59:5987-6008. [PMID: 35831557 PMCID: PMC9463316 DOI: 10.1007/s12035-022-02949-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 06/23/2022] [Indexed: 12/13/2022]
Abstract
The neuroblastoma cell line SH-SY5Y is widely used to study retinoic acid (RA)-induced gene expression and differentiation and as a tool to study neurodegenerative disorders. SH-SY5Y cells predominantly exhibit adrenergic neuronal properties, but they can also exist in an epigenetically interconvertible alternative state with more mesenchymal characteristics; as a result, these cells can be used to study gene regulation circuitry controlling neuroblastoma phenotype. Using a combination of pharmacological inhibition and targeted gene inactivation, we have probed the requirement for DNA topoisomerase IIB (TOP2B) in RA-induced gene expression and differentiation and in the balance between adrenergic neuronal versus mesenchymal transcription programmes. We found that expression of many, but not all genes that are rapidly induced by ATRA in SH-SY5Y cells was significantly reduced in the TOP2B null cells; these genes include BCL2, CYP26A1, CRABP2, and NTRK2. Comparing gene expression profiles in wild-type versus TOP2B null cells, we found that long genes and genes expressed at a high level in WT SH-SY5Y cells were disproportionately dependent on TOP2B. Notably, TOP2B null SH-SY5Y cells upregulated mesenchymal markers vimentin (VIM) and fibronectin (FN1) and components of the NOTCH signalling pathway. Enrichment analysis and comparison with the transcription profiles of other neuroblastoma-derived cell lines supported the conclusion that TOP2B is required to fully maintain the adrenergic neural-like transcriptional signature of SH-SY5Y cells and to suppress the alternative mesenchymal epithelial-like epigenetic state.
Collapse
Affiliation(s)
- Mushtaq M Khazeem
- The Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,National Center of Hematology, Mustansiriyah University, Baghdad, Iraq
| | - John W Casement
- Bioinformatics Support Unit, The Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - George Schlossmacher
- The Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Niall S Kenneth
- The Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Nielda K Sumbung
- The Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Janice Yuen Tung Chan
- The Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Jade F McGow
- The Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Ian G Cowell
- The Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| | - Caroline A Austin
- The Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
4
|
Pommier Y, Nussenzweig A, Takeda S, Austin C. Human topoisomerases and their roles in genome stability and organization. Nat Rev Mol Cell Biol 2022; 23:407-427. [PMID: 35228717 PMCID: PMC8883456 DOI: 10.1038/s41580-022-00452-3] [Citation(s) in RCA: 230] [Impact Index Per Article: 76.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2022] [Indexed: 12/15/2022]
Abstract
Human topoisomerases comprise a family of six enzymes: two type IB (TOP1 and mitochondrial TOP1 (TOP1MT), two type IIA (TOP2A and TOP2B) and two type IA (TOP3A and TOP3B) topoisomerases. In this Review, we discuss their biochemistry and their roles in transcription, DNA replication and chromatin remodelling, and highlight the recent progress made in understanding TOP3A and TOP3B. Because of recent advances in elucidating the high-order organization of the genome through chromatin loops and topologically associating domains (TADs), we integrate the functions of topoisomerases with genome organization. We also discuss the physiological and pathological formation of irreversible topoisomerase cleavage complexes (TOPccs) as they generate topoisomerase DNA–protein crosslinks (TOP-DPCs) coupled with DNA breaks. We discuss the expanding number of redundant pathways that repair TOP-DPCs, and the defects in those pathways, which are increasingly recognized as source of genomic damage leading to neurological diseases and cancer. Topoisomerases have essential roles in transcription, DNA replication, chromatin remodelling and, as recently revealed, 3D genome organization. However, topoisomerases also generate DNA–protein crosslinks coupled with DNA breaks, which are increasingly recognized as a source of disease-causing genomic damage.
Collapse
|
5
|
Rebeillard F, De Gois S, Pietrancosta N, Mai TH, Lai-Kuen R, Kieffer BL, Giros B, Massart R, Darmon M, Diaz J. The Orphan GPCR Receptor, GPR88, Interacts with Nuclear Protein Partners in the Cerebral Cortex. Cereb Cortex 2021; 32:479-489. [PMID: 34247243 DOI: 10.1093/cercor/bhab224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
GPR88 is an orphan G-protein-coupled receptor (GPCR) highly expressed in striatal medium spiny neurons (MSN), also found in cortical neurons at low level. In MSN, GPR88 has a canonical GPCR plasma membrane/cytoplasmic expression, whereas in cortical neurons, we previously reported an atypical intranuclear localization. Molecular size analysis suggests that GPR88, expressed in plasma membrane of MSN or in nuclear compartment of cortical neurons, corresponds to the full-length protein. By transfection of cortical neurons, we showed that GPR88 fluorescent chimeras exhibit a nuclear localization. This localization is contingent on the third intracytoplasmic loop and C-terminus domains, even though these domains do not contain any known nuclear localization signals (NLS). Using yeast two-hybrid screening with these domains, we identified the nuclear proteins ATRX, TOP2B, and BAZ2B, all involved in chromatin remodeling, as potential protein partners of GPR88. We also validated the interaction of GPR88 with these nuclear proteins by proximity ligation assay on cortical neurons in culture and coimmunoprecipitation experiments on cortical extracts from GPR88 wild-type (WT) and knockout (KO) mice. The identification of GPR88 subcellular partners may provide novel functional insights for nonclassical modes of GPCR action that could be relevant in the maturating process of neocortical neurons.
Collapse
Affiliation(s)
- Florian Rebeillard
- Cellular Biology and Molecular Pharmacology of Central Receptors, Institut de Psychiatrie et de Neurosciences de Paris, Inserm U1266, Paris 75014, France.,Université de Paris, Sorbonne Paris Cité, Paris 75005, France
| | | | - Nicolas Pietrancosta
- Laboratoire des Biomolécules, LBM, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris 75005, France.,Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS) INSERM, CNRS, Sorbonne Université, Paris 75005, France
| | - Thi Hue Mai
- Cellular Biology and Molecular Pharmacology of Central Receptors, Institut de Psychiatrie et de Neurosciences de Paris, Inserm U1266, Paris 75014, France
| | - René Lai-Kuen
- Cellular and Molecular Imaging Facility, US25 Inserm-3612 CNRS, Faculté de Pharmacie de Paris, Université de Paris, Paris, France
| | | | - Bruno Giros
- Université de Paris, INCC UMR 8002, CNRS, Paris F-75006, France.,Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, Quebec H4H 1R3, Canada
| | - Renaud Massart
- Inserm U955 Interventional NeuroPsychology Team, Ecole Normale Supérieure, Paris 75005, France
| | - Michèle Darmon
- Cellular Biology and Molecular Pharmacology of Central Receptors, Institut de Psychiatrie et de Neurosciences de Paris, Inserm U1266, Paris 75014, France
| | - Jorge Diaz
- Cellular Biology and Molecular Pharmacology of Central Receptors, Institut de Psychiatrie et de Neurosciences de Paris, Inserm U1266, Paris 75014, France.,Université de Paris, INCC UMR 8002, CNRS, Paris F-75006, France
| |
Collapse
|
6
|
Hiraide T, Watanabe S, Matsubayashi T, Yanagi K, Nakashima M, Ogata T, Saitsu H. A de novo TOP2B variant associated with global developmental delay and autism spectrum disorder. Mol Genet Genomic Med 2020; 8:e1145. [PMID: 31953910 PMCID: PMC7057084 DOI: 10.1002/mgg3.1145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/07/2020] [Indexed: 01/01/2023] Open
Abstract
Background TOP2B encodes type II topoisomerase beta, which controls topological changes during DNA transcription. TOP2B is expressed in the developing nervous system and is involved in brain development and neural differentiation. Recently, a de novo missense TOP2B variant (c.187C>T) has been identified in an individual with neurodevelopmental disorder (NDD). However, the association between TOP2B variants and NDDs remains uncertain. Methods Trio‐based whole‐exome sequencing was performed on a 7‐year‐old girl, presenting muscle hypotonia, stereotypic hand movements, epilepsy, global developmental delay, and autism spectrum disorder. Brain magnetic resonance images were normal. She was unable to walk independently and spoke no meaningful words. Results We found a de novo variant in TOP2B (NM_001330700.1:c.187C>T, p.(His63Tyr)), which is identical to the previous case. The clinical features of the two individuals with the c.187C>T variant overlapped. Conclusion Our study supports the finding that TOP2B variants may cause NDDs.
Collapse
Affiliation(s)
- Takuya Hiraide
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Seiji Watanabe
- Department of Pediatrics, Izu Medical and Welfare Center, Izunokuni, Japan
| | - Tomoko Matsubayashi
- Department of Pediatric Neurology, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Kumiko Yanagi
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Mitsuko Nakashima
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
7
|
Vagnozzi AN, Garg K, Dewitz C, Moore MT, Cregg JM, Jeannotte L, Zampieri N, Landmesser LT, Philippidou P. Phrenic-specific transcriptional programs shape respiratory motor output. eLife 2020; 9:52859. [PMID: 31944180 PMCID: PMC7007220 DOI: 10.7554/elife.52859] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/14/2020] [Indexed: 12/30/2022] Open
Abstract
The precise pattern of motor neuron (MN) activation is essential for the execution of motor actions; however, the molecular mechanisms that give rise to specific patterns of MN activity are largely unknown. Phrenic MNs integrate multiple inputs to mediate inspiratory activity during breathing and are constrained to fire in a pattern that drives efficient diaphragm contraction. We show that Hox5 transcription factors shape phrenic MN output by connecting phrenic MNs to inhibitory premotor neurons. Hox5 genes establish phrenic MN organization and dendritic topography through the regulation of phrenic-specific cell adhesion programs. In the absence of Hox5 genes, phrenic MN firing becomes asynchronous and erratic due to loss of phrenic MN inhibition. Strikingly, mice lacking Hox5 genes in MNs exhibit abnormal respiratory behavior throughout their lifetime. Our findings support a model where MN-intrinsic transcriptional programs shape the pattern of motor output by orchestrating distinct aspects of MN connectivity. In mammals, air is moved in and out of the lungs by a sheet of muscle called the diaphragm. When this muscle contracts air gets drawn into the lungs and as the muscle relaxes this pushes air back out. Movement of the diaphragm is controlled by a group of nerve cells called motor neurons which are part of the phrenic motor column (or PMC for short) that sits within the spinal cord. The neurons within this column work together with nerve cells in the brain to coordinate the speed and duration of each breath. For the lungs to develop normally, the neurons that control how the diaphragm contracts need to start working before birth. During development, motor neurons in the PMC cluster together and connect with other nerve cells involved in breathing. But, despite their essential role, it is not yet clear how neurons in the PMC develop and join up with other nerve cells. Now, Vagnozzi et al. show that a set of genes which make the transcription factor Hox5 control the position and organization of motor neurons in the PMC. Transcription factors work as genetic switches, turning sets of genes on and off. Vagnozzi et al. showed that removing the Hox5 transcription factors from motor neurons in the PMC changed their activity and disordered their connections with other breathing-related nerve cells. Hox5 transcription factors regulate the production of proteins called cadherins which join together neighboring cells. Therefore, motor neurons lacking Hox5 were unable to make enough cadherins to securely stick together and connect with other nerve cells. Further experiments showed that removing the genes that code for Hox5 caused mice to have breathing difficulties in the first two weeks after birth. Although half of these mutant mice were eventually able to breathe normally, the other half died within a week. These breathing defects are reminiscent of the symptoms observed in sudden infant death syndrome (also known as SIDS). Abnormalities in breathing occur in many other diseases, including sleep apnea, muscular dystrophy and amyotrophic lateral sclerosis (ALS). A better understanding of how the connections between nerve cells involved in breathing are formed, and the role of Hox5 and cadherins, could lead to improved treatment options for these diseases.
Collapse
Affiliation(s)
- Alicia N Vagnozzi
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, United States
| | - Kiran Garg
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, United States
| | - Carola Dewitz
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Matthew T Moore
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, United States
| | - Jared M Cregg
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, United States
| | - Lucie Jeannotte
- Centre de Recherche sur le Cancer de l'Université Laval, Centre de recherche du CHU de Québec-Université Laval (Oncology), Québec, Canada
| | - Niccolò Zampieri
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Lynn T Landmesser
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, United States
| | - Polyxeni Philippidou
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, United States
| |
Collapse
|
8
|
Cave C, Sockanathan S. Transcription factor mechanisms guiding motor neuron differentiation and diversification. Curr Opin Neurobiol 2018; 53:1-7. [PMID: 29694927 DOI: 10.1016/j.conb.2018.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 10/17/2022]
Abstract
The embryonic generation of motor neurons is a complex process involving progenitor patterning, fate specification, differentiation, and maturation. Throughout this progression, the differential expression of transcription factors has served as our road map for the eventual cell fate of nascent motor neurons. Recent findings from in vivo and in vitro models of motor neuron development have expanded our understanding of how transcription factors govern motor neuron identity and their individual regulatory mechanisms. With the advent of next generation sequencing approaches, researchers now have unprecedented access to the gene regulatory dynamics involved in motor neuron development and are uncovering new connections linking neurodevelopment and neurodegenerative disease.
Collapse
Affiliation(s)
- Clinton Cave
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725N Wolfe Street, PCTB 1004, Baltimore, MD 21205, United States
| | - Shanthini Sockanathan
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725N Wolfe Street, PCTB 1004, Baltimore, MD 21205, United States.
| |
Collapse
|