1
|
Yasmin F, Marwick KFM, Hunter DW, Nawaz S, Marshall GF, Booker SA, Hardingham GE, Kind PC, Wyllie DJA. Absence of GluN2A in hippocampal CA1 neurons leads to altered dendritic structure and reduced frequency of miniature excitatory synaptic events. Brain Commun 2025; 7:fcaf124. [PMID: 40226380 PMCID: PMC11986202 DOI: 10.1093/braincomms/fcaf124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 02/04/2025] [Accepted: 03/25/2025] [Indexed: 04/15/2025] Open
Abstract
GluN2A is a NMDA receptor subunit postulated as important for learning and memory. In humans, heterozygous loss of function variants in the gene encoding it (GRIN2A) increase the risk of epilepsy, intellectual disability and schizophrenia. Haploinsufficient mouse models show electrophysiological abnormalities and thus to improve and widen understanding of the pathogenesis of GRIN2A-associated disorders in humans, this study aimed to assess the impact of Grin2a absence and haploinsufficiency on core neuronal and synaptic properties in genetically modified rats. Electrophysiological whole-cell current- and voltage-clamp recordings were made from CA1 pyramidal neurons in acute hippocampal slices from wild-type and Grin2a heterozygous (Grin2a+/- ) and homozygous (Grin2a-/- ) knock out rats aged postnatal day 27-34. While reduced levels or absence of GluN2A did not affect neuronal excitability or intrinsic membrane properties in both Grin2a+/- and Grin2a-/- rats, we found a reduced frequency of miniature excitatory post synaptic currents and a reduced density of proximal dendrites suggestive of a reduced number of excitatory synapses. Recordings from CA1 neurons in slices prepared from Grin2a+/- and Grin2a-/- rats revealed there was a reduced ratio of the current mediated by NMDA receptors compared to AMPA receptors, while in Grin2a-/- recordings, there was a slowing of the decay time-constant of the NMDA receptor-mediated excitatory postsynaptic currents. Moreover, neither summation of sub-threshold excitatory postsynaptic potentials nor summation of supra-threshold excitatory postsynaptic potentials to initiate action potential firing in CA1 pyramidal neurons indicated any dependence on GluN2A. We conclude that reduced levels of GluN2A alters the kinetics of NMDA receptor-mediated synaptic events and dendritic structure of CA1 neurons, but do not affect several other core neuronal functions. These relatively subtle changes are consistent with the largely intact neural functioning of the majority of humans carrying GRIN2A loss of function variants. Further research could explore whether the changes in synaptic properties we observed contribute to alterations in higher level circuit dynamics and computation, which may manifest as disorders of cognition and excitability in humans.
Collapse
Affiliation(s)
- Farhana Yasmin
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK
| | - Katie F M Marwick
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK
| | - Daniel W Hunter
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK
| | - Sarfaraz Nawaz
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK
| | - Grant F Marshall
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK
| | - Sam A Booker
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK
| | - Giles E Hardingham
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK
- United Kingdom Dementia Research Institute at The University of Edinburgh, Edinburgh Medical School, Edinburgh EH16 4SB, UK
| | - Peter C Kind
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK
| | - David J A Wyllie
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK
| |
Collapse
|
2
|
Zhang X, Wu M, Cheng L, Cao W, Liu Z, Yang SB, Kim MS. Fast-spiking parvalbumin-positive interneurons: new perspectives of treatment and future challenges in dementia. Mol Psychiatry 2025; 30:693-704. [PMID: 39695324 DOI: 10.1038/s41380-024-02756-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/26/2024] [Accepted: 09/12/2024] [Indexed: 12/20/2024]
Abstract
Central nervous system parvalbumin-positive interneurons (PV-INs) are crucial and highly vulnerable to various stressors. They also play a significant role in the pathological processes of many neuropsychiatric diseases, especially those associated with cognitive impairment, such as Alzheimer's disease (AD), vascular dementia (VD), Lewy body dementia, and schizophrenia. Although accumulating evidence suggests that the loss of PV-INs is associated with memory impairment in dementia, the precise molecular mechanisms remain elusive. In this review, we delve into the current evidence regarding the physiological properties of PV-INs and summarize the latest insights into how their loss contributes to cognitive decline in dementia, particularly focusing on AD and VD. Additionally, we discuss the influence of PV-INs on brain development, the variations in their characteristics across different types of dementia, and how their loss affects the etiology and progression of cognitive impairments. Ultimately, our goal is to provide a comprehensive overview of PV-INs and to consider their potential as novel therapeutic targets in dementia treatment.
Collapse
Affiliation(s)
- Xiaorong Zhang
- Department of Pathology, Affiliated Hospital of Jiujiang University, Jiujiang, China
- Jiujiang Clinical Precision Clinical Medicine Research Center, Jiujiang, Jiangxi, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Moxin Wu
- Jiujiang Clinical Precision Clinical Medicine Research Center, Jiujiang, Jiangxi, China
| | - Lin Cheng
- Jiujiang Clinical Precision Clinical Medicine Research Center, Jiujiang, Jiangxi, China
| | - Wa Cao
- Jiujiang Clinical Precision Clinical Medicine Research Center, Jiujiang, Jiangxi, China
| | - Ziying Liu
- Jiujiang Clinical Precision Clinical Medicine Research Center, Jiujiang, Jiangxi, China
| | - Seung-Bum Yang
- Department of Paramedicine, Wonkwang Health Science University, Iksan, Republic of Korea
| | - Min-Sun Kim
- Center for Nitric Oxide Metabolite, Wonkwang University, Iksan, Republic of Korea.
| |
Collapse
|
3
|
Camp CR, Banke TG, Xing H, Yu K, Perszyk RE, Epplin MP, Akins NS, Zhang J, Benke TA, Yuan H, Liotta DC, Traynelis SF. Selective Enhancement of the Interneuron Network and Gamma-Band Power via GluN2C/GluN2D NMDA Receptor Potentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.05.622179. [PMID: 39574703 PMCID: PMC11580944 DOI: 10.1101/2024.11.05.622179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
N-methyl-D-aspartate receptors (NMDARs) comprise a family of ligand-gated ionotropic glutamate receptors that mediate a slow, calcium-permeable component to excitatory neurotransmission. The GluN2D subunit is enriched in GABAergic inhibitory interneurons in cortical tissue. Diminished levels of GABAergic inhibition contribute to multiple neuropsychiatric conditions, suggesting that enhancing inhibition may have therapeutic utility, thus making GluN2D modulation an attractive drug target. Here, we describe the actions of a GluN2C/GluN2D-selective positive allosteric modulator (PAM), (+)-EU1180-453, which has improved drug-like properties such as increased aqueous solubility compared to the first-in-class GluN2C/GluN2D-selective prototypical PAM (+)-CIQ. (+)-EU1180-453 doubles the NMDAR response at lower concentrations (< 10 μM) compared to (+)-CIQ, and produces a greater degree of maximal potentiation at 30 μM. Using in vitro electrophysiological recordings, we show that (+)-EU1180-453 potentiates triheteromeric NMDARs containing at least one GluN2C or GluN2D subunit, and is active at both exon5-lacking and exon5-containing GluN1 splice variants. (+)-EU1180-453 increases glutamate efficacy for GluN2C/GluN2D-containing NMDARs by both prolonging the deactivation time and potentiating the peak response amplitude. We show that (+)-EU1180-453 selectively increases synaptic NMDAR-mediated charge transfer onto P11-15 CA1 stratum radiatum hippocampal interneurons, but is without effect on CA1 pyramidal cells. This increased charge transfer enhances inhibitory output from GABAergic interneurons onto CA1 pyramidal cells in a GluN2D-dependent manner. (+)-EU1180-453 also shifts excitatory-to-inhibitory coupling towards increased inhibition and produces enhanced gamma band power from carbachol-induced field potential oscillations in hippocampal slices. Thus, (+)-EU1180-453 can enhance overall circuit inhibition, which could prove therapeutically useful for the treatment of anxiety, depression, schizophrenia, and other neuropsychiatric disorders. Significance Statement Interneuron dysfunction and diminished GABAergic inhibition in neocortical and hippocampal circuits remains a prominent molecular hypothesis for neuropsychiatric diseases including anxiety, depression, and schizophrenia. Pharmacological agents that boost GABA receptor function have shown utility in various forms of depression and treating symptoms of schizophrenia. Cortical GABAergic interneurons, unlike their excitatory pyramidal cell counterparts, are enriched for the GluN2D subunit of the NMDA receptor. Thus, GluN2D subunit-selective modulation could be a useful therapeutic tool to enhance local inhibition, improving the prognosis for neuropsychiatric diseases for which interneuron dysfunction is prominent and causal to circuit aberration.
Collapse
Affiliation(s)
- Chad R. Camp
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Tue G. Banke
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hao Xing
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kuai Yu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Riley E. Perszyk
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Matthew P. Epplin
- Department of Chemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nicholas S. Akins
- Department of Chemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jing Zhang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Tim A. Benke
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Hongjie Yuan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Dennis C. Liotta
- Department of Chemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Stephen F. Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
4
|
Reyes-Lizaola S, Luna-Zarate U, Tendilla-Beltrán H, Morales-Medina JC, Flores G. Structural and biochemical alterations in dendritic spines as key mechanisms for severe mental illnesses. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110876. [PMID: 37863171 DOI: 10.1016/j.pnpbp.2023.110876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/22/2023]
Abstract
Severe mental illnesses (SMI) collectively affect approximately 20% of the global population, as estimated by the World Health Organization (WHO). Despite having diverse etiologies, clinical symptoms, and pharmacotherapies, these diseases share a common pathophysiological characteristic: the misconnection of brain areas involved in reality perception, executive control, and cognition, including the corticolimbic system. Dendritic spines play a crucial role in excitatory neurotransmission within the central nervous system. These small structures exhibit remarkable plasticity, regulated by factors such as neurotransmitter tone, neurotrophic factors, and innate immunity-related molecules, and other mechanisms - all of which are associated with the pathophysiology of SMI. However, studying dendritic spine mechanisms in both healthy and pathological conditions in patients is fraught with technical limitations. This is where animal models related to these diseases become indispensable. They have played a pivotal role in elucidating the significance of dendritic spines in SMI. In this review, the information regarding the potential role of dendritic spines in SMI was summarized, drawing from clinical and animal model reports. Also, the implications of targeting dendritic spine-related molecules for SMI treatment were explored. Specifically, our focus is on major depressive disorder and the neurodevelopmental disorders schizophrenia and autism spectrum disorder. Abundant clinical and basic research has studied the functional and structural plasticity of dendritic spines in these diseases, along with potential pharmacological targets that modulate the dynamics of these structures. These targets may be associated with the clinical efficacy of the pharmacotherapy.
Collapse
Affiliation(s)
- Sebastian Reyes-Lizaola
- Departamento de Ciencias de la Salud, Licenciatura en Medicina, Universidad Popular del Estado de Puebla (UPAEP), Puebla, Mexico
| | - Ulises Luna-Zarate
- Departamento de Ciencias de la Salud, Licenciatura en Medicina, Universidad de las Américas Puebla (UDLAP), Puebla, Mexico
| | - Hiram Tendilla-Beltrán
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Julio César Morales-Medina
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Gonzalo Flores
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico.
| |
Collapse
|
5
|
Yi F, Traynelis SF, Hansen KB. Selective Cell-Surface Expression of Triheteromeric NMDA Receptors. Methods Mol Biol 2024; 2799:55-77. [PMID: 38727903 PMCID: PMC11311247 DOI: 10.1007/978-1-0716-3830-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
NMDA-type ionotropic glutamate receptors are critically involved in many brain functions and are implicated in a variety of brain disorders. Seven NMDA receptor subunits exist (GluN1, GluN2A-D, and GluN3A-B) that assemble into tetrameric receptor subtypes with distinct functional properties and physiological roles. The majority NMDA receptors are composed of two GluN1 and two GluN2 subunits, which can assemble into four diheteromeric receptors subtypes composed of GluN1 and one type of GluN2 subunit (e.g., GluN1/2A), and presumably also six triheteromeric receptor subtypes composed of GluN1 and two different GluN2 subunits (e.g., GluN1/2A/2B). Furthermore, the GluN1 subunit exists as eight splice variants (e.g., GluN1-1a and GluN1-1b isoforms), and two different GluN1 isoforms can co-assemble to also form triheteromeric NMDA receptors (e.g., GluN1-1a/1b/2A). Here, we describe a method to faithfully express triheteromeric NMDA receptors in heterologous expression systems by controlling the identity of two of the four subunits. This method overcomes the problem that co-expression of three different NMDA receptor subunits generates two distinct diheteromeric receptor subtypes as well as one triheteromeric receptor subtype, thereby confounding studies that require a homogenous population of triheteromeric NMDA receptors. The method has been applied to selectively express recombinant triheteromeric GluN1/2A/2B, GluN1/2A/2C, GluN1/2B/2D, GluN1-1a/GluN1-1b/2A, GluN1-1a/GluN1-1b/2B receptors with negligible co-expression of the respective diheteromeric receptor subtypes. This method therefore enables quantitative evaluation of functional and pharmacological properties of triheteromeric NMDA receptors, some of which are abundant NMDA receptor subtypes in the adult brain.
Collapse
Affiliation(s)
- Feng Yi
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
| | - Stephen F Traynelis
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | - Kasper B Hansen
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT, USA.
| |
Collapse
|
6
|
Camp CR, Vlachos A, Klöckner C, Krey I, Banke TG, Shariatzadeh N, Ruggiero SM, Galer P, Park KL, Caccavano A, Kimmel S, Yuan X, Yuan H, Helbig I, Benke TA, Lemke JR, Pelkey KA, McBain CJ, Traynelis SF. Loss of Grin2a causes a transient delay in the electrophysiological maturation of hippocampal parvalbumin interneurons. Commun Biol 2023; 6:952. [PMID: 37723282 PMCID: PMC10507040 DOI: 10.1038/s42003-023-05298-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/29/2023] [Indexed: 09/20/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are ligand-gated ionotropic glutamate receptors that mediate a calcium-permeable component to fast excitatory neurotransmission. NMDARs are heterotetrameric assemblies of two obligate GluN1 subunits (GRIN1) and two GluN2 subunits (GRIN2A-GRIN2D). Sequencing data shows that 43% (297/679) of all currently known NMDAR disease-associated genetic variants are within the GRIN2A gene, which encodes the GluN2A subunit. Here, we show that unlike missense GRIN2A variants, individuals affected with disease-associated null GRIN2A variants demonstrate a transient period of seizure susceptibility that begins during infancy and diminishes near adolescence. We show increased circuit excitability and CA1 pyramidal cell output in juvenile mice of both Grin2a+/- and Grin2a-/- mice. These alterations in somatic spiking are not due to global upregulation of most Grin genes (including Grin2b). Deeper evaluation of the developing CA1 circuit led us to uncover age- and Grin2a gene dosing-dependent transient delays in the electrophysiological maturation programs of parvalbumin (PV) interneurons. We report that Grin2a+/+ mice reach PV cell electrophysiological maturation between the neonatal and juvenile neurodevelopmental timepoints, with Grin2a+/- mice not reaching PV cell electrophysiological maturation until preadolescence, and Grin2a-/- mice not reaching PV cell electrophysiological maturation until adulthood. Overall, these data may represent a molecular mechanism describing the transient nature of seizure susceptibility in disease-associated null GRIN2A patients.
Collapse
Affiliation(s)
- Chad R Camp
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Anna Vlachos
- Section on Cellular and Synaptic Physiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chiara Klöckner
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Ilona Krey
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Tue G Banke
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Nima Shariatzadeh
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Sarah M Ruggiero
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- The Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Peter Galer
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19146, USA
| | - Kristen L Park
- University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, 80045, USA
| | - Adam Caccavano
- Section on Cellular and Synaptic Physiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sarah Kimmel
- Section on Cellular and Synaptic Physiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xiaoqing Yuan
- Section on Cellular and Synaptic Physiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Hongjie Yuan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Functional Evaluation of Rare Variants, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Ingo Helbig
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- The Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19146, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Tim A Benke
- University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, 80045, USA
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig, Germany
| | - Kenneth A Pelkey
- Section on Cellular and Synaptic Physiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chris J McBain
- Section on Cellular and Synaptic Physiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Center for Functional Evaluation of Rare Variants, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
7
|
Wyroślak M, Dobrzański G, Mozrzymas JW. Bidirectional plasticity of GABAergic tonic inhibition in hippocampal somatostatin- and parvalbumin-containing interneurons. Front Cell Neurosci 2023; 17:1193383. [PMID: 37448697 PMCID: PMC10336215 DOI: 10.3389/fncel.2023.1193383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/05/2023] [Indexed: 07/15/2023] Open
Abstract
GABAA receptors present in extrasynaptic areas mediate tonic inhibition in hippocampal neurons regulating the performance of neural networks. In this study, we investigated the effect of NMDA-induced plasticity on tonic inhibition in somatostatin- and parvalbumin-containing interneurons. Using pharmacological methods and transgenic mice (SST-Cre/PV-Cre x Ai14), we induced the plasticity of GABAergic transmission in somatostatin- and parvalbumin-containing interneurons by a brief (3 min) application of NMDA. In the whole-cell patch-clamp configuration, we measured tonic currents enhanced by specific agonists (etomidate or gaboxadol). Furthermore, in both the control and NMDA-treated groups, we examined to what extent these changes depend on the regulation of distinct subtypes of GABAA receptors. Tonic conductance in the somatostatin-containing (SST+) interneurons is enhanced after NMDA application, and the observed effect is associated with an increased content of α5-containing GABAARs. Both fast-spiking and non-fast-spiking parvalbumin-positive (PV+) cells showed a reduction of tonic inhibition after plasticity induction. This effect was accompanied in both PV+ interneuron types by a strongly reduced proportion of δ-subunit-containing GABAARs and a relatively small increase in currents mediated by α5-containing GABAARs. Both somatostatin- and parvalbumin-containing interneurons show cell type-dependent and opposite sign plasticity of tonic inhibition. The underlying mechanisms depend on the cell-specific balance of plastic changes in the contents of α5 and δ subunit-containing GABAARs.
Collapse
Affiliation(s)
- Marcin Wyroślak
- Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland
| | | | - Jerzy W. Mozrzymas
- Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
8
|
Xie L, McDaniel MJ, Perszyk RE, Kim S, Cappuccio G, Shapiro KA, Muñoz-Cabello B, Sanchez-Lara PA, Grand K, Zhang J, Nocilla KA, Sheikh R, Armengol L, Romano R, Pierson TM, Yuan H, Myers SJ, Traynelis SF. Functional effects of disease-associated variants reveal that the S1-M1 linker of the NMDA receptor critically controls channel opening. Cell Mol Life Sci 2023; 80:110. [PMID: 37000222 PMCID: PMC10641759 DOI: 10.1007/s00018-023-04705-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 04/01/2023]
Abstract
The short pre-M1 helix within the S1-M1 linker (also referred to as the pre-M1 linker) between the agonist-binding domain (ABD, S1) and the M1 transmembrane helix of the NMDA receptor (NMDAR) is devoid of missense variants within the healthy population but is a locus for de novo pathogenic variants associated with neurological disorders. Several de novo variants within this helix have been identified in patients presenting early in life with intellectual disability, developmental delay, and/or epilepsy. In this study, we evaluated functional properties for twenty variants within the pre-M1 linker in GRIN1, GRIN2A, and GRIN2B genes, including six novel missense variants. The effects of pre-M1 variants on agonist potency, sensitivity to endogenous allosteric modulators, response time course, channel open probability, and surface expression were assessed. Our data indicated that virtually all of the variants evaluated altered channel function, and multiple variants had profound functional consequences, which may contribute to the neurological conditions in the patients harboring the variants in this region. These data strongly suggest that the residues within the pre-M1 helix play a key role in channel gating and are highly intolerant to genetic variation.
Collapse
Affiliation(s)
- Lingling Xie
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Road, NE, Atlanta, GA, 30322, USA
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Miranda J McDaniel
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Road, NE, Atlanta, GA, 30322, USA
| | - Riley E Perszyk
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Road, NE, Atlanta, GA, 30322, USA
| | - Sukhan Kim
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Road, NE, Atlanta, GA, 30322, USA
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Gerarda Cappuccio
- Section of Pediatrics, Department of Translational Medicine, Federico II University, Via Pansini 5, 80131, Naples, Italy
- Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Kevin A Shapiro
- Department of Neurology, University of California, UCSF Memory and Aging Center, Sandler Neurosciences Center, San Francisco, CA, USA
| | | | - Pedro A Sanchez-Lara
- Division of Medical Genetics, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Katheryn Grand
- Division of Medical Genetics, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Jing Zhang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Road, NE, Atlanta, GA, 30322, USA
| | - Kelsey A Nocilla
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Road, NE, Atlanta, GA, 30322, USA
| | - Rehan Sheikh
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Road, NE, Atlanta, GA, 30322, USA
| | - Lluis Armengol
- Quantitative Genomic Medicine Laboratories, SL (qGenomics), Barcelona, Spain
| | - Roberta Romano
- Section of Pediatrics, Department of Translational Medicine, Federico II University, Via Pansini 5, 80131, Naples, Italy
| | - Tyler Mark Pierson
- Division of Pediatric Neurology, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, USA
- Center for the Undiagnosed Patient, Cedars-Sinai Medical Center, Los Angeles, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Hongjie Yuan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Road, NE, Atlanta, GA, 30322, USA
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Scott J Myers
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Road, NE, Atlanta, GA, 30322, USA
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Road, NE, Atlanta, GA, 30322, USA.
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Emory Neurodegenerative Disease Center, Atlanta, GA, 30322, USA.
| |
Collapse
|
9
|
Doyle MA, Brown JA, Winder DG. GluN2D expression is regulated by restraint stress and supports active stress coping bouts. Neuropharmacology 2023; 225:109377. [PMID: 36528117 PMCID: PMC9839594 DOI: 10.1016/j.neuropharm.2022.109377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/22/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022]
Abstract
Stress coping strategies represent critical responses to environmental challenges, and active coping has been linked to stress resilience in humans. Understanding the neuroadaptations that support these strategies may provide insights into adaptive and maladaptive stress responses. NMDA receptors (NMDARs) play key roles in neuroadaptation, and NMDARs have been specifically implicated in stress responsiveness. Constitutive knockout mice have been used to implicate the GluN2D NMDAR subunit in regulation of stress-sensitive and affective behavior, but the brain regions in which GluN2D expression changes drive these effects remain unknown. Here we report that following an acute restraint stressor, GluN2D subunit expression is specifically decreased in the bed nucleus of the stria terminalis (BNST), a key region involved in stress processing, in male but not female mice, with no differences found in the thalamus or ventral hippocampus in either sex. Rodents engage in active struggling events during restraint stress that may represent active coping strategies to stress. Thus, we assessed active coping bouts during acute and chronic restraint stress sessions in GluN2D knockout mice. During the first restraint session, GluN2D knockout mice exhibited a pronounced decrease in struggling bouts during restraint stress relative to wild-type littermates, consistent with a role of GluN2D in active coping responses to stress. Repeated, daily restraint sessions revealed a sex-specific role of GluN2D expression on certain aspects of active coping behaviors, with male GluN2D KO mice exhibiting a decrease in total coping bouts measured across five sessions. However, BNST-specific knockdown of GluN2D in male mice did not alter active coping bouts, suggesting either a multi-synaptic role of GluN2D and/or a developmental role of GluN2D in this behavior. Altogether, these data are consistent with a growing literature suggesting that exploration of GluN2D control of stress circuit actions may lead to a novel therapeutic target to consider for stress-related mood disorders.
Collapse
Affiliation(s)
- Marie A Doyle
- Department of Molecular Physiology and Biophysics, Vanderbilt University, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, USA
| | - Jordan A Brown
- Vanderbilt Center for Addiction Research, Vanderbilt University, USA; Department of Pharmacology, Vanderbilt University, USA
| | - Danny G Winder
- Department of Molecular Physiology and Biophysics, Vanderbilt University, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, USA; Department of Pharmacology, Vanderbilt University, USA; Department of Psychiatry, Vanderbilt University Medical Center, USA.
| |
Collapse
|
10
|
Staruschenko A, Ma R, Palygin O, Dryer SE. Ion channels and channelopathies in glomeruli. Physiol Rev 2023; 103:787-854. [PMID: 36007181 PMCID: PMC9662803 DOI: 10.1152/physrev.00013.2022] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 11/22/2022] Open
Abstract
An essential step in renal function entails the formation of an ultrafiltrate that is delivered to the renal tubules for subsequent processing. This process, known as glomerular filtration, is controlled by intrinsic regulatory systems and by paracrine, neuronal, and endocrine signals that converge onto glomerular cells. In addition, the characteristics of glomerular fluid flow, such as the glomerular filtration rate and the glomerular filtration fraction, play an important role in determining blood flow to the rest of the kidney. Consequently, disease processes that initially affect glomeruli are the most likely to lead to end-stage kidney failure. The cells that comprise the glomerular filter, especially podocytes and mesangial cells, express many different types of ion channels that regulate intrinsic aspects of cell function and cellular responses to the local environment, such as changes in glomerular capillary pressure. Dysregulation of glomerular ion channels, such as changes in TRPC6, can lead to devastating glomerular diseases, and a number of channels, including TRPC6, TRPC5, and various ionotropic receptors, are promising targets for drug development. This review discusses glomerular structure and glomerular disease processes. It also describes the types of plasma membrane ion channels that have been identified in glomerular cells, the physiological and pathophysiological contexts in which they operate, and the pathways by which they are regulated and dysregulated. The contributions of these channels to glomerular disease processes, such as focal segmental glomerulosclerosis (FSGS) and diabetic nephropathy, as well as the development of drugs that target these channels are also discussed.
Collapse
Affiliation(s)
- Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
- Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida
- James A. Haley Veterans Hospital, Tampa, Florida
| | - Rong Ma
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Stuart E Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
- Department of Biomedical Sciences, Tilman J. Fertitta Family College of Medicine, University of Houston, Houston, Texas
| |
Collapse
|
11
|
Zhu M, Perkins MG, Lennertz R, Abdulzahir A, Pearce RA. Dose-dependent suppression of hippocampal contextual memory formation, place cells, and spatial engrams by the NMDAR antagonist (R)-CPP. Neuropharmacology 2022; 218:109215. [PMID: 35977628 PMCID: PMC9673467 DOI: 10.1016/j.neuropharm.2022.109215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022]
Abstract
We recently reported that the competitive NMDAR antagonist (R,S)-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP) does not suppress NMDAR-mediated field EPSPs (fEPSPNMDA) or long-term potentiation (LTP) in vitro at concentrations that block contextual conditioning in vivo. Here we tested one possible explanation for the mismatch - that the hippocampus is relatively resistant to CPP compared to other brain structures engaged in contextual fear conditioning. Using the context pre-exposure facilitation effect (CPFE) paradigm to separate the hippocampal and extra-hippocampal components of contextual learning, we found that the active enantiomer (R)-CPP suppressed the hippocampal component with an IC50 of 3.1 mg/kg, a dose that produces brain concentrations below those required to block fEPSPNMDA or LTP. Moreover, using in-vivo calcium imaging of place cells and spatial engrams to directly assess hippocampal spatial coding, we found that (R)-CPP dose-dependently reduced the development of place cells and interfered with the formation of stable spatial engrams when it was administered prior to exposing mice to a novel context. Both effects occurred at doses that interfered with freezing to context in CPFE experiments. We conclude that (R)-CPP blocks memory formation by interfering with hippocampal function, but that it does so by modulating NMDARs at sites that are not engaged in vitro in the same manner that they are in vivo - perhaps through interneuron circuits that do not contribute to fEPSPs and are not required to elicit LTP using standard induction protocols in vitro, but are essential for successful mnemonic function in vivo.
Collapse
Affiliation(s)
- Mengwen Zhu
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| | - Mark G Perkins
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| | - Richard Lennertz
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| | - Alifayaz Abdulzahir
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| | - Robert A Pearce
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
12
|
Alfaro‐Ruiz R, Aguado C, Martín‐Belmonte A, Moreno‐Martínez AE, Merchán‐Rubira J, Hernández F, Ávila J, Fukazawa Y, Luján R. Different modes of synaptic and extrasynaptic NMDA receptor alteration in the hippocampus of P301S tau transgenic mice. Brain Pathol 2022; 33:e13115. [PMID: 36058615 PMCID: PMC9836375 DOI: 10.1111/bpa.13115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/12/2022] [Indexed: 01/21/2023] Open
Abstract
N-methyl-d-aspartate receptors (NMDARs) are pivotal players in the synaptic transmission and synaptic plasticity underlying learning and memory. Accordingly, dysfunction of NMDARs has been implicated in the pathophysiology of Alzheimer disease (AD). Here, we used histoblot and sodium dodecylsulphate-digested freeze-fracture replica labelling (SDS-FRL) techniques to investigate the expression and subcellular localisation of GluN1, the obligatory subunit of NMDARs, in the hippocampus of P301S mice. Histoblots showed that GluN1 expression was significantly reduced in the hippocampus of P301S mice in a laminar-specific manner at 10 months of age but was unaltered at 3 months. Using the SDS-FRL technique, excitatory synapses and extrasynaptic sites on spines of pyramidal cells and interneuron dendrites were analysed throughout all dendritic layers in the CA1 field. Our ultrastructural approach revealed a high density of GluN1 in synaptic sites and a substantially lower density at extrasynaptic sites. Labelling density for GluN1 in excitatory synapses established on spines was significantly reduced in P301S mice, compared with age-matched wild-type mice, in the stratum oriens (so), stratum radiatum (sr) and stratum lacunosum-moleculare (slm). Density for synaptic GluN1 on interneuron dendrites was significantly reduced in P301S mice in the so and sr but unaltered in the slm. Labelling density for GluN1 at extrasynaptic sites showed no significant differences in pyramidal cells, and only increased density in the interneuron dendrites of the sr. This differential alteration of synaptic versus extrasynaptic NMDARs supports the notion that the progressive accumulation of phospho-tau is associated with changes in NMDARs, in the absence of amyloid-β pathology, and may be involved in the mechanisms causing abnormal network activity of the hippocampal circuit.
Collapse
Affiliation(s)
- Rocío Alfaro‐Ruiz
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de MedicinaUniversidad Castilla‐La Mancha, Campus BiosanitarioAlbaceteSpain
| | - Carolina Aguado
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de MedicinaUniversidad Castilla‐La Mancha, Campus BiosanitarioAlbaceteSpain
| | - Alejandro Martín‐Belmonte
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de MedicinaUniversidad Castilla‐La Mancha, Campus BiosanitarioAlbaceteSpain,Present address:
Pharmacology Unit, Department of Pathology and Experimental TherapeuticsFaculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona08907 L'Hospitalet de LlobregatSpain
| | - Ana Esther Moreno‐Martínez
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de MedicinaUniversidad Castilla‐La Mancha, Campus BiosanitarioAlbaceteSpain
| | | | - Félix Hernández
- Centro de Biología Molecular Severo OchoaCSIC‐UAMMadridSpain,Centro de Investigación Biomédica en Red sobre Enfermedades NeurodegenerativasISCIIIMadridSpain
| | - Jesús Ávila
- Centro de Biología Molecular Severo OchoaCSIC‐UAMMadridSpain,Centro de Investigación Biomédica en Red sobre Enfermedades NeurodegenerativasISCIIIMadridSpain
| | - Yugo Fukazawa
- Division of Brain Structure and Function, Faculty of Medical ScienceUniversity of FukuiFukuiJapan,Life Science Innovation CenterUniversity of FukuiFukuiJapan
| | - Rafael Luján
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de MedicinaUniversidad Castilla‐La Mancha, Campus BiosanitarioAlbaceteSpain
| |
Collapse
|
13
|
Elmasri M, Hunter DW, Winchester G, Bates EE, Aziz W, Van Der Does DM, Karachaliou E, Sakimura K, Penn AC. Common synaptic phenotypes arising from diverse mutations in the human NMDA receptor subunit GluN2A. Commun Biol 2022; 5:174. [PMID: 35228668 PMCID: PMC8885697 DOI: 10.1038/s42003-022-03115-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/31/2022] [Indexed: 02/06/2023] Open
Abstract
Dominant mutations in the human gene GRIN2A, encoding NMDA receptor (NMDAR) subunit GluN2A, make a significant and growing contribution to the catalogue of published single-gene epilepsies. Understanding the disease mechanism in these epilepsy patients is complicated by the surprising diversity of effects that the mutations have on NMDARs. Here we have examined the cell-autonomous effect of five GluN2A mutations, 3 loss-of-function and 2 gain-of-function, on evoked NMDAR-mediated synaptic currents (NMDA-EPSCs) in CA1 pyramidal neurons in cultured hippocampal slices. Despite the mutants differing in their functional incorporation at synapses, prolonged NMDA-EPSC current decays (with only marginal changes in charge transfer) were a common effect for both gain- and loss-of-function mutants. Modelling NMDA-EPSCs with mutant properties in a CA1 neuron revealed that the effect of GRIN2A mutations can lead to abnormal temporal integration and spine calcium dynamics during trains of concerted synaptic activity. Investigations beyond establishing the molecular defects of GluN2A mutants are much needed to understand their impact on synaptic transmission. The cell-autonomous effect of five severe loss- or gain-of-function GluN2A (NMDA receptor) mutations is assessed on evoked NMDAR-mediated synaptic currents in CA1 pyramidal neurons in cultured mouse hippocampal slices. Data and modelling suggest that mutant-like NMDA-EPSCs can lead to abnormal temporal summation and spine calcium dynamics.
Collapse
Affiliation(s)
- Marwa Elmasri
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Daniel William Hunter
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Giles Winchester
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Ella Emine Bates
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Wajeeha Aziz
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | | | - Eirini Karachaliou
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Andrew Charles Penn
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK.
| |
Collapse
|
14
|
Watkins JC, Evans RH, Bayés À, Booker SA, Gibb A, Mabb AM, Mayer M, Mellor JR, Molnár E, Niu L, Ortega A, Pankratov Y, Ramos-Vicente D, Rodríguez-Campuzano A, Rodríguez-Moreno A, Wang LY, Wang YT, Wollmuth L, Wyllie DJA, Zhuo M, Frenguelli BG. 21st century excitatory amino acid research: A Q & A with Jeff Watkins and Dick Evans. Neuropharmacology 2021; 198:108743. [PMID: 34363811 DOI: 10.1016/j.neuropharm.2021.108743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In 1981 Jeff Watkins and Dick Evans wrote what was to become a seminal review on excitatory amino acids (EAAs) and their receptors (Watkins and Evans, 1981). Bringing together various lines of evidence dating back over several decades on: the distribution in the nervous system of putative amino acid neurotransmitters; enzymes involved in their production and metabolism; the uptake and release of amino acids; binding of EAAs to membranes; the pharmacological action of endogenous excitatory amino acids and their synthetic analogues, and notably the actions of antagonists for the excitations caused by both nerve stimulation and exogenous agonists, often using pharmacological tools developed by Jeff and his colleagues, they provided a compelling account for EAAs, especially l-glutamate, as a bona fide neurotransmitter in the nervous system. The rest, as they say, is history, but far from being consigned to history, EAA research is in rude health well into the 21st Century as this series of Special Issues of Neuropharmacology exemplifies. With EAAs and their receptors flourishing across a wide range of disciplines and clinical conditions, we enter into a dialogue with two of the most prominent and influential figures in the early days of EAA research: Jeff Watkins and Dick Evans.
Collapse
Affiliation(s)
| | | | - Àlex Bayés
- Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau, Barcelona, Spain and Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sam A Booker
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Alasdair Gibb
- Research Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Angela M Mabb
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Mark Mayer
- Bldg 35A, Room 3D-904, 35A Convent Drive, NINDS, NIH, Bethesda, MD, 20892, USA
| | - Jack R Mellor
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Elek Molnár
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Li Niu
- Chemistry Department, University at Albany, SUNY, 1400 Washington Ave, Albany, NY, 12222, USA
| | - Arturo Ortega
- Department of Toxicology, Cinvestav, Mexico City, Mexico
| | - Yuriy Pankratov
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - David Ramos-Vicente
- Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau, Barcelona, Spain and Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | | - Lu-Yang Wang
- Program in Neurosciences & Mental Health, SickKids Research Institute and Department of Physiology, University of Toronto, 555 University Ave, Toronto, Ontario, M5G 1X8, Canada
| | - Yu Tian Wang
- Department of Medicine, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
| | - Lonnie Wollmuth
- Depts. of Neurobiology & Behavior and Biochemistry & Cell Biology, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - David J A Wyllie
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Min Zhuo
- Institute of Brain Research, Qingdao International Academician Park, Qingdao, 266000, China
| | | |
Collapse
|