1
|
Wang P, Han L, Wang L, Tao Q, Guo Z, Luo T, He Y, Xu Z, Yu J, Liu Y, Wu Z, Xu B, Jin B, Wei Y, Yang Y, Cheng M, Jiang Y, Tian C, Zheng H, Fan Z, Jiang P, Gao Y, Wu J, Wang S, Sun B, Fang Z, Lei J, Luo B, Wen H, Peng G, Tang Y, Yang T, Chen J, Zhuang Z, Su X, Pan C, Zhu K, Shen Y, Liu S, Bao A, Yao J, Wang J, Xu X, Li XM, Liu L, Duan S, Zhang J. Molecular pathways and diagnosis in spatially resolved Alzheimer's hippocampal atlas. Neuron 2025:S0896-6273(25)00174-6. [PMID: 40168986 DOI: 10.1016/j.neuron.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 12/19/2024] [Accepted: 03/03/2025] [Indexed: 04/03/2025]
Abstract
We employed Stereo-seq combined with single-nucleus RNA sequencing (snRNA-seq) to investigate the gene expression and cell composition changes in human hippocampus with or without Alzheimer's disease (AD). The transcriptomic map, with single-cell precision, unveiled AD-associated alterations with spatial specificity, which include the following: (1) elevated synapse pruning gene expression in the fimbria of AD, with disrupted microglia-astrocyte communication likely leading to disorganized synaptic structure; (2) a globally increased energy generation in the cornu ammonis (CA) region, with varying degrees across its subregions; (3) a significant reduction in the number of CA1 neurons in AD, while CA4 neurons remained largely unaffected, potentially due to gene alterations in CA4 conferring resilience to AD; and (4) aggravated amyloid-beta (Aβ) plaques in CA1 and stratum lucidum, radiatum, and moleculare (SLRM), and integration of Stereo-seq map with Aβ staining revealed a sequential enrichment of microglia and astrocytes around Aβ plaques. Finally, reduced brain-derived extracellular vesicles carrying cholecystokinin (CCK) and peripheral myelin protein 2 (PMP2) in AD plasma highlighted their diagnostic potential for clinical applications.
Collapse
Affiliation(s)
- Pan Wang
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310002, China; National Human Brain Bank for Health and Disease, Zhejiang University, Hangzhou, Zhejiang 310002, China; School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310002, China
| | - Lei Han
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China
| | - Lifang Wang
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China
| | - Quyuan Tao
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Guo
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310002, China; School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310002, China
| | - Ting Luo
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China
| | - Youzhe He
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Xu
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310002, China; School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310002, China
| | - Jiayi Yu
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310002, China; School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310002, China
| | - Yuyang Liu
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zihan Wu
- Tencent AI Lab, Shenzhen 518057, China
| | - Bin Xu
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310002, China
| | - Bufan Jin
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanrong Wei
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Yang
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310002, China
| | - Mengnan Cheng
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Chen Tian
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310002, China
| | - Huiwen Zheng
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongqin Fan
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310002, China
| | - Peiran Jiang
- National Human Brain Bank for Health and Disease, Zhejiang University, Hangzhou, Zhejiang 310002, China
| | - Yue Gao
- BGI Research, Hangzhou 310030, China
| | - Juanli Wu
- National Human Brain Bank for Health and Disease, Zhejiang University, Hangzhou, Zhejiang 310002, China
| | | | - Bing Sun
- National Human Brain Bank for Health and Disease, Zhejiang University, Hangzhou, Zhejiang 310002, China
| | - Zheng Fang
- National Human Brain Bank for Health and Disease, Zhejiang University, Hangzhou, Zhejiang 310002, China
| | - Junjie Lei
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Benyan Luo
- Department of Neurology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | | | - Guoping Peng
- Department of Neurology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | | | - Tao Yang
- China National GeneBank, BGI Research, Shenzhen 518120, China; Guangdong Provincial Genomics Data Center, BGI Research, Shenzhen 518120, China
| | - Jing Chen
- China National GeneBank, BGI Research, Shenzhen 518120, China; Guangdong Provincial Genomics Data Center, BGI Research, Shenzhen 518120, China
| | | | - Xinhui Su
- PET Center, Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China
| | - Catherine Pan
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310002, China; School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310002, China
| | - Keqing Zhu
- National Human Brain Bank for Health and Disease, Zhejiang University, Hangzhou, Zhejiang 310002, China; Department of Pathology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yi Shen
- Department of Neurobiology and Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310002, China
| | | | - Aimin Bao
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310002, China; Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China
| | | | - Jian Wang
- BGI Research, Shenzhen 518083, China
| | - Xun Xu
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Ming Li
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310002, China; Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China
| | - Longqi Liu
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shumin Duan
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310002, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310002, China.
| | - Jing Zhang
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310002, China; National Human Brain Bank for Health and Disease, Zhejiang University, Hangzhou, Zhejiang 310002, China; School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310002, China.
| |
Collapse
|
2
|
Rodriguez GA, Rothenberg EF, Shetler CO, Aoun A, Posani L, Vajram SV, Tedesco T, Fusi S, Hussaini SA. Impaired spatial coding and neuronal hyperactivity in the medial entorhinal cortex of aged App NL-G-F mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.624990. [PMID: 39651258 PMCID: PMC11623597 DOI: 10.1101/2024.11.26.624990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The progressive accumulation of amyloid beta (Aβ) pathology in the brain has been associated with aberrant neuronal network activity and poor cognitive performance in preclinical mouse models of Alzheimer's disease (AD). Presently, our understanding of the mechanisms driving pathology-associated neuronal dysfunction and impaired information processing in the brain remains incomplete. Here, we assessed the impact of advanced Aβ pathology on spatial information processing in the medial entorhinal cortex (MEC) of 18-month App NL-G-F/NL- G-F knock-in (APP KI) mice as they explored contextually novel and familiar open field arenas in a two-day, four-session recording paradigm. We tracked single unit firing activity across all sessions and found that spatial information scores were decreased in MEC neurons from APP KI mice versus those in age-matched C57BL/6J controls. MEC single unit spatial representations were also impacted in APP KI mice. Border cell firing preferences were unstable across sessions and spatial periodicity in putative grid cells was disrupted. In contrast, MEC border cells and grid cells in Control mice were intact and stable across sessions. We then quantified the stability of MEC spatial maps across sessions by utilizing a metric based on the Earth Mover's Distance (EMD). We found evidence for increased instability in spatially-tuned APP KI MEC neurons versus Controls when mice were re-exposed to familiar environments and exposed to a novel environment. Additionally, spatial decoding analysis of MEC single units revealed deficits in position and speed coding in APP KI mice in all session comparisons. Finally, MEC single unit analysis revealed a mild hyperactive phenotype in APP KI mice that appeared to be driven by narrow-spiking units (putative interneurons). These findings tie Aβ-associated dysregulation in neuronal firing to disruptions in spatial information processing that may underlie certain cognitive deficits associated with AD.
Collapse
|
3
|
Xiong G, LeRoy NJ, Bekiranov S, Sheffield NC, Zhang A. DeepGSEA: explainable deep gene set enrichment analysis for single-cell transcriptomic data. Bioinformatics 2024; 40:btae434. [PMID: 38950178 PMCID: PMC11236288 DOI: 10.1093/bioinformatics/btae434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/28/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024] Open
Abstract
MOTIVATION Gene set enrichment (GSE) analysis allows for an interpretation of gene expression through pre-defined gene set databases and is a critical step in understanding different phenotypes. With the rapid development of single-cell RNA sequencing (scRNA-seq) technology, GSE analysis can be performed on fine-grained gene expression data to gain a nuanced understanding of phenotypes of interest. However, with the cellular heterogeneity in single-cell gene profiles, current statistical GSE analysis methods sometimes fail to identify enriched gene sets. Meanwhile, deep learning has gained traction in applications like clustering and trajectory inference in single-cell studies due to its prowess in capturing complex data patterns. However, its use in GSE analysis remains limited, due to interpretability challenges. RESULTS In this paper, we present DeepGSEA, an explainable deep gene set enrichment analysis approach which leverages the expressiveness of interpretable, prototype-based neural networks to provide an in-depth analysis of GSE. DeepGSEA learns the ability to capture GSE information through our designed classification tasks, and significance tests can be performed on each gene set, enabling the identification of enriched sets. The underlying distribution of a gene set learned by DeepGSEA can be explicitly visualized using the encoded cell and cellular prototype embeddings. We demonstrate the performance of DeepGSEA over commonly used GSE analysis methods by examining their sensitivity and specificity with four simulation studies. In addition, we test our model on three real scRNA-seq datasets and illustrate the interpretability of DeepGSEA by showing how its results can be explained. AVAILABILITY AND IMPLEMENTATION https://github.com/Teddy-XiongGZ/DeepGSEA.
Collapse
Affiliation(s)
- Guangzhi Xiong
- Department of Computer Science, University of Virginia, Charlottesville, VA, 22904, United States
| | - Nathan J LeRoy
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, 22904, United States
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, United States
| | - Nathan C Sheffield
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, 22904, United States
| | - Aidong Zhang
- Department of Computer Science, University of Virginia, Charlottesville, VA, 22904, United States
| |
Collapse
|
4
|
Mizuta K, Sato M. Multiphoton imaging of hippocampal neural circuits: techniques and biological insights into region-, cell-type-, and pathway-specific functions. NEUROPHOTONICS 2024; 11:033406. [PMID: 38464393 PMCID: PMC10923542 DOI: 10.1117/1.nph.11.3.033406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 03/12/2024]
Abstract
Significance The function of the hippocampus in behavior and cognition has long been studied primarily through electrophysiological recordings from freely moving rodents. However, the application of optical recording methods, particularly multiphoton fluorescence microscopy, in the last decade or two has dramatically advanced our understanding of hippocampal function. This article provides a comprehensive overview of techniques and biological findings obtained from multiphoton imaging of hippocampal neural circuits. Aim This review aims to summarize and discuss the recent technical advances in multiphoton imaging of hippocampal neural circuits and the accumulated biological knowledge gained through this technology. Approach First, we provide a brief overview of various techniques of multiphoton imaging of the hippocampus and discuss its advantages, drawbacks, and associated key innovations and practices. Then, we review a large body of findings obtained through multiphoton imaging by region (CA1 and dentate gyrus), cell type (pyramidal neurons, inhibitory interneurons, and glial cells), and cellular compartment (dendrite and axon). Results Multiphoton imaging of the hippocampus is primarily performed under head-fixed conditions and can reveal detailed mechanisms of circuit operation owing to its high spatial resolution and specificity. As the hippocampus lies deep below the cortex, its imaging requires elaborate methods. These include imaging cannula implantation, microendoscopy, and the use of long-wavelength light sources. Although many studies have focused on the dorsal CA1 pyramidal cells, studies of other local and inter-areal circuitry elements have also helped provide a more comprehensive picture of the information processing performed by the hippocampal circuits. Imaging of circuit function in mouse models of Alzheimer's disease and other brain disorders such as autism spectrum disorder has also contributed greatly to our understanding of their pathophysiology. Conclusions Multiphoton imaging has revealed much regarding region-, cell-type-, and pathway-specific mechanisms in hippocampal function and dysfunction in health and disease. Future technological advances will allow further illustration of the operating principle of the hippocampal circuits via the large-scale, high-resolution, multimodal, and minimally invasive imaging.
Collapse
Affiliation(s)
- Kotaro Mizuta
- RIKEN BDR, Kobe, Japan
- New York University Abu Dhabi, Department of Biology, Abu Dhabi, United Arab Emirates
| | - Masaaki Sato
- Hokkaido University Graduate School of Medicine, Department of Neuropharmacology, Sapporo, Japan
| |
Collapse
|
5
|
Inayat S, McAllister BB, Chang H, Lacoursiere SG, Whishaw IQ, Sutherland RJ, Mohajerani MH. Weak-hyperactive hippocampal CA1 neurons in the prodromal stage of Alzheimer's disease in hybrid App NL-G-F/NL-G-F × Thy1-GCaMP6s +/- mice suggest disrupted plasticity. Neurobiol Aging 2023; 130:154-171. [PMID: 37531809 DOI: 10.1016/j.neurobiolaging.2023.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 05/13/2023] [Accepted: 06/03/2023] [Indexed: 08/04/2023]
Abstract
This study investigated the impact of familial Alzheimer's disease (AD)-linked amyloid precursor protein (App) mutations on hippocampal CA1 neuronal activity and function at an early disease stage in AppNL-G-F/NL-G-F × Thy1-GCaMP6s+/- (A-TG) mice using calcium imaging. Longitudinal assessment of spatial behavior at 12 and 18 months of age identified an early disease stage at 12 months when there was significant amyloid beta pathology with mild behavioral deficits. Hippocampal CA1 neuronal activity and event-related encoding of distance and time were therefore assessed at 12 months of age in several configurations of an air-induced running task to assess the dynamics of cellular activity. Neurons in A-TG mice displayed diminished (weaker) and more frequent (hyperactive) neuronal firing that was more pronounced during movement compared to immobility. Responsive neurons showed configuration-specific deficits in distance and time encoding with impairment in adapting their responses to changing configurations. These results suggest that at an early stage of AD in the absence of full-blown behavioral deficits, weak-hyperactive neuronal activity may induce impairments in sensory perception of changing environments.
Collapse
Affiliation(s)
- Samsoon Inayat
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada.
| | - Brendan B McAllister
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - HaoRan Chang
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Sean G Lacoursiere
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Ian Q Whishaw
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Robert J Sutherland
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Majid H Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada.
| |
Collapse
|
6
|
Bac B, Hicheri C, Weiss C, Buell A, Vilcek N, Spaeni C, Geula C, Savas JN, Disterhoft JF. The TgF344-AD rat: behavioral and proteomic changes associated with aging and protein expression in a transgenic rat model of Alzheimer's disease. Neurobiol Aging 2023; 123:98-110. [PMID: 36657371 PMCID: PMC10118906 DOI: 10.1016/j.neurobiolaging.2022.12.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023]
Abstract
Animal models of Alzheimer's Disease (AD) are attractive tools for preclinical, prodromal drug testing. The TgF344-AD (Tg) rat exhibits cognitive deficits and 5 major hallmarks of AD. Here we show that spatial water maze (WMZ) memory deficits and proteomic differences in dorsal CA1 were present in young Tg rats. Aged learning-unimpaired (AU) and aged learning-impaired (AI) proteome associated changes were identified and differed by sex. Levels of phosphorylated tau, reactive astrocytes and microglia were significantly increased in aged Tg rats and correlated with the WMZ learning index (LI); in contrast, no significant correlation was present between amyloid plaques or insoluble Aβ levels and LI. Neuroinflammatory markers were also significantly correlated with LI and increased in female Tg rats. The anti-inflammatory marker, triggering receptor expressed on myeloid cells-2 (TREM2), was significantly reduced in aged impaired Tg rats and correlated with LI. Identifying and understanding mechanisms that allow for healthy aging by overcoming genetic drivers for AD, and/or promoting drivers for successful aging, are important for developing successful therapeutics against AD.
Collapse
Affiliation(s)
- Birsu Bac
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Cheima Hicheri
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Craig Weiss
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Amelia Buell
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Natalia Vilcek
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Claudia Spaeni
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Changiz Geula
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jeffrey N Savas
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - John F Disterhoft
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
7
|
Hashimoto S, Matsuba Y, Takahashi M, Kamano N, Watamura N, Sasaguri H, Takado Y, Yoshihara Y, Saito T, Saido TC. Neuronal glutathione loss leads to neurodegeneration involving gasdermin activation. Sci Rep 2023; 13:1109. [PMID: 36670138 PMCID: PMC9859798 DOI: 10.1038/s41598-023-27653-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/05/2023] [Indexed: 01/22/2023] Open
Abstract
Accumulating evidence suggests that glutathione loss is closely associated with the progression of neurodegenerative disorders. Here, we found that the neuronal conditional-knockout (KO) of glutamyl-cysteine-ligase catalytic-subunit (GCLC), a rate-limiting enzyme for glutathione synthesis, induced brain atrophy accompanied by neuronal loss and neuroinflammation. GCLC-KO mice showed activation of C1q, which triggers engulfment of neurons by microglia, and disease-associated-microglia (DAM), suggesting that activation of microglia is linked to the neuronal loss. Furthermore, gasdermins, which regulate inflammatory form of cell death, were upregulated in the brains of GCLC-KO mice, suggesting the contribution of pyroptosis to neuronal cell death in these animals. In particular, GSDME-deficiency significantly attenuated the hippocampal atrophy and changed levels of DAM markers in GCLC-KO mice. Finally, we found that the expression of GCLC was decreased around amyloid plaques in AppNL-G-F AD model mice. AppNL-G-F mouse also exhibited inflammatory events similar to GCLC-KO mouse. We propose a mechanism by which a vicious cycle of oxidative stress and neuroinflammation enhances neurodegenerative processes. Furthermore, GCLC-KO mouse will serve as a useful tool to investigate the molecular mechanisms underlying neurodegeneration and in the development of new treatment strategies to address neurodegenerative diseases.
Collapse
Affiliation(s)
- Shoko Hashimoto
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,Pioneering Research Division, Medical Innovation Research Center, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan.
| | - Yukio Matsuba
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Mika Takahashi
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Naoko Kamano
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Naoto Watamura
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Hiroki Sasaguri
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Dementia Pathophysiology Collaboration Unit, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yuhei Takado
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-Ku, Chiba, 263-8555, Japan
| | - Yoshihiro Yoshihara
- Laboratory for Systems Molecular Ethology, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan.,Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, Aichi, 464-8601, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
8
|
Chockanathan U, Padmanabhan K. From synapses to circuits and back: Bridging levels of understanding in animal models of Alzheimer's disease. Eur J Neurosci 2022; 56:5564-5586. [PMID: 35244297 PMCID: PMC10926359 DOI: 10.1111/ejn.15636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/04/2022] [Accepted: 02/23/2022] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by behavioural changes that include memory loss and cognitive decline and is associated with the appearance of amyloid-β plaques and neurofibrillary tangles throughout the brain. Although aspects of the disease percolate across multiple levels of neuronal organization, from the cellular to the behavioural, it is increasingly clear that circuits are a critical junction between the cellular pathology and the behavioural phenotypes that bookend these levels of analyses. In this review, we discuss critical aspects of neural circuit research, beginning with synapses and progressing to network activity and how they influence our understanding of disease processed in AD.
Collapse
Affiliation(s)
- Udaysankar Chockanathan
- Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Neuroscience Graduate Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Medical Scientist Training Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Krishnan Padmanabhan
- Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Neuroscience Graduate Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Medical Scientist Training Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Center for Visual Science, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Intellectual and Developmental Disabilities Research Center, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
9
|
Kobayashi Y, Kohbuchi S, Koganezawa N, Sekino Y, Shirao T, Saido TC, Saito T, Saito Y. Impairment of ciliary dynamics in an APP knock-in mouse model of Alzheimer's disease. Biochem Biophys Res Commun 2022; 610:85-91. [PMID: 35453040 DOI: 10.1016/j.bbrc.2022.04.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/11/2022] [Indexed: 11/02/2022]
Abstract
The primary cilium is a specialized microtubule-based sensory organelle that extends from the cell body of nearly all cell types. Neuronal primary cilia, which have their own unique signaling repertoire, are crucial for neuronal integrity and the maintenance of neuronal connectivity throughout adulthood. Dysfunction of cilia structure and ciliary signaling is associated with a variety of genetic syndromes, termed ciliopathies. One of the characteristic features of human ciliopathies is impairment of memory and cognition, which is also observed in Alzheimer's disease (AD). Amyloid β peptide (Aβ) is produced through the proteolytic processing of amyloid precursor protein (APP), and Aβ accumulation in the brain is proposed to be an early toxic event in the pathogenesis of AD. To evaluate the effect of increased Aβ level on primary cilia, we assessed ciliary dynamics in hippocampal neurons in an APP knock-in AD model (AppNL-G-F mice) compared to that in wild-type mice. Neuronal cilia length in the CA1, CA3, and dentate gyrus (DG) of wild-type mice increased significantly with age. In AppNL-G-F mice, such elongation was detected in the DG but not in the CA1 and CA3, where more Aβ accumulation was observed. We further demonstrated that Aβ1-42 treatment decreased cilia length both in hTERT-RPE1 cells and dissociated rat hippocampal neurons. There is growing evidence that reduced cilia length is associated with perturbations of synaptic connectivity and dendrite complexity. Thus, our observations raise the important possibility that structural alterations in neuronal cilia might have a role in AD development.
Collapse
Affiliation(s)
- Yuki Kobayashi
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8521, Japan
| | - Shogo Kohbuchi
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8521, Japan
| | - Noriko Koganezawa
- Department of Pharmacology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Yuko Sekino
- Endowed Laboratory of Human Cell-Based Drug Discovery, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tomoaki Shirao
- AlzMed, Inc., UT South-Clinical-Research Building, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8485, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan
| | - Yumiko Saito
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8521, Japan.
| |
Collapse
|
10
|
Sasaguri H, Hashimoto S, Watamura N, Sato K, Takamura R, Nagata K, Tsubuki S, Ohshima T, Yoshiki A, Sato K, Kumita W, Sasaki E, Kitazume S, Nilsson P, Winblad B, Saito T, Iwata N, Saido TC. Recent Advances in the Modeling of Alzheimer's Disease. Front Neurosci 2022; 16:807473. [PMID: 35431779 PMCID: PMC9009508 DOI: 10.3389/fnins.2022.807473] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/22/2022] [Indexed: 12/13/2022] Open
Abstract
Since 1995, more than 100 transgenic (Tg) mouse models of Alzheimer's disease (AD) have been generated in which mutant amyloid precursor protein (APP) or APP/presenilin 1 (PS1) cDNA is overexpressed ( 1st generation models ). Although many of these models successfully recapitulate major pathological hallmarks of the disease such as amyloid β peptide (Aβ) deposition and neuroinflammation, they have suffered from artificial phenotypes in the form of overproduced or mislocalized APP/PS1 and their functional fragments, as well as calpastatin deficiency-induced early lethality, calpain activation, neuronal cell death without tau pathology, endoplasmic reticulum stresses, and inflammasome involvement. Such artifacts bring two important uncertainties into play, these being (1) why the artifacts arise, and (2) how they affect the interpretation of experimental results. In addition, destruction of endogenous gene loci in some Tg lines by transgenes has been reported. To overcome these concerns, single App knock-in mouse models harboring the Swedish and Beyreuther/Iberian mutations with or without the Arctic mutation (AppNL-G-F and AppNL-F mice) were developed ( 2nd generation models ). While these models are interesting given that they exhibit Aβ pathology, neuroinflammation, and cognitive impairment in an age-dependent manner, the model with the Artic mutation, which exhibits an extensive pathology as early as 6 months of age, is not suitable for investigating Aβ metabolism and clearance because the Aβ in this model is resistant to proteolytic degradation and is therefore prone to aggregation. Moreover, it cannot be used for preclinical immunotherapy studies owing to the discrete affinity it shows for anti-Aβ antibodies. The weakness of the latter model (without the Arctic mutation) is that the pathology may require up to 18 months before it becomes sufficiently apparent for experimental investigation. Nevertheless, this model was successfully applied to modulating Aβ pathology by genome editing, to revealing the differential roles of neprilysin and insulin-degrading enzyme in Aβ metabolism, and to identifying somatostatin receptor subtypes involved in Aβ degradation by neprilysin. In addition to discussing these issues, we also provide here a technical guide for the application of App knock-in mice to AD research. Subsequently, a new double knock-in line carrying the AppNL-F and Psen1 P117L/WT mutations was generated, the pathogenic effect of which was found to be synergistic. A characteristic of this 3rd generation model is that it exhibits more cored plaque pathology and neuroinflammation than the AppNL-G-F line, and thus is more suitable for preclinical studies of disease-modifying medications targeting Aβ. Furthermore, a derivative AppG-F line devoid of Swedish mutations which can be utilized for preclinical studies of β-secretase modifier(s) was recently created. In addition, we introduce a new model of cerebral amyloid angiopathy that may be useful for analyzing amyloid-related imaging abnormalities that can be caused by anti-Aβ immunotherapy. Use of the App knock-in mice also led to identification of the α-endosulfine-K ATP channel pathway as components of the somatostatin-evoked physiological mechanisms that reduce Aβ deposition via the activation of neprilysin. Such advances have provided new insights for the prevention and treatment of preclinical AD. Because tau pathology plays an essential role in AD pathogenesis, knock-in mice with human tau wherein the entire murine Mapt gene has been humanized were generated. Using these mice, the carboxy-terminal PDZ ligand of neuronal nitric oxide synthase (CAPON) was discovered as a mediator linking tau pathology to neurodegeneration and showed that tau humanization promoted pathological tau propagation. Finally, we describe and discuss the current status of mutant human tau knock-in mice and a non-human primate model of AD that we have successfully created.
Collapse
Affiliation(s)
- Hiroki Sasaguri
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| | - Shoko Hashimoto
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| | - Naoto Watamura
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| | - Kaori Sato
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, Shinjuku City, Japan
| | - Risa Takamura
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, Shinjuku City, Japan
| | - Kenichi Nagata
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoshi Tsubuki
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| | - Toshio Ohshima
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, Shinjuku City, Japan
| | - Atsushi Yoshiki
- Experimental Animal Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Kenya Sato
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki, Japan
| | - Wakako Kumita
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki, Japan
| | - Erika Sasaki
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki, Japan
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako, Japan
| | - Shinobu Kitazume
- Department of Clinical Laboratory Sciences, School of Health Sciences, Fukushima Medical University, Fukushima, Japan
| | - Per Nilsson
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Bioclinicum, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Winblad
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Bioclinicum, Karolinska Institutet, Stockholm, Sweden
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Nobuhisa Iwata
- Department of Genome-Based Drug Discovery and Leading Medical Research Core Unit, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takaomi C. Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| |
Collapse
|
11
|
Redolfi N, García-Casas P, Fornetto C, Sonda S, Pizzo P, Pendin D. Lighting Up Ca 2+ Dynamics in Animal Models. Cells 2021; 10:2133. [PMID: 34440902 PMCID: PMC8392631 DOI: 10.3390/cells10082133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/08/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022] Open
Abstract
Calcium (Ca2+) signaling coordinates are crucial processes in brain physiology. Particularly, fundamental aspects of neuronal function such as synaptic transmission and neuronal plasticity are regulated by Ca2+, and neuronal survival itself relies on Ca2+-dependent cascades. Indeed, impaired Ca2+ homeostasis has been reported in aging as well as in the onset and progression of neurodegeneration. Understanding the physiology of brain function and the key processes leading to its derangement is a core challenge for neuroscience. In this context, Ca2+ imaging represents a powerful tool, effectively fostered by the continuous amelioration of Ca2+ sensors in parallel with the improvement of imaging instrumentation. In this review, we explore the potentiality of the most used animal models employed for Ca2+ imaging, highlighting their application in brain research to explore the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Nelly Redolfi
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (N.R.); (P.G.-C.); (C.F.); (S.S.); (P.P.)
| | - Paloma García-Casas
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (N.R.); (P.G.-C.); (C.F.); (S.S.); (P.P.)
| | - Chiara Fornetto
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (N.R.); (P.G.-C.); (C.F.); (S.S.); (P.P.)
| | - Sonia Sonda
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (N.R.); (P.G.-C.); (C.F.); (S.S.); (P.P.)
| | - Paola Pizzo
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (N.R.); (P.G.-C.); (C.F.); (S.S.); (P.P.)
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy
| | - Diana Pendin
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (N.R.); (P.G.-C.); (C.F.); (S.S.); (P.P.)
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy
| |
Collapse
|