1
|
Avila C, Sarter M. Cortico-striatal action control inherent of opponent cognitive-motivational styles. eLife 2025; 13:RP100988. [PMID: 39968969 PMCID: PMC11839163 DOI: 10.7554/elife.100988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025] Open
Abstract
Turning on cue or stopping at a red light requires attending to such cues to select action sequences, or suppress action, in accordance with learned cue-associated action rules. Cortico-striatal projections are an essential part of the brain's attention-motor interface. Glutamate-sensing microelectrode arrays were used to measure glutamate transients in the dorsomedial striatum (DMS) of male and female rats walking a treadmill and executing cued turns and stops. Prelimbic-DMS projections were chemogenetically inhibited to determine their behavioral necessity and the cortico-striatal origin of cue-evoked glutamate transients. Furthermore, we investigated rats exhibiting preferably goal-directed (goal trackers, GTs) versus cue-driven attention (sign-trackers, STs), to determine the impact of such cognitive-motivational biases on cortico-striatal control. GTs executed more cued turns and initiated such turns more slowly than STs. During turns, but not missed turns or cued stops, cue-evoked glutamate concentrations were higher in GTs than in STs. In STs, turn cue-locked glutamate concentrations frequently peaked twice or three times, contrasting with predominately single peaks in GTs. In GTs, but not STs, inhibition of prelimbic-DMS projections attenuated turn rates and turn cue-evoked glutamate concentrations and increased the number of turn cue-locked glutamate peaks. These findings indicate that turn cue-evoked glutamate release in GTs is tightly controlled by cortico-striatal neuronal activity. In contrast, in STs, glutamate release from DMS glutamatergic terminals may be regulated by other striatal circuitry, preferably mediating cued suppression of action and reward tracking. As cortico-striatal dysfunction has been hypothesized to contribute to a wide range of disorders, including complex movement control deficits in Parkinson's disease and compulsive drug taking, the demonstration of phenotypic contrasts in cortico-striatal control implies the presence of individual vulnerabilities for such disorders.
Collapse
Affiliation(s)
- Cassandra Avila
- Department of Psychology, University of MichiganAnn ArborUnited States
| | - Martin Sarter
- Department of Psychology, University of MichiganAnn ArborUnited States
- Department of Psychology & Neuroscience Program, University of MichiganAnn ArborUnited States
| |
Collapse
|
2
|
Avila C, Sarter M. Cortico-striatal action control inherent of opponent cognitive-motivational styles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584623. [PMID: 38559086 PMCID: PMC10979997 DOI: 10.1101/2024.03.12.584623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Turning on cue or stopping at a red light requires attending to such cues to select action sequences, or suppress action, in accordance with learned cue-associated action rules. Cortico-striatal projections are an essential part of the brain's attention-motor interface. Glutamate-sensing microelectrode arrays were used to measure glutamate transients in the dorsomedial striatum (DMS) of male and female rats walking a treadmill and executing cued turns and stops. Prelimbic-DMS projections were chemogenetically inhibited to determine their behavioral necessity and the cortico-striatal origin of cue-evoked glutamate transients. Furthermore, we investigated rats exhibiting preferably goal-directed (goal trackers, GTs) versus cue-driven attention (sign trackers, STs), to determine the impact of such cognitive-motivational biases on cortico-striatal control. GTs executed more cued turns and initiated such turns more slowly than STs. During turns, but not missed turns or cued stops, cue-evoked glutamate concentrations were higher in GTs than in STs. In STs, turn cue-locked glutamate concentrations frequently peaked twice or three times, contrasting with predominately single peaks in GTs. In GTs, but not STs, inhibition of prelimbic-DMS projections attenuated turn rates and turn cue-evoked glutamate concentrations and increased the number of turn cue-locked glutamate peaks. These findings indicate that turn cue-evoked glutamate release in GTs is tightly controlled by cortico-striatal neuronal activity. In contrast, in STs, glutamate release from DMS glutamatergic terminals may be regulated by other striatal circuitry, preferably mediating cued suppression of action and reward tracking. As cortico-striatal dysfunction has been hypothesized to contribute to a wide range of disorders, including complex movement control deficits in Parkinson's disease and compulsive drug taking, the demonstration of phenotypic contrasts in cortico-striatal control implies the presence of individual vulnerabilities for such disorders. Significance Statement Adaptive behavior involves the selection of behaviorally significant cues and the capacity of selected cues to control behavioral action. Neuronal projections from cortex to striatum are essential for such an integration of attentional with motor functions. Here we demonstrated that glutamate release from cortico-striatal projections primarily influences cued turns but not cued suppression of actions (cued stops). Cortico-striatal control of cued turning was especially powerful in rats which, as a psychological trait, preferably deploy goal-directed attention. Together, our findings demonstrate the role of cortico-striatal input in cued action selection, and they emphasize the experimental and biopsychological significance of investigating the brain's attentional-motor interface in the context of broader individual differences in cognitive-motivational styles.
Collapse
Affiliation(s)
- Cassandra Avila
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Martin Sarter
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
- Department of Psychology & Neuroscience Program, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Nielsen BE, Ford CP. Reduced striatal M4-cholinergic signaling following dopamine loss contributes to parkinsonian and l-DOPA-induced dyskinetic behaviors. SCIENCE ADVANCES 2024; 10:eadp6301. [PMID: 39565858 PMCID: PMC11578179 DOI: 10.1126/sciadv.adp6301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024]
Abstract
A dynamic equilibrium between dopamine and acetylcholine (ACh) is essential for striatal circuitry and motor function, as imbalances are associated with Parkinson's disease (PD) and levodopa-induced dyskinesia (LID). Conventional theories posit that cholinergic signaling is pathologically elevated in PD as a result of increased ACh release, which contributes to motor deficits. However, using approaches to measure receptor-mediated signaling, we found that, rather than the predicted enhancement, the strength of cholinergic transmission at muscarinic M4 receptor synapses on direct pathway medium spiny neurons was decreased in dopamine-depleted mice. This adaptation was due to a reduced postsynaptic M4 receptor function, resulting from down-regulated receptors and downstream signaling. Restoring M4 transmission unexpectedly led to a partial alleviation of motor deficits and LID dyskinetic behavior, revealing an unexpected prokinetic effect in addition to the canonical antikinetic role of M4 receptors. These findings indicate that decreased M4 function differentially contributes to parkinsonian and LID pathophysiology, representing a promising target for therapeutic intervention.
Collapse
Affiliation(s)
- Beatriz E. Nielsen
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Christopher P. Ford
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
4
|
Lustig C, Bohnen NI. The Middle Managers: Thalamic and Cholinergic Contributions To Coordinating Top-Down And Bottom-Up Processing. Curr Opin Behav Sci 2024; 58:101406. [PMID: 39220566 PMCID: PMC11361277 DOI: 10.1016/j.cobeha.2024.101406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Methodological advances have facilitated extensive revision of traditional views of thalamic and cholinergic contributions to cognition and behavior. Increasing attention to the integrative capabilities of the thalamus highlights its role beyond a simple sensory relay, recognizing its complex connectivity and role in orchestrating different phases of attention. Correspondingly, modern conceptualizations position the cholinergic system as key in integrating sensory information with attention and goals. These theoretical developments have occurred largely in parallel, but have large conceptual overlap. We review this overlap, including evidence from animal, patient, neuroimaging, and computational studies, and suggest thalamo-cholinergic cognition plays a key role in coordinating stable and flexible attention.
Collapse
|
5
|
Wegman E, Wosiski-Kuhn M, Luo Y. The dual role of striatal interneurons: circuit modulation and trophic support for the basal ganglia. Neural Regen Res 2024; 19:1277-1283. [PMID: 37905876 PMCID: PMC11467944 DOI: 10.4103/1673-5374.382987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/26/2023] [Accepted: 07/30/2023] [Indexed: 11/02/2023] Open
Abstract
ABSTRACT Striatal interneurons play a key role in modulating striatal-dependent behaviors, including motor activity and reward and emotional processing. Interneurons not only provide modulation to the basal ganglia circuitry under homeostasis but are also involved in changes to plasticity and adaptation during disease conditions such as Parkinson's or Huntington's disease. This review aims to summarize recent findings regarding the role of striatal cholinergic and GABAergic interneurons in providing circuit modulation to the basal ganglia in both homeostatic and disease conditions. In addition to direct circuit modulation, striatal interneurons have also been shown to provide trophic support to maintain neuron populations in adulthood. We discuss this interesting and novel role of striatal interneurons, with a focus on the maintenance of adult dopaminergic neurons from interneuron-derived sonic-hedgehog.
Collapse
Affiliation(s)
- Elliot Wegman
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH, USA
| | - Marlena Wosiski-Kuhn
- Department of Emergency Medicine at the School of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Yu Luo
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH, USA
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
6
|
Seo DC, Ju YH, Seo JJ, Oh SJ, Lee CJ, Lee SE, Nam MH. DDC-Promoter-Driven Chemogenetic Activation of SNpc Dopaminergic Neurons Alleviates Parkinsonian Motor Symptoms. Int J Mol Sci 2023; 24:ijms24032491. [PMID: 36768816 PMCID: PMC9916413 DOI: 10.3390/ijms24032491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder with typical motor symptoms. Recent studies have suggested that excessive GABA from reactive astrocytes tonically inhibits dopaminergic neurons and reduces the expression of tyrosine hydroxylase (TH), the key dopamine-synthesizing enzyme, in the substantia nigra pars compacta (SNpc). However, the expression of DOPA decarboxylase (DDC), another dopamine-synthesizing enzyme, is relatively spared, raising a possibility that the live but non-functional TH-negative/DDC-positive neurons could be the therapeutic target for rescuing PD motor symptoms. However, due to the absence of a validated DDC-specific promoter, manipulating DDC-positive neuronal activity has not been tested as a therapeutic strategy for PD. Here, we developed an AAV vector expressing mCherry under rat DDC promoter (AAV-rDDC-mCherry) and validated the specificity in the rat SNpc. Modifying this vector, we expressed hM3Dq (Gq-DREADD) under DDC promoter in the SNpc and ex vivo electrophysiologically validated the functionality. In the A53T-mutated alpha-synuclein overexpression model of PD, the chemogenetic activation of DDC-positive neurons in the SNpc significantly alleviated the parkinsonian motor symptoms and rescued the nigrostriatal TH expression. Altogether, our DDC-promoter will allow dopaminergic neuron-specific gene delivery in rodents. Furthermore, we propose that the activation of dormant dopaminergic neurons could be a potential therapeutic strategy for PD.
Collapse
Affiliation(s)
- Dong-Chan Seo
- Research Animal Resource Center, Korea Institute of Science and Technology (KIST), Seoul 02456, Republic of Korea
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02456, Republic of Korea
- Department of Integrated Biomedical and Life Sciences, College of Health Science, Korea University, Seoul 02841, Republic of Korea
| | - Yeon Ha Ju
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02456, Republic of Korea
| | - Jin-Ju Seo
- Research Animal Resource Center, Korea Institute of Science and Technology (KIST), Seoul 02456, Republic of Korea
- Technological Convergence Center, Korea Institute of Science and Technology (KIST), Seoul 02456, Republic of Korea
| | - Soo-Jin Oh
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02456, Republic of Korea
| | - C. Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Seung Eun Lee
- Research Animal Resource Center, Korea Institute of Science and Technology (KIST), Seoul 02456, Republic of Korea
- Correspondence: (S.E.L.); (M.-H.N.)
| | - Min-Ho Nam
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02456, Republic of Korea
- Department of KHU-KIST Convergence Science & Technology, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence: (S.E.L.); (M.-H.N.)
| |
Collapse
|
7
|
Basal Forebrain Chemogenetic Inhibition Converts the Attentional Control Mode of Goal-Trackers to That of Sign-Trackers. eNeuro 2022; 9:ENEURO.0418-22.2022. [PMID: 36635246 PMCID: PMC9794377 DOI: 10.1523/eneuro.0418-22.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/06/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
Sign tracking versus goal tracking in rats indicate vulnerability and resistance, respectively, to Pavlovian cue-evoked addictive drug taking and relapse. Here, we tested hypotheses predicting that the opponent cognitive-behavioral styles indexed by sign tracking versus goal tracking include variations in attentional performance which differentially depend on basal forebrain projection systems. Pavlovian Conditioned Approach (PCA) testing was used to identify male and female sign-trackers (STs) and goal-trackers (GTs), as well as rats with an intermediate phenotype (INTs). Upon reaching asymptotic performance in an operant task requiring the detection of visual signals (hits) as well as the reporting of signal absence for 40 min per session, GTs scored more hits than STs, and hit rates across all phenotypes correlated with PCA scores. STs missed relatively more signals than GTs specifically during the last 15 min of a session. Chemogenetic inhibition of the basal forebrain decreased hit rates in GTs but was without effect in STs. Moreover, the decrease in hits in GTs manifested solely during the last 15 min of a session. Transfection efficacy in the horizontal limb of the diagonal band (HDB), but not substantia innominate (SI) or nucleus basalis of Meynert (nbM), predicted the behavioral efficacy of chemogenetic inhibition in GTs. Furthermore, the total subregional transfection space, not transfection of just cholinergic neurons, correlated with performance effects. These results indicate that the cognitive-behavioral phenotype indexed by goal tracking, but not sign tracking, depends on activation of the basal forebrain-frontal cortical projection system and associated biases toward top-down or model-based performance.
Collapse
|
8
|
Barrett MS, Hegarty DM, Habecker BA, Aicher SA. Distinct morphology of cardiac- and brown adipose tissue-projecting neurons in the stellate ganglia of mice. Physiol Rep 2022; 10:e15334. [PMID: 35621038 PMCID: PMC9136702 DOI: 10.14814/phy2.15334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/02/2022] [Accepted: 05/07/2022] [Indexed: 11/24/2022] Open
Abstract
Sympathetic neurons that innervate the heart are located primarily in the stellate ganglia (SG), which also contains neurons that project to brown adipose tissue (BAT). These studies were designed to examine the morphology of these two populations (cardiac- and BAT-projecting) and their target connectivity. We examined SG neurons in C57BL/6J mice following injections of the retrograde tracer cholera toxin B (CTb) conjugated to Alexa Fluor 488 and Alexa Fluor 555, into cardiac tissue and intrascapular BAT. BAT-projecting SG neurons were widely dispersed in SG, while cardiac-projecting SG neurons were localized primarily near the inferior cardiac nerve base. SG neurons were not dual-labeled, suggesting that sympathetic innervation is specific to the heart and BAT, supporting the idea of "labeled lines" of efferents. Morphologically, cardiac-projecting SG somata had more volume and were less abundant than BAT-projecting neurons using our tracer-labeling paradigm. We found a positive correlation between the number of primary dendrites per neuron and soma volume in cardiac-projecting SG neurons, though not in BAT-projecting neurons. In both SG subpopulations, the number of cholinergic inputs marked with vesicular acetylcholine transporter (VAChT) puncta contacting the soma was positively correlated to soma volume, suggesting scaling of inputs across a range of neuronal sizes. In separate studies using dual tracing from left and right BAT, we found that BAT-projecting SG neurons were located predominately ipsilateral to the injection, but a small subset of SG neurons project bilaterally to BAT. This tracing approach will allow the assessment of cell-specific mechanisms of plasticity within subpopulations of SG neurons.
Collapse
Affiliation(s)
- Madeleine S Barrett
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, Oregon, USA
| | - Deborah M Hegarty
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, Oregon, USA
| | - Beth A Habecker
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, Oregon, USA
| | - Sue A Aicher
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
9
|
Bohnen NI, Yarnall AJ, Weil RS, Moro E, Moehle MS, Borghammer P, Bedard MA, Albin RL. Cholinergic system changes in Parkinson's disease: emerging therapeutic approaches. Lancet Neurol 2022; 21:381-392. [PMID: 35131038 PMCID: PMC8985079 DOI: 10.1016/s1474-4422(21)00377-x] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/30/2021] [Accepted: 10/20/2021] [Indexed: 01/16/2023]
Abstract
In patients with Parkinson's disease, heterogeneous cholinergic system changes can occur in different brain regions. These changes correlate with a range of clinical features, both motor and non-motor, that are refractory to dopaminergic therapy, and can be conceptualised within a systems-level framework in which nodal deficits can produce circuit dysfunctions. The topographies of cholinergic changes overlap with neural circuitries involved in sleep and cognitive, motor, visuo-auditory perceptual, and autonomic functions. Cholinergic deficits within cognition network hubs predict cognitive deficits better than do total brain cholinergic changes. Postural instability and gait difficulties are associated with cholinergic system changes in thalamic, caudate, limbic, neocortical, and cerebellar nodes. Cholinergic system deficits can involve also peripheral organs. Hypercholinergic activity of mesopontine cholinergic neurons in people with isolated rapid eye movement (REM) sleep behaviour disorder, as well as in the hippocampi of cognitively normal patients with Parkinson's disease, suggests early compensation during the prodromal and early stages of Parkinson's disease. Novel pharmacological and neurostimulation approaches could target the cholinergic system to treat motor and non-motor features of Parkinson's disease.
Collapse
Affiliation(s)
- Nicolaas I Bohnen
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Department of Neurology, University of Michigan, Ann Arbor, MI, USA; Neurology Service, Ann Arbor, MI, USA; VA Geriatric Research Education and Clinical Center, Ann Arbor, MI, USA; Ann Arbor VAMC, Ann Arbor, MI, USA.
| | - Alison J Yarnall
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Rimona S Weil
- Dementia Research Centre, University College London, London, UK
| | - Elena Moro
- Division of Neurology, CHU of Grenoble, Grenoble, France; Grenoble Alpes University, and INSERM u1216, Grenoble, France
| | - Mark S Moehle
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Per Borghammer
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Marc-André Bedard
- Cognitive Pharmacology Research Unit, UQAM, Montreal, QC, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada; Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada; Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Roger L Albin
- VA Geriatric Research Education and Clinical Center, Ann Arbor, MI, USA; Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
10
|
Chemogenetics as a neuromodulatory approach to treating neuropsychiatric diseases and disorders. Mol Ther 2022; 30:990-1005. [PMID: 34861415 PMCID: PMC8899595 DOI: 10.1016/j.ymthe.2021.11.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/12/2021] [Accepted: 11/29/2021] [Indexed: 01/01/2023] Open
Abstract
Chemogenetics enables precise, non-invasive, and reversible modulation of neural activity via the activation of engineered receptors that are pharmacologically selective to endogenous or exogenous ligands. With recent advances in therapeutic gene delivery, chemogenetics is poised to support novel interventions against neuropsychiatric diseases and disorders. To evaluate its translational potential, we performed a scoping review of applications of chemogenetics that led to the reversal of molecular and behavioral deficits in studies relevant to neuropsychiatric diseases and disorders. In this review, we present these findings and discuss the potential and challenges for using chemogenetics as a precision medicine-based neuromodulation strategy.
Collapse
|
11
|
Wenger N, Vogt A, Skrobot M, Garulli EL, Kabaoglu B, Salchow-Hömmen C, Schauer T, Kroneberg D, Schuhmann M, Ip CW, Harms C, Endres M, Isaias I, Tovote P, Blum R. Rodent models for gait network disorders in Parkinson's disease - a translational perspective. Exp Neurol 2022; 352:114011. [PMID: 35176273 DOI: 10.1016/j.expneurol.2022.114011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/23/2022] [Accepted: 02/10/2022] [Indexed: 11/26/2022]
Abstract
Gait impairments in Parkinson's disease remain a scientific and therapeutic challenge. The advent of new deep brain stimulation (DBS) devices capable of recording brain activity from chronically implanted electrodes has fostered new studies of gait in freely moving patients. The hope is to identify gait-related neural biomarkers and improve therapy using closed-loop DBS. In this context, animal models offer the opportunity to investigate gait network activity at multiple biological scales and address unresolved questions from clinical research. Yet, the contribution of rodent models to the development of future neuromodulation therapies will rely on translational validity. In this review, we summarize the most effective strategies to model parkinsonian gait in rodents. We discuss how clinical observations have inspired targeted brain lesions in animal models, and whether resulting motor deficits and network oscillations match recent findings in humans. Gait impairments with hypo-, bradykinesia and altered limb rhythmicity were successfully modelled in rodents. However, clear evidence for the presence of freezing of gait was missing. The identification of reliable neural biomarkers for gait impairments has remained challenging in both animals and humans. Moving forward, we expect that the ongoing investigation of circuit specific neuromodulation strategies in animal models will lead to future optimizations of gait therapy in Parkinson's disease.
Collapse
Affiliation(s)
- Nikolaus Wenger
- Department of Neurology with experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; Berlin Institute of Health, Germany.
| | - Arend Vogt
- Department of Neurology with experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Matej Skrobot
- Department of Neurology with experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Elisa L Garulli
- Department of Neurology with experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Burce Kabaoglu
- Department of Neurology with experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Christina Salchow-Hömmen
- Department of Neurology with experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Thomas Schauer
- Technische Universität Berlin, Control Systems Group, 10587 Berlin, Germany
| | - Daniel Kroneberg
- Department of Neurology with experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; Berlin Institute of Health, Germany
| | - Michael Schuhmann
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Wuerzburg, Germany
| | - Chi Wang Ip
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Wuerzburg, Germany
| | - Christoph Harms
- Department of Neurology with experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Germany
| | - Matthias Endres
- Department of Neurology with experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Germany; DZHK (German Center for Cardiovascular Research), Berlin Site, Germany; DZNE (German Center for Neurodegenerative Disease), Berlin Site, Germany
| | - Ioannis Isaias
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Wuerzburg, Germany
| | - Philip Tovote
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Versbacher Str. 5, 97078 Wuerzburg, Germany; Center for Mental Health, University of Wuerzburg, Margarete-Höppel-Platz 1, 97080 Wuerzburg, Germany
| | - Robert Blum
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Wuerzburg, Germany
| |
Collapse
|
12
|
Peng Y, Schöneberg N, Esposito MS, Geiger JRP, Sharott A, Tovote P. Current approaches to characterize micro- and macroscale circuit mechanisms of Parkinson's disease in rodent models. Exp Neurol 2022; 351:114008. [PMID: 35149118 PMCID: PMC7612860 DOI: 10.1016/j.expneurol.2022.114008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 01/17/2022] [Accepted: 02/04/2022] [Indexed: 11/24/2022]
Abstract
Accelerating technological progress in experimental neuroscience is increasing the scale as well as specificity of both observational and perturbational approaches to study circuit physiology. While these techniques have also been used to study disease mechanisms, a wider adoption of these approaches in the field of experimental neurology would greatly facilitate our understanding of neurological dysfunctions and their potential treatments at cellular and circuit level. In this review, we will introduce classic and novel methods ranging from single-cell electrophysiological recordings to state-of-the-art calcium imaging and cell-type specific optogenetic or chemogenetic stimulation. We will focus on their application in rodent models of Parkinson’s disease while also presenting their use in the context of motor control and basal ganglia function. By highlighting the scope and limitations of each method, we will discuss how they can be used to study pathophysiological mechanisms at local and global circuit levels and how novel frameworks can help to bridge these scales.
Collapse
Affiliation(s)
- Yangfan Peng
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; Department of Neurology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; MRC Brain Network Dynamics Unit, University of Oxford, Mansfield Road, Oxford OX1 3TH, United Kingdom.
| | - Nina Schöneberg
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Versbacher Str. 5, 97078 Wuerzburg, Germany
| | - Maria Soledad Esposito
- Medical Physics Department, Centro Atomico Bariloche, Comision Nacional de Energia Atomica (CNEA), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Av. E. Bustillo 9500, R8402AGP San Carlos de Bariloche, Rio Negro, Argentina
| | - Jörg R P Geiger
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Andrew Sharott
- MRC Brain Network Dynamics Unit, University of Oxford, Mansfield Road, Oxford OX1 3TH, United Kingdom
| | - Philip Tovote
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Versbacher Str. 5, 97078 Wuerzburg, Germany; Center for Mental Health, University of Wuerzburg, Margarete-Höppel-Platz 1, 97080 Wuerzburg, Germany.
| |
Collapse
|
13
|
Lewis SJG, Factor SA, Giladi N, Hallett M, Nieuwboer A, Nutt JG, Przedborski S, Papa SM, MDS Scientific Issues Committee. Addressing the Challenges of Clinical Research for Freezing of Gait in Parkinson's Disease. Mov Disord 2022; 37:264-267. [PMID: 34939228 PMCID: PMC8840955 DOI: 10.1002/mds.28837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 02/03/2023] Open
Affiliation(s)
- Simon J. G. Lewis
- ForeFront Parkinson’s Disease Research Clinic, Brain and Mind Centre, School of Medical Sciences, University of Sydney, NSW, Australia.,Correspondence: Dr. Lewis, Brain and Mind Centre, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia; or Dr. Papa, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA;
| | - Stewart A. Factor
- Jean and Paul Amos Parkinson’s disease and Movement Disorders Program, Emory University School of Medicine, Atlanta, GA USA
| | - Nir Giladi
- Movement Disorders Unit, Department of Neurology, Tel-Aviv Sourasky Medical Center, Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | | | - John G. Nutt
- Movement Disorder Section, Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97034. USA
| | - Serge Przedborski
- Departments of Pathology & Cell Biology, Neurology, and Neuroscience, Columbia University, New York, NY, USA
| | - Stella M. Papa
- Department of Neurology, School of Medicine, and Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.,Correspondence: Dr. Lewis, Brain and Mind Centre, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia; or Dr. Papa, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA;
| | | |
Collapse
|
14
|
Cholinergic systems, attentional-motor integration, and cognitive control in Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2022; 269:345-371. [PMID: 35248201 PMCID: PMC8957710 DOI: 10.1016/bs.pbr.2022.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dysfunction and degeneration of CNS cholinergic systems is a significant component of multi-system pathology in Parkinson's disease (PD). We review the basic architecture of human CNS cholinergic systems and the tools available for studying changes in human cholinergic systems. Earlier post-mortem studies implicated abnormalities of basal forebrain corticopetal cholinergic (BFCC) and pedunculopontine-laterodorsal tegmental (PPN-LDT) cholinergic projections in cognitive deficits and gait-balance deficits, respectively. Recent application of imaging methods, particularly molecular imaging, allowed more sophisticated correlation of clinical features with regional cholinergic deficits. BFCC projection deficits correlate with general and domain specific cognitive deficits, particularly for attentional and executive functions. Detailed analyses suggest that cholinergic deficits within the salience and cingulo-opercular task control networks, including both neocortical, thalamic, and striatal nodes, are a significant component of cognitive deficits in non-demented PD subjects. Both BFCC and PPN-LDT cholinergic projection systems, and striatal cholinergic interneuron (SChI), abnormalities are implicated in PD gait-balance disorders. In the context of experimental studies, these results indicate that disrupted attentional functions of BFCC and PPN-LDT cholinergic systems underlie impaired gait-balance functions. SChI dysfunction likely impairs intra-striatal integration of attentional and motor information. Thalamic and entorhinal cortex cholinergic deficits may impair multi-sensory integration. Overt degeneration of CNS systems may be preceded by increased activity of cholinergic neurons compensating for nigrostriatal dopaminergic deficits. Subsequent dysfunction and degeneration of cholinergic systems unmasks and exacerbates functional deficits secondary to dopaminergic denervation. Research on CNS cholinergic systems dysfunctions in PD requires a systems-level approach to understanding PD pathophysiology.
Collapse
|
15
|
Bohnen NI, Costa RM, Dauer WT, Factor SA, Giladi N, Hallett M, Lewis SJ, Nieuwboer A, Nutt JG, Takakusaki K, Kang UJ, Przedborski S, Papa SM. Discussion of Research Priorities for Gait Disorders in Parkinson's Disease. Mov Disord 2021; 37:253-263. [PMID: 34939221 PMCID: PMC10122497 DOI: 10.1002/mds.28883] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/08/2021] [Accepted: 11/10/2021] [Indexed: 12/18/2022] Open
Abstract
Gait and balance abnormalities develop commonly in Parkinson's disease and are among the motor symptoms most disabling and refractory to dopaminergic or other treatments, including deep brain stimulation. Efforts to develop effective therapies are challenged by limited understanding of these complex disorders. There is a major need for novel and appropriately targeted research to expedite progress in this area. The Scientific Issues Committee of the International Parkinson and Movement Disorder Society has charged a panel of experts in the field to consider the current knowledge gaps and determine the research routes with highest potential to generate groundbreaking data. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Nicolaas I. Bohnen
- Departments of Radiology and Neurology University of Michigan and VA Ann Arbor Healthcare System Ann Arbor Michigan USA
| | - Rui M. Costa
- Departments of Neuroscience and Neurology, Zuckerman Mind Brain Behavior Institute Columbia University New York New York USA
| | - William T. Dauer
- Departments of Neurology and Neuroscience The Peter O'Donnell Jr. Brain Institute, UT Southwestern Dallas Texas USA
| | - Stewart A. Factor
- Jean and Paul Amos Parkinson's Disease and Movement Disorders Program Emory University School of Medicine Atlanta Georgia USA
| | - Nir Giladi
- Movement Disorders Unit, Department of Neurology, Tel‐Aviv Sourasky Medical Center, Sackler School of Medicine and Sagol School of Neuroscience Tel Aviv University Tel Aviv Israel
| | - Mark Hallett
- Human Motor Control Section National Institute of Neurological Disorders and Stroke, National Institutes of Health Bethesda Maryland USA
| | - Simon J.G. Lewis
- ForeFront Parkinson's Disease Research Clinic, Brain and Mind Centre, School of Medical Sciences University of Sydney Sydney New South Wales Australia
| | - Alice Nieuwboer
- Department of Rehabilitation Sciences KU Leuven Leuven Belgium
| | - John G. Nutt
- Movement Disorder Section, Department of Neurology Oregon Health & Science University Portland Oregon USA
| | - Kaoru Takakusaki
- Department of Physiology, Section of Neuroscience Asahikawa Medical University Asahikawa Japan
| | - Un Jung Kang
- Departments of Neurology, Neuroscience, and Physiology Neuroscience Institute, The Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, The Parekh Center for Interdisciplinary Neurology, New York University Grossman School of Medicine New York New York USA
| | - Serge Przedborski
- Departments of Pathology and Cell Biology, Neurology, and Neuroscience Columbia University New York New York USA
| | - Stella M. Papa
- Department of Neurology, School of Medicine, and Yerkes National Primate Research Center Emory University Atlanta Georgia USA
| | | |
Collapse
|
16
|
Metz CN, Pavlov VA. Treating disorders across the lifespan by modulating cholinergic signaling with galantamine. J Neurochem 2021; 158:1359-1380. [PMID: 33219523 PMCID: PMC10049459 DOI: 10.1111/jnc.15243] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023]
Abstract
Advances in understanding the regulatory functions of the nervous system have revealed neural cholinergic signaling as a key regulator of cytokine responses and inflammation. Cholinergic drugs, including the centrally acting acetylcholinesterase inhibitor, galantamine, which are in clinical use for the treatment of Alzheimer's disease and other neurodegenerative and neuropsychiatric disorders, have been rediscovered as anti-inflammatory agents. Here, we provide a timely update on this active research and clinical developments. We summarize the involvement of cholinergic mechanisms and inflammation in the pathobiology of Alzheimer's disease, Parkinson's disease, and schizophrenia, and the effectiveness of galantamine treatment. We also highlight recent findings demonstrating the effects of galantamine in preclinical and clinical settings of numerous conditions and diseases across the lifespan that are characterized by immunological, neurological, and metabolic dysfunction.
Collapse
Affiliation(s)
- Christine N. Metz
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Valentin A. Pavlov
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| |
Collapse
|
17
|
Rosso AL, Marcum ZA, Zhu X, Bohnen N, Rosano C. Anticholinergic Medication Use, Dopaminergic Genotype, and Recurrent Falls. J Gerontol A Biol Sci Med Sci 2021; 77:1042-1047. [PMID: 34463739 DOI: 10.1093/gerona/glab258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Anticholinergic medications are associated with fall risk. Higher dopaminergic signaling may provide resilience to these effects. We tested interactions between anticholinergic medication use and dopaminergic genotype on risk for recurrent falls over 10 years. METHODS Participants in the Health ABC study (n=2372, mean age=73.6; 47.8% men; 60.0% White) without disability or anticholinergic use at baseline were followed for up to 10 years for falls. Medication use was documented in 7 of 10 years. Highly anticholinergic medications were defined by Beers criteria, 2019. Recurrent falls were defined as ≥2 in the 12 months following medication assessment. Generalized estimating equations tested the association of anticholinergic use with recurrent falls in the following 12 months, adjusted for demographics, health characteristics, and anticholinergic use indicators. Effect modification by dopaminergic genotype (catechol-O-methyltransferase (COMT); Met/Met, higher dopamine signaling, n=454 vs Val carriers, lower dopamine signaling, n=1918) was tested and analyses repeated stratified by genotype. RESULTS During follow-up, 841 people reported recurrent falls. Anticholinergic use doubled the odds of recurrent falls (adjusted OR [95% CI]=2.09 (1.45, 3.03)), with suggested effect modification by COMT (p=0.1). The association was present in Val carriers (adjusted OR [95% CI]=2.16 (1.44, 3.23)) but not in Met/Met genotype (adjusted OR [95% CI]=1.70 (0.66, 4.41)). Effect sizes were stronger when excluding baseline recurrent fallers. CONCLUSION Higher dopaminergic signaling may provide protection against increased 12-month fall risk from anticholinergic use. Assessing vulnerability to the adverse effects of anticholinergic medications could help in determination of risk/benefit ratio for prescribing and deprescribing anticholinergics in older adults.
Collapse
Affiliation(s)
- Andrea L Rosso
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh
| | | | - Xiaonan Zhu
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh
| | - Nicolaas Bohnen
- Departments of Radiology and Neurology, School of Medicine, University of Michigan
| | - Caterina Rosano
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh
| |
Collapse
|
18
|
Wang H, Li HY, Guo X, Zhou Y. Posture Instability Is Associated with Dopamine Drop of Nigrostriatal System and Hypometabolism of Cerebral Cortex in Parkinson Disease. Curr Neurovasc Res 2021; 18:244-253. [PMID: 34082681 DOI: 10.2174/1567202618666210603124814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Posture instability (PI) is known to be a severe complication in Parkinson's disease (PD), and its mechanism remains poorly understood. Our study aims to explore the changes of brain network in PI of PD, and further investigate the role of peripheral inflammation on activities of different brain regions in PD with PI. METHODS 167 individuals were recruited, including 36 PD cases with PI and 131 ones without PI. We carefully assessed the status of motor and cognitive function, measured serum inflammatory factors, and detected the dopaminergic pathways and the metabolism of different brain regions by positron emission tomography (PET). Data analysis was conducted by variance, univariate analysis, chi-square analysis, logistic regression, and partial correlation. RESULT No difference was found for age or onset age between the two groups (P>0.05). Female patients were susceptible to posture impairment and had a 2.14-fold risk for PI compared with male patients in PD (P<0.05). Patients with PI had more severe impairment of motor and cognitive function for a longer duration than those without PI (P<0.05). The mean uptake ratios of presynaptic vesicular monoamine transporter (VMAT2), which were detected in the caudate nucleus and putamen, were lower in PI group than those without PI (P<0.05). There were lower activities of the midbrain, caudate nucleus, and anterior medial temporal cortex in PI group than those in the non-PI group (P<0.05). Although serum concentrations of immunoglobulins (IgG, IgM, and IgA) and complements (C3, C4) were higher in PI group than those in the non-PI group, only serum IgM concentration had a significant difference between the two groups (P<0.05). We further explored significant inverse correlations of IgG, IgM, IgA, and C4 with activities of some cerebral cortex in PI of PD (P<0.05). CONCLUSION Female patients were susceptible to posture instability and had a 2.14-fold risk for PI of PD. Patients with PI had more severe impairments of motor and cognitive function for a longer duration than those without PI. PI was associated with dopamine drop of the nigrostriatal system and lower activities of the limbic cortex in PD. Peripheral inflammation may be involved in degeneration of the cerebral cortex in PD combined with PI.
Collapse
Affiliation(s)
- Hongyan Wang
- The Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 10053, China
| | - Hong-Yu Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xiuhai Guo
- The Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 10053, China
| | - Yongtao Zhou
- The Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 10053, China
| |
Collapse
|
19
|
Sarter M, Avila C, Kucinski A, Donovan E. Make a Left Turn: Cortico-Striatal Circuitry Mediating the Attentional Control of Complex Movements. Mov Disord 2021; 36:535-546. [PMID: 33615556 DOI: 10.1002/mds.28532] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND In movement disorders such as Parkinson's disease (PD), cholinergic signaling is disrupted by the loss of basal forebrain cholinergic neurons, as well as aberrant activity in striatal cholinergic interneurons (ChIs). Several lines of evidence suggest that gait imbalance, a key disabling symptom of PD, may be driven by alterations in high-level frontal cortical and cortico-striatal processing more typically associated with cognitive dysfunction. METHODS Here we describe the corticostriatal circuitry that mediates the cognitive-motor interactions underlying such complex movement control. The ability to navigate dynamic, obstacle-rich environments requires the continuous integration of information about the environment with movement selection and sequencing. The cortical-attentional processing of extero- and interoceptive cues requires modulation by cholinergic activity to guide striatal movement control. Cue-derived information is "transferred" to striatal circuitry primarily via fronto-striatal glutamatergic projections. RESULT Evidence from parkinsonian fallers and from a rodent model reproducing the dual cholinergic-dopaminergic losses observed in these patients supports the main hypotheses derived from this neuronal circuitry-guided conceptualization of parkinsonian falls. Furthermore, in the striatum, ChIs constitute a particularly critical node for the integration of cortical with midbrain dopaminergic afferents and thus for cues to control movements. CONCLUSION Procholinergic treatments that enhance or rescue cortical and striatal mechanisms may improve complex movement control in parkinsonian fallers and perhaps also in older persons suffering from gait disorders and a propensity for falls. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Martin Sarter
- Department of Psychology & Neuroscience Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Cassandra Avila
- Department of Psychology & Neuroscience Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Aaron Kucinski
- Department of Psychology & Neuroscience Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Eryn Donovan
- Department of Psychology & Neuroscience Program, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
20
|
Reduction of falls in a rat model of PD falls by the M1 PAM TAK-071. Psychopharmacology (Berl) 2021; 238:1953-1964. [PMID: 33735392 PMCID: PMC7969347 DOI: 10.1007/s00213-021-05822-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/08/2021] [Indexed: 01/03/2023]
Abstract
RATIONALE In addition to the disease-defining motor symptoms, patients with Parkinson's disease (PD) exhibit gait dysfunction, postural instability, and a propensity for falls. These dopamine (DA) replacement-resistant symptoms in part have been attributed to loss of basal forebrain (BF) cholinergic neurons and, in interaction with striatal dopamine (DA) loss, to the resulting disruption of the attentional control of balance and complex movements. Rats with dual cholinergic-DA losses ("DL rats") were previously demonstrated to model PD falls and associated impairments of gait and balance. OBJECTIVES We previously found that the muscarinic M1-positive allosteric modulator (PAM) TAK-071 improved the attentional performance of rats with BF cholinergic losses. Here, we tested the hypotheses that TAK-071 reduces fall rates in DL rats. RESULTS Prior to DL surgery, female rats were trained to traverse a rotating straight rod as well as a rod with two zigzag segments. DL rats were refamiliarized with such traversals post-surgery and tested over 7 days on increasingly demanding testing conditions. TAK-071 (0.1, 0.3 mg/kg, p.o.) was administered prior to daily test sessions over this 7-day period. As before, DL rats fell more frequently than sham-operated control rats. Treatment of DL rats with TAK-071 reduced falls from the rotating rod and the rotating zigzag rod, specifically when the angled part of the zigzag segment, upon entering, was at a steep, near vertical angle. CONCLUSIONS TAK-071 may benefit complex movement control, specifically in situations which disrupt the patterning of forward movement and require the interplay between cognitive and motor functions to modify movement based on information about the state of dynamic surfaces, balance, and gait.
Collapse
|