1
|
Groborz O, Marsalek P, Sefc L. New insights into the mechanisms and prevention of central nervous system oxygen toxicity: A prospective review. Life Sci 2025; 360:123169. [PMID: 39447734 DOI: 10.1016/j.lfs.2024.123169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/19/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
Hyperbaric oxygen therapy (HBOT) elevates the partial pressure of life-sustaining oxygen (pO2), thereby saving lives. However, HBOT can also cause toxic effects like lung and retinal damage (peripheral oxygen toxicity) and violent myoclonic seizures (central nervous system (CNS) toxicity). The mechanisms behind these effects are not fully understood, hindering the development of effective therapies and preventive strategies. Herein, we critically reviewed the literature to understand CNS oxygen toxicity associated with HBOT to elucidate their mechanism, treatment, and prevention. We provide evidence that (1) increased pO2 increases reactive oxygen species (ROS) concentration in tissues, which irreversibly alters cell receptors, causing peripheral oxygen toxicity and contributing to CNS oxygen toxicity. Furthermore, (2) increased ROS concentration in the brain lowers the activity of glutamic decarboxylase (GD), which lowers concentrations of inhibitory neurotransmitter γ-aminobutyric acid (GABA), thereby contributing to the onset of HBOT-derived seizures. We provide long-overlooked evidence that (3) elevated ambient pressure directly inhibits GABAA, glycine and other receptors, leading to the rapid onset of seizures. Additionally, (4) acidosis facilitates the onset of seizures by an unknown mechanism. Only a combination of these mechanisms explains most phenomena seen in peripheral and CNS oxygen toxicity. Based on these proposed intertwined mechanisms, we suggest administering antioxidants (lowering ROS concentrations), pyridoxine (restoring GD activity), low doses of sedatives/anesthetics (reversing inhibitory effects of pressure on GABAA and glycine receptors), and treatment of acidemia before routine HBOT to prevent peripheral and CNS oxygen toxicity. Theoretically, similar preventive strategies can be applied before deep-sea diving to prevent life-threatening convulsions.
Collapse
Affiliation(s)
- Ondrej Groborz
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic; Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Petr Marsalek
- Faculty of Biomedical Engineering, Czech Technical University in Prague, Czech Republic; Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ludek Sefc
- Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
2
|
Zhu W, Huang L, Cheng H, Li N, Zhang B, Dai W, Wu X, Zhang D, Feng W, Li S, Xu H. GABA and its receptors' mechanisms in the treatment of insomnia. Heliyon 2024; 10:e40665. [PMID: 39654705 PMCID: PMC11626785 DOI: 10.1016/j.heliyon.2024.e40665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/12/2024] Open
Abstract
Insomnia has now become a major health problem of global concern, with about 1/3 of the population suffering from sleep problems, a proportion that is still rising year by year. Most of the therapeutic drugs for insomnia currently used in clinical practice are not developed in a targeted manner, but are discovered by chance, and have unavoidable side effects such as addiction. Finding a safer and more effective therapeutic drug has become an urgent need for current research. Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central nervous system. It can ameliorate Insomnia, Alzheimer's disease, Parkinson's disease, Epilepsy, and other neurological disorders. Various mechanisms have been reported for GABA to ameliorate insomnia, such as GABAA receptor modulation, GABAB receptor modulation, inhibition of neuroinflammatory responses, repair of oxidative damage, and inter-regulation of the circadian rhythm hormone melatonin. GABA is a potential therapeutic target in the prevention and treatment of insomnia. This paper reviews mechanisms of GABA and its receptors in insomnia diseases and the potential of GABA analogs application and discusses the research progress of GABA as a promising therapeutic drug for insomnia diseases. This will help the development of novel targeted GABA-like drugs and provide new ideas and methods for the clinical treatment of insomnia.
Collapse
Affiliation(s)
- Wenwen Zhu
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Lishan Huang
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Hanxing Cheng
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Nanxi Li
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Bin Zhang
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Wenbin Dai
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiao Wu
- College of Integrative Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Dechou Zhang
- College of Integrative Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Wenzhan Feng
- College of Integrative Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Sen Li
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School,Nanjing University, Nanjing, China
| | - Houping Xu
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
3
|
Madireddy S, Madireddy S. Therapeutic Strategies to Ameliorate Neuronal Damage in Epilepsy by Regulating Oxidative Stress, Mitochondrial Dysfunction, and Neuroinflammation. Brain Sci 2023; 13:brainsci13050784. [PMID: 37239256 DOI: 10.3390/brainsci13050784] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Epilepsy is a central nervous system disorder involving spontaneous and recurring seizures that affects 50 million individuals globally. Because approximately one-third of patients with epilepsy do not respond to drug therapy, the development of new therapeutic strategies against epilepsy could be beneficial. Oxidative stress and mitochondrial dysfunction are frequently observed in epilepsy. Additionally, neuroinflammation is increasingly understood to contribute to the pathogenesis of epilepsy. Mitochondrial dysfunction is also recognized for its contributions to neuronal excitability and apoptosis, which can lead to neuronal loss in epilepsy. This review focuses on the roles of oxidative damage, mitochondrial dysfunction, NAPDH oxidase, the blood-brain barrier, excitotoxicity, and neuroinflammation in the development of epilepsy. We also review the therapies used to treat epilepsy and prevent seizures, including anti-seizure medications, anti-epileptic drugs, anti-inflammatory therapies, and antioxidant therapies. In addition, we review the use of neuromodulation and surgery in the treatment of epilepsy. Finally, we present the role of dietary and nutritional strategies in the management of epilepsy, including the ketogenic diet and the intake of vitamins, polyphenols, and flavonoids. By reviewing available interventions and research on the pathophysiology of epilepsy, this review points to areas of further development for therapies that can manage epilepsy.
Collapse
Affiliation(s)
- Sahithi Madireddy
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
4
|
Smith BJ, McHugh CF, Hirano AA, Brecha NC, Barnes S. Transient and Sustained Ganglion Cell Light Responses Are Differentially Modulated by Intrinsically Produced Reactive Oxygen Species Acting upon Specific Voltage-Gated Na + Channel Isoforms. J Neurosci 2023; 43:2291-2304. [PMID: 36828637 PMCID: PMC10072295 DOI: 10.1523/jneurosci.1723-22.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/26/2023] Open
Abstract
Increasing spike rates drive greater neuronal energy demand. In turn, mitochondrial ATP production leads to the generation of reactive oxygen species (ROS) that can modulate ion channel gating. Does ROS production autoregulate the excitability of a neuron? We investigated the links between retinal ganglion cell (RGC) excitability and spike activity-driven ROS production in male and female mice. Changes to the light-evoked and current-evoked spike patterns of functionally identified αRGC subtypes, along with their NaV channel-gating properties, were recorded during experimentally induced decreases and increases of intracellular ROS. During periods of highest spike rates (e.g., following light onset in ON sustained RGCs and light offset in OFF sustained RGCs), these αRGC subtypes responded to reductions of ROS (induced by catalase or glutathione monoethyl ester) with higher spike rates. Increases in ROS (induced by mercaptosuccinate, antimycin-A, or H2O2) lowered spike rates. In ON and OFF transient RGCs, there were no changes in spike rate during ROS decreases but increased ROS increased spiking. This suggests that endogenous ROS are intrinsic neuromodulators in RGCs having high metabolic demands but not in RGCs with lower energy needs. We identified ROS-induced shifts in the voltage-dependent gating of specific isoforms of NaV channels that account for the modulation of ON and OFF sustained RGC spike frequency by ROS-mediated feedback. ROS-induced changes to NaV channel gating, affecting activation and inactivation kinetics, are consistent with the differing spike pattern alterations observed in RGC subtypes. Cell-autonomous generation of ROS during spiking contributes to tuning the spike patterns of RGCs.SIGNIFICANCE STATEMENT Energy production within retinal ganglion cells (RGCs) is accompanied by metabolic by-products harmful to cellular function. How these by-products modulate the excitability of RGCs bears heavily on visual function and the etiology of optic neuropathies. A novel hypothesis of how RGC metabolism can produce automodulation of electrical signaling was tested by identifying the characteristics and biophysical origins of changes to the excitability of RGCs caused by oxidizing by-products in the retina. This impacts our understanding of the pathophysiology of RGC dysfunction, supporting an emerging model in which increases in oxidizing chemical species during energy production, but not necessarily bioenergetic failure, lead to preferential degeneration of specific subtypes of RGCs, yielding loss of different aspects of visual capacity.
Collapse
Affiliation(s)
- Benjamin J Smith
- Doheny Eye Institute, University of California, Los Angeles, California 91103
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Cyrus F McHugh
- Doheny Eye Institute, University of California, Los Angeles, California 91103
| | - Arlene A Hirano
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Nicholas C Brecha
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
- Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California 90073
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
- Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Steven Barnes
- Doheny Eye Institute, University of California, Los Angeles, California 91103
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
- Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| |
Collapse
|
5
|
Research progress on oxidative stress regulating different types of neuronal death caused by epileptic seizures. Neurol Sci 2022; 43:6279-6298. [DOI: 10.1007/s10072-022-06302-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/24/2022] [Indexed: 12/09/2022]
|
6
|
Biswas K, Alexander K, Francis MM. Reactive Oxygen Species: Angels and Demons in the Life of a Neuron. NEUROSCI 2022; 3:130-145. [PMID: 39484669 PMCID: PMC11523706 DOI: 10.3390/neurosci3010011] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 03/13/2022] [Indexed: 11/03/2024] Open
Abstract
Reactive oxygen species (ROS) have emerged as regulators of key processes supporting neuronal growth, function, and plasticity across lifespan. At normal physiological levels, ROS perform important roles as secondary messengers in diverse molecular processes such as regulating neuronal differentiation, polarization, synapse maturation, and neurotransmission. In contrast, high levels of ROS are toxic and can ultimately lead to cell death. Excitable cells, such as neurons, often require high levels of metabolic activity to perform their functions. As a consequence, these cells are more likely to produce high levels of ROS, potentially enhancing their susceptibility to oxidative damage. In addition, because neurons are generally post-mitotic, they may be subject to accumulating oxidative damage. Thus, maintaining tight control over ROS concentration in the nervous system is essential for proper neuronal development and function. We are developing a more complete understanding of the cellular and molecular mechanisms for control of ROS in these processes. This review focuses on ROS regulation of the developmental and functional properties of neurons, highlighting recent in vivo studies. We also discuss the current evidence linking oxidative damage to pathological conditions associated with neurodevelopmental and neurodegenerative disorders.
Collapse
Affiliation(s)
- Kasturi Biswas
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; (K.B.); (K.A.)
- Graduate Program in Neuroscience, Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Kellianne Alexander
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; (K.B.); (K.A.)
- Graduate Program in Neuroscience, Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Michael M Francis
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; (K.B.); (K.A.)
- Graduate Program in Neuroscience, Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
7
|
Wu K, Castellano D, Tian Q, Lu W. Distinct regulation of tonic GABAergic inhibition by NMDA receptor subtypes. Cell Rep 2021; 37:109960. [PMID: 34758303 PMCID: PMC8630577 DOI: 10.1016/j.celrep.2021.109960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/03/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
Tonic inhibition mediated by extrasynaptic GABAARs regulates various brain functions. However, the mechanisms that regulate tonic inhibition remain largely unclear. Here, we report distinct actions of GluN2A- and GluN2B-NMDA receptors (NMDARs) on tonic inhibition in hippocampal neurons under basal and high activity conditions. Specifically, overexpression of GluN2B, but not GluN2A, reduces α5-GABAAR surface expression and tonic currents. Additionally, knockout of GluN2A and GluN2B decreases and increases tonic currents, respectively. Mechanistically, GluN2A-NMDARs inhibit and GluN2B-NMDARs promote α5-GABAAR internalization, resulting in increased and decreased surface α5-GABAAR expression, respectively. Furthermore, GluN2A-NMDARs, but not GluN2B-NMDARs, are required for homeostatic potentiation of tonic inhibition induced by prolonged increase of neuronal activity. Last, tonic inhibition decreases during acute seizures, whereas it increases 24 h later, involving GluN2-NMDAR-dependent signaling. Collectively, these data reveal an NMDAR subunit-specific regulation of tonic inhibition in physiological and pathological conditions and provide mechanistic insight into activity-dependent modulation of tonic inhibition.
Collapse
Affiliation(s)
- Kunwei Wu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Castellano
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qingjun Tian
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Lu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
8
|
Mokrushin AA. Optimization of the Acidic–Alkaline Composition of the Incubation Medium for Long-Term and Reversible Cryopreservation of Brain Slices of Nonhibernating Animals. Biophysics (Nagoya-shi) 2021. [DOI: 10.1134/s0006350921050134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
9
|
Oxidative Dysregulation in Early Life Stress and Posttraumatic Stress Disorder: A Comprehensive Review. Brain Sci 2021; 11:brainsci11060723. [PMID: 34072322 PMCID: PMC8228973 DOI: 10.3390/brainsci11060723] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/30/2022] Open
Abstract
Traumatic stress may chronically affect master homeostatic systems at the crossroads of peripheral and central susceptibility pathways and lead to the biological embedment of trauma-related allostatic trajectories through neurobiological alterations even decades later. Lately, there has been an exponential knowledge growth concerning the effect of traumatic stress on oxidative components and redox-state homeostasis. This extensive review encompasses a detailed description of the oxidative cascade components along with their physiological and pathophysiological functions and a systematic presentation of both preclinical and clinical, genetic and epigenetic human findings on trauma-related oxidative stress (OXS), followed by a substantial synthesis of the involved oxidative cascades into specific and functional, trauma-related pathways. The bulk of the evidence suggests an imbalance of pro-/anti-oxidative mechanisms under conditions of traumatic stress, respectively leading to a systemic oxidative dysregulation accompanied by toxic oxidation byproducts. Yet, there is substantial heterogeneity in findings probably relative to confounding, trauma-related parameters, as well as to the equivocal directionality of not only the involved oxidative mechanisms but other homeostatic ones. Accordingly, we also discuss the trauma-related OXS findings within the broader spectrum of systemic interactions with other major influencing systems, such as inflammation, the hypothalamic-pituitary-adrenal axis, and the circadian system. We intend to demonstrate the inherent complexity of all the systems involved, but also put forth associated caveats in the implementation and interpretation of OXS findings in trauma-related research and promote their comprehension within a broader context.
Collapse
|
10
|
Regulation of Superoxide by BAP31 through Its Effect on p22 phox and Keap1/Nrf2/HO-1 Signaling Pathway in Microglia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1457089. [PMID: 33777312 PMCID: PMC7969104 DOI: 10.1155/2021/1457089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 11/28/2020] [Accepted: 12/23/2020] [Indexed: 11/20/2022]
Abstract
Reactive oxygen species (ROS) production by activation of microglia is considered to be a major cause of neuronal dysfunction, which can lead to damage and death through direct oxidative damage to neuronal macromolecules or derangement of neuronal redox signaling circuits. BAP31, an integral ER membrane protein, has been defined as a regulatory molecule in the CNS. Our latest studies have found that BAP31 deficiency leads to activation of microglia. In this study, we discovered that BAP31 deficiency upregulated LPS-induced superoxide anion production in BV2 cells and mice by upregulating the expression level of p22phox and by inhibiting the activation of Nrf2-HO-1 signaling. Knockdown of p22phox/keap1 or use of an NADPH oxidase inhibitor (apocynin) reversed the production of superoxide anion and inflammatory cytokines, which then reduced neuronal damage and death in vitro and in vivo. These results suggest that BAP31 deficiency contributes to microglia-related superoxide anion production and neuroinflammation through p22phox and keap1. Furthermore, the excess superoxide anion cooperated with inflammatory cytokines to induce the damage and death of neurons. Thus, we determined that BAP31 is an important regulator in superoxide anion production and neuroinflammation, and the downstream regulators or agonists of BAP31 could therefore be considered as potential therapeutic targets in microglial-related superoxide anion production and neuroinflammation.
Collapse
|
11
|
Ermakov EA, Dmitrieva EM, Parshukova DA, Kazantseva DV, Vasilieva AR, Smirnova LP. Oxidative Stress-Related Mechanisms in Schizophrenia Pathogenesis and New Treatment Perspectives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8881770. [PMID: 33552387 PMCID: PMC7847339 DOI: 10.1155/2021/8881770] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/15/2020] [Accepted: 01/02/2021] [Indexed: 02/07/2023]
Abstract
Schizophrenia is recognized to be a highly heterogeneous disease at various levels, from genetics to clinical manifestations and treatment sensitivity. This heterogeneity is also reflected in the variety of oxidative stress-related mechanisms contributing to the phenotypic realization and manifestation of schizophrenia. At the molecular level, these mechanisms are supposed to include genetic causes that increase the susceptibility of individuals to oxidative stress and lead to gene expression dysregulation caused by abnormal regulation of redox-sensitive transcriptional factors, noncoding RNAs, and epigenetic mechanisms favored by environmental insults. These changes form the basis of the prooxidant state and lead to altered redox signaling related to glutathione deficiency and impaired expression and function of redox-sensitive transcriptional factors (Nrf2, NF-κB, FoxO, etc.). At the cellular level, these changes lead to mitochondrial dysfunction and metabolic abnormalities that contribute to aberrant neuronal development, abnormal myelination, neurotransmitter anomalies, and dysfunction of parvalbumin-positive interneurons. Immune dysfunction also contributes to redox imbalance. At the whole-organism level, all these mechanisms ultimately contribute to the manifestation and development of schizophrenia. In this review, we consider oxidative stress-related mechanisms and new treatment perspectives associated with the correction of redox imbalance in schizophrenia. We suggest that not only antioxidants but also redox-regulated transcription factor-targeting drugs (including Nrf2 and FoxO activators or NF-κB inhibitors) have great promise in schizophrenia. But it is necessary to develop the stratification criteria of schizophrenia patients based on oxidative stress-related markers for the administration of redox-correcting treatment.
Collapse
Affiliation(s)
- Evgeny A. Ermakov
- Laboratory of Repair Enzymes, Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Elena M. Dmitrieva
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia
| | - Daria A. Parshukova
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia
| | | | | | - Liudmila P. Smirnova
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia
| |
Collapse
|
12
|
Abstract
BACKGROUND Mechanisms of postoperative delirium remain poorly understood, limiting development of effective treatments. We tested the hypothesis that intraoperative oxidative damage is associated with delirium and neuronal injury and that disruption of the blood-brain barrier modifies these associations. METHODS In a prespecified cohort study of 400 cardiac surgery patients enrolled in a clinical trial of atorvastatin to reduce kidney injury and delirium, we measured plasma concentrations of F2-isoprostanes and isofurans using gas chromatography-mass spectrometry to quantify oxidative damage, ubiquitin carboxyl-terminal hydrolase isozyme L1 to quantify neuronal injury, and S100 calcium-binding protein B using enzyme-linked immunosorbent assays to quantify blood-brain barrier disruption before, during, and after surgery. We performed the Confusion Assessment Method for the Intensive Care Unit twice daily to diagnose delirium. We measured the independent associations between intraoperative F2-isoprostanes and isofurans and delirium (primary outcome) and postoperative ubiquitin carboxyl-terminal hydrolase isozyme L1 (secondary outcome), and we assessed if S100 calcium-binding protein B modified these associations. RESULTS Delirium occurred in 109 of 400 (27.3%) patients for a median (10th, 90th percentile) of 1.0 (0.5, 3.0) days. In the total cohort, plasma ubiquitin carboxyl-terminal hydrolase isozyme L1 concentration was 6.3 ng/ml (2.7, 14.9) at baseline and 12.4 ng/ml (7.9, 31.2) on postoperative day 1. F2-isoprostanes and isofurans increased throughout surgery, and the log-transformed sum of intraoperative F2-isoprostanes and isofurans was independently associated with increased odds of postoperative delirium (odds ratio, 3.70 [95% CI, 1.41 to 9.70]; P = 0.008) and with increased postoperative ubiquitin carboxyl-terminal hydrolase isozyme L1 (ratio of geometric means, 1.42 [1.11 to 1.81]; P = 0.005). The association between increased intraoperative F2-isoprostanes and isofurans and increased postoperative ubiquitin carboxyl-terminal hydrolase isozyme L1 was amplified in patients with elevated S100 calcium-binding protein B (P = 0.049). CONCLUSIONS Intraoperative oxidative damage was associated with increased postoperative delirium and neuronal injury, and the association between oxidative damage and neuronal injury was stronger among patients with increased blood-brain barrier disruption.
Collapse
|
13
|
Peng JJ, Lin SH, Liu YT, Lin HC, Li TN, Yao CK. A circuit-dependent ROS feedback loop mediates glutamate excitotoxicity to sculpt the Drosophila motor system. eLife 2019; 8:47372. [PMID: 31318331 PMCID: PMC6682402 DOI: 10.7554/elife.47372] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022] Open
Abstract
Overproduction of reactive oxygen species (ROS) is known to mediate glutamate excitotoxicity in neurological diseases. However, how ROS burdens can influence neural circuit integrity remains unclear. Here, we investigate the impact of excitotoxicity induced by depletion of Drosophila Eaat1, an astrocytic glutamate transporter, on locomotor central pattern generator (CPG) activity, neuromuscular junction architecture, and motor function. We show that glutamate excitotoxicity triggers a circuit-dependent ROS feedback loop to sculpt the motor system. Excitotoxicity initially elevates ROS, thereby inactivating cholinergic interneurons and consequently changing CPG output activity to overexcite motor neurons and muscles. Remarkably, tonic motor neuron stimulation boosts muscular ROS, gradually dampening muscle contractility to feedback-enhance ROS accumulation in the CPG circuit and subsequently exacerbate circuit dysfunction. Ultimately, excess premotor excitation of motor neurons promotes ROS-activated stress signaling that alters neuromuscular junction architecture. Collectively, our results reveal that excitotoxicity-induced ROS can perturb motor system integrity through a circuit-dependent mechanism.
Collapse
Affiliation(s)
- Jhan-Jie Peng
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China.,Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Shih-Han Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Yu-Tzu Liu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Hsin-Chieh Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Tsai-Ning Li
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Chi-Kuang Yao
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China.,Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan, Republic of China
| |
Collapse
|
14
|
Reactive Oxygen Species in the Regulation of the GABA Mediated Inhibitory Neurotransmission. Neuroscience 2019; 439:137-145. [PMID: 31200105 DOI: 10.1016/j.neuroscience.2019.05.064] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 11/22/2022]
Abstract
Reactive oxygen species (ROS) are best known for being involved in cellular metabolism and oxidative stress, but also play important roles in cell communication. ROS signaling has become increasingly recognized as a mechanism implicated in the regulation of synaptic neurotransmission, under both physiological and pathological conditions. Hydrogen peroxide (H2O2) and superoxide anion are the main biologically relevant endogenous ROS in the nervous system. They are predominantly produced in the mitochondria of neurons and glial cells and their levels are tightly regulated by the antioxidant cell machinery, which allows for dynamic signaling through these agents. Physicochemical and biological properties of H2O2 enable it to effectively play an important role in signaling. This review brings up some or the most significant evidence supporting ROS as signaling agents in the nervous system and summarizes data showing that ROS modulate γ-aminobutyric acid (GABA)-mediated neurotransmission by pre- and postsynaptic mechanisms. ROS induce changes on both, the activity of phasic and tonic GABAA receptors and GABA release from presynaptic terminals. Based on these facts, ROS signaling is discussed as a possible selective mechanism linking cellular metabolism to inhibitory neurotransmission through the direct or indirect modulation of the GABAA receptor function. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.
Collapse
|
15
|
Supraphysiological Levels of Oxygen Exposure During the Neonatal Period Impairs Signaling Pathways Required for Learning and Memory. Sci Rep 2018; 8:9914. [PMID: 29967535 PMCID: PMC6028393 DOI: 10.1038/s41598-018-28220-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/04/2018] [Indexed: 12/31/2022] Open
Abstract
Preterm infants often require prolonged oxygen supplementation and are at high risk of neurodevelopmental impairment. We recently reported that adult mice exposed to neonatal hyperoxia (postnatal day [P] 2 to 14) had spatial navigation memory deficits associated with hippocampal shrinkage. The mechanisms by which early oxidative stress impair neurodevelopment are not known. Our objective was to identify early hyperoxia-induced alterations in hippocampal receptors and signaling pathways necessary for memory formation. We evaluated C57BL/6 mouse pups at P14, exposed to either 85% oxygen or air from P2 to 14. We performed targeted analysis of hippocampal ligand-gated ion channels and proteins necessary for memory formation, and global bioinformatic analysis of differentially expressed hippocampal genes and proteins. Hyperoxia decreased hippocampal mGLU7, TrkB, AKT, ERK2, mTORC1, RPS6, and EIF4E and increased α3, α5, and ɤ2 subunits of GABAA receptor and PTEN proteins, although changes in gene expression were not always concordant. Bioinformatic analysis indicated dysfunction in mitochondria and global protein synthesis and translational processes. In conclusion, supraphysiological oxygen exposure reduced proteins necessary for hippocampus-dependent memory formation and may adversely impact hippocampal mitochondrial function and global protein synthesis. These early hippocampal changes may account for memory deficits seen in preterm survivors following prolonged oxygen supplementation.
Collapse
|
16
|
Abstract
SIGNIFICANCE Oxidative stress increases in the brain with aging and neurodegenerative diseases. Previous work emphasized irreversible oxidative damage in relation to cognitive impairment. This research has evolved to consider a continuum of alterations, from redox signaling to oxidative damage, which provides a basis for understanding the onset and progression of cognitive impairment. This review provides an update on research linking redox signaling to altered function of neural circuits involved in information processing and memory. Recent Advances: Starting in middle age, redox signaling triggers changes in nervous system physiology described as senescent physiology. Hippocampal senescent physiology involves decreased cell excitability, altered synaptic plasticity, and decreased synaptic transmission. Recent studies indicate N-methyl-d-aspartate and ryanodine receptors and Ca2+ signaling molecules as molecular substrates of redox-mediated senescent physiology. CRITICAL ISSUES We review redox homeostasis mechanisms and consider the chemical character of reactive oxygen and nitrogen species and their role in regulating different transmitter systems. In this regard, senescent physiology may represent the co-opting of pathways normally responsible for feedback regulation of synaptic transmission. Furthermore, differences across transmitter systems may underlie differential vulnerability of brain regions and neuronal circuits to aging and disease. FUTURE DIRECTIONS It will be important to identify the intrinsic mechanisms for the shift in oxidative/reductive processes. Intrinsic mechanism will depend on the transmitter system, oxidative stressors, and expression/activity of antioxidant enzymes. In addition, it will be important to identify how intrinsic processes interact with other aging factors, including changes in inflammatory or hormonal signals. Antioxid. Redox Signal. 28, 1724-1745.
Collapse
Affiliation(s)
- Ashok Kumar
- 1 Department of Neuroscience, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | - Brittney Yegla
- 1 Department of Neuroscience, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | - Thomas C Foster
- 1 Department of Neuroscience, McKnight Brain Institute, University of Florida , Gainesville, Florida.,2 Genetics and Genomics Program, Genetics Institute, University of Florida , Gainesville, Florida
| |
Collapse
|
17
|
Adstamongkonkul D, Hess DC. Ischemic Conditioning and neonatal hypoxic ischemic encephalopathy: a literature review. CONDITIONING MEDICINE 2017; 1:9-16. [PMID: 30215057 PMCID: PMC6131706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hypoxic Ischemic Encephalopathy (HIE) is the result of severe anoxic brain injury during the neonatal period and causes life-long morbidity and premature mortality. Currently, therapeutic hypothermia immediately after birth is the standard of care for clinically relevant HIE. However, therapeutic hypothermia alone does not provide complete neuroprotection and there is an urgent need for adjunctive therapies. Ischemic conditioning is an adaptive process of endogenous protection in which small doses of sub-lethal ischemia can provide a protection against a lethal ischemic event. Remote Ischemic Post-conditioning (RIPC), a form of ischemic conditioning, is highly translatable for HIE diagnosed immediately after birth as the conditioned ischemic stimulus is applied at the limb after the lethal ischemic episode. A number of studies in neonatal rats have demonstrated that RIPC is effective at reducing injury in focal cerebral ischemia models and improves neurological outcomes. In this review, we focus on the available data on HIE and its current treatment, models in HIE studies, ischemic conditioning/RIPC and its mechanism. We discuss in particular the effect of RIPC on neonatal brain with HIE. We postulate that combining RIPC with standard therapeutic hypothermia can be an attractive therapeutic approach for HIE.
Collapse
Affiliation(s)
- Dusit Adstamongkonkul
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA
| | - David C Hess
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA
| |
Collapse
|
18
|
Ketamine Increases the Function of γ-Aminobutyric Acid Type A Receptors in Hippocampal and Cortical Neurons. Anesthesiology 2017; 126:666-677. [PMID: 27984263 DOI: 10.1097/aln.0000000000001483] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The "dissociative " general anesthetic ketamine is a well-known N-methyl-D-aspartate receptor antagonist. However, whether ketamine, at clinically relevant concentrations, increases the activity of inhibitory γ-aminobutyric acid (GABA) receptor type A (GABAA) receptors in different brain regions remains controversial. Here, the authors studied the effects of ketamine on synaptic and extrasynaptic GABAA receptors in hippocampal neurons. Ketamine modulation of extrasynaptic GABAA receptors in cortical neurons was also examined. METHODS Whole cell currents were recorded from cultured murine neurons. Current evoked by exogenous GABA, miniature inhibitory postsynaptic currents, and currents directly activated by ketamine were studied. RESULTS Ketamine did not alter the amplitude, frequency, or kinetics of postsynaptic currents but increased a tonic inhibitory current generated by extrasynaptic GABAA receptors in hippocampal neurons. For example, ketamine (100 µM) increased the tonic current by 33.6 ± 6.5% (mean ± SEM; 95% CI, 18.2 to 48.9; n = 8, P < 0.001). Ketamine shifted the GABA concentration-response curve to the left, but only when GABAA receptors were activated by low concentrations of GABA (n = 6). The selective increase in tonic current was attributed to ketamine increasing the apparent potency of GABA at high-affinity extrasynaptic GABAA receptors. Ketamine also increased a tonic current in cortical neurons (n = 11). Ketamine directly gated the opening of GABAA receptors, but only at high concentrations that are unlikely to occur during clinical use. CONCLUSIONS Clinically relevant concentrations of ketamine increased the activity of high-affinity extrasynaptic GABAA receptors in the hippocampus and cortex, an effect that likely contributes to ketamine's neurodepressive properties.
Collapse
|
19
|
Calvo DJ, Beltrán González AN. Dynamic Regulation of the GABAA Receptor Function by Redox Mechanisms. Mol Pharmacol 2016; 90:326-33. [PMID: 27439531 DOI: 10.1124/mol.116.105205] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 07/14/2016] [Indexed: 12/20/2022] Open
Abstract
Oxidizing and reducing agents, which are currently involved in cell metabolism and signaling pathways, can regulate fast inhibitory neurotransmission mediated by GABA receptors in the nervous system. A number of in vitro studies have shown that diverse redox compounds, including redox metabolites and reactive oxygen and nitrogen species, modulate phasic and tonic responses mediated by neuronal GABAA receptors through both presynaptic and postsynaptic mechanisms. We review experimental data showing that many redox agents, which are normally present in neurons and glia or are endogenously generated in these cells under physiologic states or during oxidative stress (e.g., hydrogen peroxide, superoxide and hydroxyl radicals, nitric oxide, ascorbic acid, and glutathione), induce potentiating or inhibiting actions on different native and recombinant GABAA receptor subtypes. Based on these results, it is thought that redox signaling might represent a homeostatic mechanism that regulates the function of synaptic and extrasynaptic GABAA receptors in physiologic and pathologic conditions.
Collapse
Affiliation(s)
- Daniel J Calvo
- Laboratorio de Neurobiología Celular y Molecular, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ¨Dr. Héctor N. Torres¨ (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina (D.J.C., A.N.B.G.)
| | - Andrea N Beltrán González
- Laboratorio de Neurobiología Celular y Molecular, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ¨Dr. Héctor N. Torres¨ (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina (D.J.C., A.N.B.G.)
| |
Collapse
|
20
|
Hydrogen peroxide modulates neuronal excitability and membrane properties in ventral horn neurons of the rat spinal cord. Neuroscience 2016; 331:206-20. [DOI: 10.1016/j.neuroscience.2016.06.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/27/2016] [Accepted: 06/17/2016] [Indexed: 01/29/2023]
|
21
|
Li R, Liu X, Qiu W, Zhang M. In Vivo Monitoring of H2O2 with Polydopamine and Prussian Blue-coated Microelectrode. Anal Chem 2016; 88:7769-76. [DOI: 10.1021/acs.analchem.6b01765] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Ruixin Li
- Department
of Chemistry, Renmin University of China, Beijing 100872, China
| | - Xiaomeng Liu
- Department
of Chemistry, Renmin University of China, Beijing 100872, China
| | - Wanling Qiu
- Department
of Chemistry, Renmin University of China, Beijing 100872, China
| | - Meining Zhang
- Department
of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
22
|
Ohashi M, Hirano T, Watanabe K, Katsumi K, Ohashi N, Baba H, Endo N, Kohno T. Hydrogen peroxide modulates synaptic transmission in ventral horn neurons of the rat spinal cord. J Physiol 2016; 594:115-34. [PMID: 26510999 PMCID: PMC4704504 DOI: 10.1113/jp271449] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 10/16/2015] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Excessive production of reactive oxygen species (ROS) is implicated in many central nervous system disorders; however, the physiological role of ROS in spinal ventral horn (VH) neurons remains poorly understood. We investigated how pathological levels of H2O2, an abundant ROS, regulate synaptic transmission in VH neurons of rats using a whole-cell patch clamp approach. H2O2 increased the release of glutamate and GABA from presynaptic terminals. The increase in glutamate release involved N-type voltage-gated calcium channels (VGCCs), ryanodine receptors (RyRs), and inositol trisphosphate receptors (IP3 Rs); the increase in GABA release, which inhibited glutamatergic transmission, involved IP3 R. Inhibiting N-type VGCCs and RyRs attenuates excitotoxicity resulting from increased glutamatergic activity while preserving the neuroprotective effects of GABA, and may represent a novel strategy for treating H2O2-induced motor neuron disorders resulting from trauma or ischaemia-reperfusion injury. Excessive production of reactive oxygen species (ROS) is a critical component of the cellular and molecular pathophysiology of many central nervous system (CNS) disorders, including trauma, ischaemia-reperfusion injury, and neurodegenerative diseases. Hydrogen peroxide (H2O2), an abundant ROS, modulates synaptic transmission and contributes to neuronal damage in the CNS; however, the pathophysiological role of H2O2 in spinal cord ventral horn (VH) neurons remains poorly understood, despite reports that these neurons are highly vulnerable to oxidative stress and ischaemia. This was investigated in the present study using a whole-cell patch clamp approach in rats. We found that exogenous application of H2O2 increased the release of glutamate from excitatory presynaptic terminals and γ-aminobutyric acid (GABA) from inhibitory presynaptic terminals. The increase of glutamate release was induced in part by an increase in Ca(2+) influx through N-type voltage-gated calcium channels (VGCCs) as well as by ryanodine receptor (RyR)- and inositol trisphosphate receptor-mediated Ca(2+) release from the endoplasmic reticulum (ER). In inhibitory presynaptic neurons, increased IP3 R-mediated Ca(2+) release from the ER increased GABAergic transmission, which served to rescue VH neurons from excessive release of glutamate from presynaptic terminals. These findings indicate that inhibiting N-type VGCCs or RyRs may attenuate excitotoxicity resulting from increased glutamatergic activity while preserving the neuroprotective effects of GABA, and may therefore represent a novel and targeted strategy for preventing and treating H2O2-induced motor neuron disorders.
Collapse
Affiliation(s)
- Masayuki Ohashi
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi Dori, Chuo-Ku, Niigata City 951-8510, Japan
| | - Toru Hirano
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi Dori, Chuo-Ku, Niigata City 951-8510, Japan
| | - Kei Watanabe
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi Dori, Chuo-Ku, Niigata City 951-8510, Japan
| | - Keiichi Katsumi
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi Dori, Chuo-Ku, Niigata City 951-8510, Japan
| | - Nobuko Ohashi
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi Dori, Chuo-Ku, Niigata City 951-8510, Japan
| | - Hiroshi Baba
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi Dori, Chuo-Ku, Niigata City 951-8510, Japan
| | - Naoto Endo
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi Dori, Chuo-Ku, Niigata City 951-8510, Japan
| | - Tatsuro Kohno
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi Dori, Chuo-Ku, Niigata City 951-8510, Japan
| |
Collapse
|
23
|
Marcelino TB, de Lemos Rodrigues PI, Miguel PM, Netto CA, Pereira Silva LO, Matté C. Effect of maternal exercise on biochemical parameters in rats submitted to neonatal hypoxia-ischemia. Brain Res 2015; 1622:91-101. [DOI: 10.1016/j.brainres.2015.06.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 01/25/2023]
|
24
|
Lee CR, Patel JC, O'Neill B, Rice ME. Inhibitory and excitatory neuromodulation by hydrogen peroxide: translating energetics to information. J Physiol 2015; 593:3431-46. [PMID: 25605547 DOI: 10.1113/jphysiol.2014.273839] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/16/2015] [Indexed: 12/21/2022] Open
Abstract
Historically, brain neurochemicals have been broadly classified as energetic or informational. However, increasing evidence implicates metabolic substrates and byproducts as signalling agents, which blurs the boundary between energy and information, and suggests the introduction of a new category for 'translational' substances that convey changes in energy state to information. One intriguing example is hydrogen peroxide (H2 O2 ), which is a small, readily diffusible molecule. Produced during mitochondrial respiration, this reactive oxygen species, can mediate dynamic regulation of neuronal activity and transmitter release by activating inhibitory ATP-sensitive K(+) (KATP ) channels, as well as a class of excitatory non-selective cation channels, TRPM2. Studies using ex vivo guinea pig brain slices have revealed that activity-generated H2 O2 can act via KATP channels to inhibit dopamine release in dorsal striatum and dopamine neuron activity in the substantia nigra pars compacta. In sharp contrast, endogenously generated H2 O2 enhances the excitability of GABAergic projection neurons in the dorsal striatum and substantia nigra pars reticulata by activating TRPM2 channels. These studies suggest that the balance of excitation vs. inhibition produced in a given cell by metabolically generated H2 O2 will be dictated by the relative abundance of H2 O2 -sensitive ion channel targets that receive this translational signal.
Collapse
Affiliation(s)
- Christian R Lee
- Department of Neurosurgery, New York University School of Medicine, New York, NY, 10016, USA
| | - Jyoti C Patel
- Department of Neurosurgery, New York University School of Medicine, New York, NY, 10016, USA
| | - Brian O'Neill
- Department of Neurosurgery, New York University School of Medicine, New York, NY, 10016, USA.,Department of Psychiatry, New York University School of Medicine, New York, NY, 10016, USA
| | - Margaret E Rice
- Department of Neurosurgery, New York University School of Medicine, New York, NY, 10016, USA.,Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, 10016, USA
| |
Collapse
|