1
|
Butler CLP, Sangari S, Chen B, Perez MA. Enhanced inhibitory input to triceps brachii in humans with spinal cord injury. J Physiol 2024; 602:6909-6923. [PMID: 39504123 DOI: 10.1113/jp285510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 07/24/2024] [Indexed: 11/16/2024] Open
Abstract
Most individuals with cervical spinal cord injury (SCI) show increased muscle weakness in the elbow extensor compared to elbow flexor muscles. Although this is a well-known functional deficit, the underlying neural mechanisms remain poorly understood. To address this question, we measured the suppression of voluntary electromyographic activity (svEMG; a measurement thought to reflect changes in intracortical inhibition) by applying low-intensity transcranial magnetic stimulation over the arm representation of the primary motor cortex during 10% of isometric maximal voluntary contraction (MVC) into elbow flexion or extension in individuals with and without chronic cervical SCI. We found that the svEMG latency and duration were not different between the biceps and triceps brachii in controls but prolonged in the triceps in individuals with SCI. The svEMG area was larger in the triceps compared to the biceps in both groups and further increased in SCI participants, suggesting a pronounced intracortical inhibitory input during elbow extension. A negative correlation was found between svEMG area and MVCs indicating that control and SCI participants with lower svEMG area had larger MVCs. The svEMG area was not different between 5% and 30% of MVC, making it less probable that differences in muscle strength between groups contributed to our results. These findings support the existence of strong inhibitory input to corticospinal projections controlling elbow extensor compared to flexor muscles, which is more pronounced after chronic cervical SCI. KEY POINTS: After cervical spinal cord injury (SCI), people often recover function in elbow flexor, but much less in elbow extensor muscles. The neural mechanisms contributing to this difference remain unknown. We measured the suppression of voluntary electromyographic activity (svEMG) elicited through low-intensity transcranial magnetic stimulation of the primary motor cortex (assumed to reflect changes in intracortical inhibition) in the biceps and triceps muscles in controls and individuals with cervical chronic incomplete SCI. We found increased svEMG area in the triceps compared to the biceps in controls and SCI participants, with this measurement being even more pronounced in the triceps after SCI. The svEMG area correlated with maximal voluntary contraction values in both groups, suggesting the people with lesser inhibition had larger motor output. Our results support the presence of strong cortical inhibitory input to corticospinal projections controlling elbow extensor compared to elbow flexors muscles after cervical SCI.
Collapse
Affiliation(s)
- Carley L P Butler
- Shirley Ryan AbilityLab, Chicago, IL, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA
- Edward Hines Jr. VA Hospital, Hines, IL, USA
| | | | - Bing Chen
- Shirley Ryan AbilityLab, Chicago, IL, USA
- Edward Hines Jr. VA Hospital, Hines, IL, USA
| | - Monica A Perez
- Shirley Ryan AbilityLab, Chicago, IL, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA
- Edward Hines Jr. VA Hospital, Hines, IL, USA
| |
Collapse
|
2
|
Casarotto A, Dolfini E, Fadiga L, Koch G, D'Ausilio A. Cortico-cortical paired associative stimulation conditioning superficial ventral premotor cortex-primary motor cortex connectivity influences motor cortical activity during precision grip. J Physiol 2023; 601:3945-3960. [PMID: 37526070 DOI: 10.1113/jp284500] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/10/2023] [Indexed: 08/02/2023] Open
Abstract
The ventral premotor cortex (PMv) and primary motor cortex (M1) represent critical nodes of a parietofrontal network involved in grasping actions, such as power and precision grip. Here, we investigated how the functional PMv-M1 connectivity drives the dissociation between these two actions. We applied a PMv-M1 cortico-cortical paired associative stimulation (cc-PAS) protocol, stimulating M1 in both postero-anterior (PA) and antero-posterior (AP) directions, in order to induce long-term changes in the activity of different neuronal populations within M1. We evaluated the motor-evoked potential (MEP) amplitude, MEP latency and cortical silent period, in both PA and AP, during the isometric execution of precision and power grip, before and after the PMv-M1 cc-PAS. The repeated activation of the PMv-M1 cortico-cortical network with PA orientation over M1 did not change MEP amplitude or cortical silent period duration during both actions. In contrast, the PMv-M1 cc-PAS stimulation of M1 with an AP direction led to a specific modulation of precision grip motor drive. In particular, MEPs tested with AP stimulation showed a selective increase of corticospinal excitability during precision grip. These findings suggest that the more superficial M1 neuronal populations recruited by the PMv input are involved preferentially in the execution of precision grip actions. KEY POINTS: Ventral premotor cortex (PMv)-primary motor cortex (M1) cortico-cortical paired associative stimulation (cc-PAS) with different coil orientation targets dissociable neural populations. PMv-M1 cc-PAS with M1 antero-posterior coil orientation specifically modulates corticospinal excitability during precision grip. Superficial M1 populations are involved preferentially in the execution of precision grip. A plasticity induction protocol targeting the specific PMv-M1 subpopulation might have important translational value for the rehabilitation of hand function.
Collapse
Affiliation(s)
- Andrea Casarotto
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Ferrara, Italy
- Department of Neuroscience and Rehabilitation, Section of Physiology, Università di Ferrara, Ferrara, Italy
| | - Elisa Dolfini
- Department of Neuroscience and Rehabilitation, Section of Physiology, Università di Ferrara, Ferrara, Italy
| | - Luciano Fadiga
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Ferrara, Italy
- Department of Neuroscience and Rehabilitation, Section of Physiology, Università di Ferrara, Ferrara, Italy
| | - Giacomo Koch
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Ferrara, Italy
- Department of Neuroscience and Rehabilitation, Section of Physiology, Università di Ferrara, Ferrara, Italy
- Experimental Neuropsychophysiology Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Alessandro D'Ausilio
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Ferrara, Italy
- Department of Neuroscience and Rehabilitation, Section of Physiology, Università di Ferrara, Ferrara, Italy
| |
Collapse
|
3
|
Chen B, Perez MA. Altered regulation of Ia afferent input during voluntary contraction in humans with spinal cord injury. eLife 2022; 11:e80089. [PMID: 36069767 PMCID: PMC9451536 DOI: 10.7554/elife.80089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Sensory input converging on the spinal cord contributes to the control of movement. Although sensory pathways reorganize following spinal cord injury (SCI), the extent to which sensory input from Ia afferents is regulated during voluntary contraction after the injury remains largely unknown. To address this question, the soleus H-reflex and conditioning of the H-reflex by stimulating homonymous [depression of the soleus H-reflex evoked by common peroneal nerve (CPN) stimulation, D1 inhibition] and heteronymous (d), [monosynaptic Ia facilitation of the soleus H-reflex evoked by femoral nerve stimulation (FN facilitation)] nerves were tested at rest, and during tonic voluntary contraction in humans with and without chronic incomplete SCI. The soleus H-reflex size increased in both groups during voluntary contraction compared with rest, but to a lesser extent in SCI participants. Compared with rest, the D1 inhibition decreased during voluntary contraction in controls but it was still present in SCI participants. Further, the FN facilitation increased in controls but remained unchanged in SCI participants during voluntary contraction compared with rest. Changes in the D1 inhibition and FN facilitation were correlated with changes in the H-reflex during voluntary contraction, suggesting an association between outcomes. These findings provide the first demonstration that the regulation of Ia afferent input from homonymous and heteronymous nerves is altered during voluntary contraction in humans with SCI, resulting in lesser facilitatory effect on motor neurons.
Collapse
Affiliation(s)
- Bing Chen
- Shirley Ryan AbilityLab, Northwestern University, and Edward Hines Jr., VA Medical CenterChicagoUnited States
| | - Monica A Perez
- Shirley Ryan AbilityLab, Northwestern University, and Edward Hines Jr., VA Medical CenterChicagoUnited States
| |
Collapse
|
4
|
Huang Y, Zhang Y, He Z, Manyande A, Wu D, Feng M, Xiang H. The connectome from the cerebral cortex to skeletal muscle using viral transneuronal tracers: a review. Am J Transl Res 2022; 14:4864-4879. [PMID: 35958450 PMCID: PMC9360884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Connectomics has developed from an initial observation under an electron microscope to the present well-known medical imaging research approach. The emergence of the most popular transneuronal tracers has further advanced connectomics research. Researchers use the virus trans-nerve tracing method to trace the whole brain, mark the brain nerve circuit and nerve connection structure, and construct a complete nerve conduction pathway. This review assesses current methods of studying cortical to muscle connections using viral neuronal tracers and demonstrates their application in disease diagnosis and prognosis.
Collapse
Affiliation(s)
- Yan Huang
- Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, P. R. China
- Department of Interventional Therapy, The First Affiliated Hospital of Dalian Medical UniversityDalian 116000, Liaoning, P. R. China
| | - Yunhua Zhang
- Hubei Provincial Hospital of Traditional Chinese MedicineWuhan 430061, Hubei, P. R. China
- Clinical Medical College of Hubei University of Chinese MedicineWuhan 430061, Hubei, P. R. China
- Hubei Province Academy of Traditional Chinese MedicineWuhan 430061, Hubei, P. R. China
| | - Zhigang He
- Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, P. R. China
| | - Anne Manyande
- School of Human and Social Sciences, University of West LondonLondon, UK
| | - Duozhi Wu
- Department of Anesthesiology, Hainan General HospitalHaikou 570311, Hainan, P. R. China
| | - Maohui Feng
- Department of Gastrointestinal Surgery, Wuhan Peritoneal Cancer Clinical Medical Research Center, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study CenterWuhan 430071, Hubei, P. R. China
| | - Hongbing Xiang
- Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, P. R. China
| |
Collapse
|
5
|
Sung YW, Kiyama S, Choi US, Ogawa S. Involvement of the intrinsic functional network of the red nucleus in complex behavioral processing. Cereb Cortex Commun 2022; 3:tgac037. [PMID: 36159204 PMCID: PMC9491841 DOI: 10.1093/texcom/tgac037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/25/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Previous studies suggested the possibility that the red nucleus (RN) is involved in other cognitive functions than motion per se, even though such functions have yet to be clarified. We investigated the activation of RN during several tasks and its intrinsic functional network associated with social cognition and musical practice. The tasks included finger tapping, n-back, and memory recall tasks. Region of interest for RN was identified through those tasks, anatomical information of RN, and a brain atlas. The intrinsic functional network was identified for RN by an analysis of connectivity between RN and other regions typically involved in seven known resting state functional networks with RN used as the seed region. Association of the RN network with a psychological trait of the interpersonal reactivity index and musical training years revealed subnetworks that included empathy related regions or music practice related regions. These social or highly coordinated motor activity represent the most complex functions ever known to involve the RN, adding further evidence for the multifunctional roles of RN. These discoveries may lead to a new direction of investigations to clarify probable novel roles for RN in high-level human behavior.
Collapse
Affiliation(s)
- Yul-Wan Sung
- Kansei Fukushi Research Institute, Tohoku Fukushi University , Sendai, Miyagi 9893201 , Japan
| | - Sachiko Kiyama
- Department of Linguistics, Tohoku University , Sendai, Miyagi 9800862 , Japan
| | - Uk-Su Choi
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation , Daegu 41061 , Republic of Korea
| | - Seiji Ogawa
- Kansei Fukushi Research Institute, Tohoku Fukushi University , Sendai, Miyagi 9893201 , Japan
| |
Collapse
|
6
|
Mental practice modulates functional connectivity between the cerebellum and the primary motor cortex. iScience 2022; 25:104397. [PMID: 35637729 PMCID: PMC9142644 DOI: 10.1016/j.isci.2022.104397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/21/2022] [Accepted: 05/09/2022] [Indexed: 01/07/2023] Open
Abstract
Our brain has the extraordinary capacity to improve motor skills through mental practice. Conceptually, this ability is attributed to internal forward models, which are cerebellar neural networks that can predict the sensory consequences of motor commands. In our study, we employed single and dual-coil transcranial magnetic stimulations to probe the level of corticospinal excitability and cerebellar-brain inhibition, respectively, before and after a mental practice session or a control session. Motor skill (i.e., accuracy and speed) was measured using a sequential finger tapping-task. We found that mental practice enhanced both speed and accuracy. In parallel, the functional connectivity between the cerebellum and the primary motor cortex changed, with less inhibition from the first to the second. These findings reveal the existence of neuroplastic changes within the cerebellum, supporting the involvement of internal models after mental practice. The update of internal forward models involves cerebellar neural adaptations Mental practice is assumed to engage internal forward models Cerebellar-brain Inhibition was probed by TMS before and after mental practice Mental practice reduces Cerebellar-brain Inhibition and may update internal models
Collapse
|
7
|
Balbinot G, Joner Wiest M, Li G, Pakosh M, Cesar Furlan J, Kalsi-Ryan S, Zariffa J. The use of surface EMG in neurorehabilitation following traumatic spinal cord injury: A scoping review. Clin Neurophysiol 2022; 138:61-73. [PMID: 35364465 DOI: 10.1016/j.clinph.2022.02.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/06/2022] [Accepted: 02/27/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Surface electromyography (sEMG) is a common electrophysiological assessment used in clinical trials in individuals with spinal cord injury (SCI). This scoping review summarizes the most common sEMG techniques used to address clinically relevant neurorehabilitation questions. We focused on the role of sEMG assessments in the clinical practice and research studies on neurorehabilitation after SCI, and how sEMG reflects the changes observed with rehabilitation. Additionally, this review emphasizes the limitations and pitfalls of the sEMG assessments in the field of neurorehabilitation after SCI. METHODS A comprehensive search of Medline (Ovid), Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, Embase, Emcare, Cumulative Index to Nursing & Allied Health Literature, and PubMed was conducted to find peer-reviewed journal articles that included individuals post-SCI that participated in neurorehabilitation interventions using sEMG assessments. This is a scoping review using a systematic search (hybrid review). RESULTS Of 4522 references captured in the primary database searches, 100 references were selected and included in the scoping review. The main focus of the studies was on neurorehabilitation using sEMG biofeedback, brain stimulation, locomotor training, neuromuscular electrical stimulation (NMES), paired-pulse stimulation, pharmacology, posture and balance training, spinal cord stimulation, upper limb training, vibration, and photobiomodulation. CONCLUSIONS Most studies employed sEMG amplitude to understand the effects of neurorehabilitation on muscle activation during volitional efforts or reduction of spontaneous muscle activity (e.g., spasms, spasticity, and hypertonia). Further studies are needed to understand the long-term reliability of sEMG amplitude, to circumvent normalization issues, and to provide a deeper physiological background to the different sEMG analyses. SIGNIFICANCE This scoping review reveals the potential of sEMG in exploring promising neurorehabilitation strategies following SCI and discusses the barriers limiting its widespread use in the clinic.
Collapse
Affiliation(s)
- Gustavo Balbinot
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON M5G 2A2, Canada.
| | - Matheus Joner Wiest
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON M5G 2A2, Canada
| | - Guijin Li
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON M5G 2A2, Canada; Institute of Biomedical Engineering, University of Toronto, Canada
| | - Maureen Pakosh
- Library & Information Services, Toronto Rehabilitation Institute, University Health Network, Canada
| | - Julio Cesar Furlan
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON M5G 2A2, Canada; Rehabilitation Sciences Institute, University of Toronto, Canada; Department of Medicine, Division of Physical Medicine and Rehabilitation, University of Toronto, Canada; Division of Physical Medicine and Rehabilitation, Toronto Rehabilitation Institute, University Health Network, Canada; Institute of Medical Sciences, University of Toronto, Canada
| | - Sukhvinder Kalsi-Ryan
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON M5G 2A2, Canada; Rehabilitation Sciences Institute, University of Toronto, Canada; Department of Physical Therapy, University of Toronto, Canada
| | - José Zariffa
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON M5G 2A2, Canada; Institute of Biomedical Engineering, University of Toronto, Canada; Rehabilitation Sciences Institute, University of Toronto, Canada; Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Canada
| |
Collapse
|
8
|
Li C, Huang S, Zhou W, Xie Z, Xie S, Li M. Spinal Cord Injury Inhibits the Differentiation and Maturation of NG2 Cells in the Cerebellum in Mice. World Neurosurg 2021; 160:e159-e168. [PMID: 34979285 DOI: 10.1016/j.wneu.2021.12.101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/25/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Neuroimaging studies have shown that spinal cord injury (SCI) may lead to significant brain changes that are the key factors affecting functional recovery. However, little is known about the molecular and cellular biological mechanisms of these brain changes. The aim of this study was to investigate the molecular and cellular biological changes in the cerebellum after SCI. METHODS A total of 72 mice were randomly divided into 2 groups: sham group and SCI group. A mouse model of SCI was established by an aneurysm clip. Pathological examinations of the injured site were performed by hematoxylin and eosin staining and immunohistochemical. Western blot and immunohistochemical were used to determine the effect of SCI on the differentiation and maturation of NG2 cells. RESULTS Compared with the sham group, the spinal cord tissue structure was disrupted and the motor function decreased significantly in the SCI group; the number of NG2 cells in the ansiform lobule crus Ⅰ increased on the 7th and 14th days, whereas the expression of oligodendrocyte transcription factor 2, myelin basic protein, and proteolipid protein decreased on the 7th and 14th days after SCI. These results showed that the differentiation and maturation of NG2 cells in the ansiform lobule crus Ⅰ were inhibited after SCI, resulting in the decrease of the formation of mature oligodendrocytes. CONCLUSIONS These results indicate that SCI can lead to secondary changes in the cerebellum, which may affect the functional recovery. These findings may be used as biomarkers to evaluate the secondary changes in the brain after SCI.
Collapse
Affiliation(s)
- Chengcai Li
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Shaoxin Huang
- School of Basic Medicine, Jiujiang University, Jiujiang, Jiangxi, People's Republic of China
| | - Wu Zhou
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Zhiping Xie
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Shenke Xie
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Meihua Li
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China.
| |
Collapse
|
9
|
Wecht JR, Savage WM, Famodimu GO, Mendez GA, Levine JM, Maher MT, Weir JP, Wecht JM, Carmel JB, Wu YK, Harel NY. Posteroanterior Cervical Transcutaneous Spinal Cord Stimulation: Interactions with Cortical and Peripheral Nerve Stimulation. J Clin Med 2021; 10:jcm10225304. [PMID: 34830584 PMCID: PMC8623612 DOI: 10.3390/jcm10225304] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 12/27/2022] Open
Abstract
Transcutaneous spinal cord stimulation (TSCS) has demonstrated potential to beneficially modulate spinal cord motor and autonomic circuitry. We are interested in pairing cervical TSCS with other forms of nervous system stimulation to enhance synaptic plasticity in circuits serving hand function. We use a novel configuration for cervical TSCS in which the anode is placed anteriorly over ~C4–C5 and the cathode posteriorly over ~T2–T4. We measured the effects of single pulses of TSCS paired with single pulses of motor cortex or median nerve stimulation timed to arrive at the cervical spinal cord at varying intervals. In 13 participants with and 15 participants without chronic cervical spinal cord injury, we observed that subthreshold TSCS facilitates hand muscle responses to motor cortex stimulation, with a tendency toward greater facilitation when TSCS is timed to arrive at cervical synapses simultaneously or up to 10 milliseconds after cortical stimulus arrival. Single pulses of subthreshold TSCS had no effect on the amplitudes of median H-reflex responses or F-wave responses. These findings support a model in which TSCS paired with appropriately timed cortical stimulation has the potential to facilitate convergent transmission between descending motor circuits, segmental afferents, and spinal motor neurons serving the hand. Studies with larger numbers of participants and repetitively paired cortical and spinal stimulation are needed.
Collapse
Affiliation(s)
- Jaclyn R. Wecht
- James J. Peters VA Medical Center, Bronx, NY 10468, USA; (J.R.W.); (W.M.S.); (G.O.F.); (G.A.M.); (J.M.L.); (M.T.M.); (J.M.W.); (Y.-K.W.)
| | - William M. Savage
- James J. Peters VA Medical Center, Bronx, NY 10468, USA; (J.R.W.); (W.M.S.); (G.O.F.); (G.A.M.); (J.M.L.); (M.T.M.); (J.M.W.); (Y.-K.W.)
| | - Grace O. Famodimu
- James J. Peters VA Medical Center, Bronx, NY 10468, USA; (J.R.W.); (W.M.S.); (G.O.F.); (G.A.M.); (J.M.L.); (M.T.M.); (J.M.W.); (Y.-K.W.)
| | - Gregory A. Mendez
- James J. Peters VA Medical Center, Bronx, NY 10468, USA; (J.R.W.); (W.M.S.); (G.O.F.); (G.A.M.); (J.M.L.); (M.T.M.); (J.M.W.); (Y.-K.W.)
| | - Jonah M. Levine
- James J. Peters VA Medical Center, Bronx, NY 10468, USA; (J.R.W.); (W.M.S.); (G.O.F.); (G.A.M.); (J.M.L.); (M.T.M.); (J.M.W.); (Y.-K.W.)
| | - Matthew T. Maher
- James J. Peters VA Medical Center, Bronx, NY 10468, USA; (J.R.W.); (W.M.S.); (G.O.F.); (G.A.M.); (J.M.L.); (M.T.M.); (J.M.W.); (Y.-K.W.)
| | - Joseph P. Weir
- Department of Health, Sport & Exercise Sciences, University of Kansas, Lawrence, KS 66045, USA;
| | - Jill M. Wecht
- James J. Peters VA Medical Center, Bronx, NY 10468, USA; (J.R.W.); (W.M.S.); (G.O.F.); (G.A.M.); (J.M.L.); (M.T.M.); (J.M.W.); (Y.-K.W.)
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jason B. Carmel
- Department of Orthopedic Surgery, Columbia University, New York, NY 10032, USA;
| | - Yu-Kuang Wu
- James J. Peters VA Medical Center, Bronx, NY 10468, USA; (J.R.W.); (W.M.S.); (G.O.F.); (G.A.M.); (J.M.L.); (M.T.M.); (J.M.W.); (Y.-K.W.)
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Noam Y. Harel
- James J. Peters VA Medical Center, Bronx, NY 10468, USA; (J.R.W.); (W.M.S.); (G.O.F.); (G.A.M.); (J.M.L.); (M.T.M.); (J.M.W.); (Y.-K.W.)
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence:
| |
Collapse
|
10
|
Tazoe T, Perez MA. Abnormal changes in motor cortical maps in humans with spinal cord injury. J Physiol 2021; 599:5031-5045. [PMID: 34192806 PMCID: PMC9109877 DOI: 10.1113/jp281430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/28/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The functional role of motor cortical reorganization following spinal cord injury (SCI) remains largely unknown. Here, we tested motor maps in a hand muscle at rest and during voluntary contraction of the hand with and without voluntary contraction of a proximal arm muscle. Motor map area in participants with SCI decreased during hand voluntary contraction and further decreased during additional contraction of a proximal arm muscle compared with rest. In contrast, motor map area in controls increased during the same motor tasks. Participants with SCI with more severe sensory deficits in the hand showed larger decreases in motor map area. Ten minutes of hand muscle-tendon vibration increased the motor map area during voluntary contraction in SCI participants. These novel findings suggest that abnormal changes in motor cortical maps during voluntary contraction after SCI can be reshaped by sensory input, knowledge that can have implications for rehabilitation. ABSTRACT Motor cortical representations reorganize following cervical spinal cord injury (SCI). The functional role of this reorganization remains largely unknown. Using neuronavigated transcranial magnetic stimulation, we examined motor cortical maps during voluntary contraction in humans with chronic cervical SCI and age-matched controls. We constructed motor maps in the first dorsal interosseous (FDI) muscle at rest and during voluntary contraction of the FDI with and without voluntary contraction of the biceps brachi (BB). The role of sensory input into this reorganization was examined by muscle-tendon vibration. We found that, at rest, motor maps were larger in SCI (22.3 cm2 ) compared with control (12.6 cm2 , P < 0.001) participants. Motor map area increased during voluntary contraction of the FDI (120.7%) and further increased during contraction of the BB (143.9%) compared with rest in control subjects; however, motor map area decreased during voluntary contraction of the FDI (69.5%) and further decreased during contraction of the BB (55.5%) in individuals with SCI. SCI participants with larger decreases in map area during voluntary contraction of the FDI were those with larger sensory deficits in the hand and 10 min of hand muscle-tendon vibration increased motor map area. These results provide the first evidence of abnormal changes in motor cortical maps in humans with chronic SCI during voluntary contraction, suggesting that sensory input can help to reshape this reorganization.
Collapse
Affiliation(s)
- Toshiki Tazoe
- Arms + Hands Lab, Shirley Ryan AbilityLab, Northwestern
University, Chicago, IL 60611 and Hines Veterans Affairs Medical Center, Chicago, IL
60141, USA
- Neural Prosthesis Project, Department of Brain and
Neurosciences, Tokyo Metropolitan Institute of Medial Science, Tokyo 156-8506,
Japan
| | - Monica A. Perez
- Arms + Hands Lab, Shirley Ryan AbilityLab, Northwestern
University, Chicago, IL 60611 and Hines Veterans Affairs Medical Center, Chicago, IL
60141, USA
- The Miami Project to Cure Paralysis, Department of
Neurological Surgery, University of Miami, Miami FL 33136 and Bruce W. Carter
Department of Veterans Affairs Medical Center, Miami, FL 33125, USA
| |
Collapse
|
11
|
Sobinov AR, Bensmaia SJ. The neural mechanisms of manual dexterity. Nat Rev Neurosci 2021; 22:741-757. [PMID: 34711956 DOI: 10.1038/s41583-021-00528-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2021] [Indexed: 01/22/2023]
Abstract
The hand endows us with unparalleled precision and versatility in our interactions with objects, from mundane activities such as grasping to extraordinary ones such as virtuoso pianism. The complex anatomy of the human hand combined with expansive and specialized neuronal control circuits allows a wide range of precise manual behaviours. To support these behaviours, an exquisite sensory apparatus, spanning the modalities of touch and proprioception, conveys detailed and timely information about our interactions with objects and about the objects themselves. The study of manual dexterity provides a unique lens into the sensorimotor mechanisms that endow the nervous system with the ability to flexibly generate complex behaviour.
Collapse
Affiliation(s)
- Anton R Sobinov
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA.,Neuroscience Institute, University of Chicago, Chicago, IL, USA
| | - Sliman J Bensmaia
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA. .,Neuroscience Institute, University of Chicago, Chicago, IL, USA. .,Committee on Computational Neuroscience, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
12
|
Seáñez I, Capogrosso M. Motor improvements enabled by spinal cord stimulation combined with physical training after spinal cord injury: review of experimental evidence in animals and humans. Bioelectron Med 2021; 7:16. [PMID: 34706778 PMCID: PMC8555080 DOI: 10.1186/s42234-021-00077-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 09/30/2021] [Indexed: 12/20/2022] Open
Abstract
Electrical spinal cord stimulation (SCS) has been gaining momentum as a potential therapy for motor paralysis in consequence of spinal cord injury (SCI). Specifically, recent studies combining SCS with activity-based training have reported unprecedented improvements in motor function in people with chronic SCI that persist even without stimulation. In this work, we first provide an overview of the critical scientific advancements that have led to the current uses of SCS in neurorehabilitation: e.g. the understanding that SCS activates dormant spinal circuits below the lesion by recruiting large-to-medium diameter sensory afferents within the posterior roots. We discuss how this led to the standardization of implant position which resulted in consistent observations by independent clinical studies that SCS in combination with physical training promotes improvements in motor performance and neurorecovery. While all reported participants were able to move previously paralyzed limbs from day 1, recovery of more complex motor functions was gradual, and the timeframe for first observations was proportional to the task complexity. Interestingly, individuals with SCI classified as AIS B and C regained motor function in paralyzed joints even without stimulation, but not individuals with motor and sensory complete SCI (AIS A). Experiments in animal models of SCI investigating the potential mechanisms underpinning this neurorecovery suggest a synaptic reorganization of cortico-reticulo-spinal circuits that correlate with improvements in voluntary motor control. Future experiments in humans and animal models of paralysis will be critical to understand the potential and limits for functional improvements in people with different types, levels, timeframes, and severities of SCI.
Collapse
Affiliation(s)
- Ismael Seáñez
- Biomedical Engineering, Washington University in St. Louis, St. Louis, USA. .,Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, USA.
| | - Marco Capogrosso
- Neurological Surgery, University of Pittsburgh, Pittsburgh, USA.,Department of Physical Medicine and Rehabilitation, Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, USA
| |
Collapse
|
13
|
Forgaard CJ, Reschechtko S, Gribble PL, Pruszynski JA. Skin and muscle receptors shape coordinated fast feedback responses in the upper limb. CURRENT OPINION IN PHYSIOLOGY 2021. [DOI: 10.1016/j.cophys.2021.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Ardolino G, Bocci T, Nigro M, Vergari M, Di Fonzo A, Bonato S, Cogiamanian F, Cortese F, Cova I, Barbieri S, Priori A. Spinal direct current stimulation (tsDCS) in hereditary spastic paraplegias (HSP): A sham-controlled crossover study. J Spinal Cord Med 2021; 44:46-53. [PMID: 30508408 PMCID: PMC7919872 DOI: 10.1080/10790268.2018.1543926] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Objective: Hereditary spastic paraplegia (HSP) represents a heterogeneous group of neurodegenerative diseases characterized by progressive spasticity and lower limb weakness. We assessed the effects of transcutaneous spinal direct current stimulation (tsDCS) in HSP.Design: A double-blind, randomized, crossover and sham-controlled study.Setting: Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan.Participants: eleven patients with HSP (six men, mean age ± SD: 37.3 ± 8.1 years), eight affected by spastin/SPG4,1 by atlastin1/SPG3a, 1 by paraplegin/SPG7 and 1 by ZFYVE26/SPG15.Interventions: tsDCS (anodal or sham, 2.0 mA, 20', five days) delivered over the thoracic spinal cord (T10-T12).Outcome measures: Motor-evoked potentials (MEPs), the H-reflex (Hr), F-waves, the Ashworth scale for clinical spasticity, the Five Minutes Walking test and the Spastic Paraplegia Rating Scale (SPRS) were assessed. Patients were evaluated before tsDCS (T0), at the end of the stimulation (T1), after one week (T2), one month (T3) and two months (T4).Results: The score of the Ashworth scale improved in the anodal compared with sham group, up to two months following the end of stimulation (T1, P = .0137; T4, P = .0244), whereas the Five Minutes Walking test and SPRS did not differ between the two groups. Among neurophysiological measures, both anodal and sham tsDCS left Hr, F-waves and MEPs unchanged over time.Conclusions: Anodal tsDCS significantly decreases spasticity and might be a complementary strategy for the treatment of spasticity in HSP.
Collapse
Affiliation(s)
- Gianluca Ardolino
- Neuropathophysiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Tommaso Bocci
- Neuropathophysiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy,Section of Neurophysiopathology, Department of Clinical and Experimental Medicine, Pisa University Medical School, Pisa, Italy,“Aldo Ravelli” Center for Neurotechnology and Experiental Brain Therapeutics, Department of Health Sciences, University of Milan & ASST Santi Paolo e Carlo, Milan, Italy
| | - Martina Nigro
- Neuropathophysiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maurizio Vergari
- Neuropathophysiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessio Di Fonzo
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sara Bonato
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Filippo Cogiamanian
- Neuropathophysiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Cortese
- Neuropathophysiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Ilaria Cova
- Clinical Center for Neurostimulation, Neurotechnology, and Movement Disorders, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sergio Barbieri
- Neuropathophysiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alberto Priori
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy,Clinical Center for Neurostimulation, Neurotechnology, and Movement Disorders, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy,Correspondence to: Alberto Priori, Department of Health Sciences, University of Milan, Via Antonio Di Rudinì 8, 20142Milan, Italy. mailto:
| |
Collapse
|
15
|
Cortical and Subcortical Neural Interactions Between Trunk and Upper-limb Muscles in Humans. Neuroscience 2020; 451:126-136. [PMID: 33075460 DOI: 10.1016/j.neuroscience.2020.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 12/28/2022]
Abstract
Activities of daily living require simultaneous and coordinated activation of trunk and upper-limb segments, which involves complex interlimb interaction within the central nervous system. Although many studies have reported associations between activity of trunk and limb muscles during functional tasks, evidence on cortical and subcortical contributions to trunk-limb neural interactions is still not fully clear. Therefore, the aim of this study was to examine interactions between trunk and upper-limb muscles in the: (i) corticospinal circuits by using motor evoked potential (MEP) elicited through transcranial magnetic stimulation; and (ii) subcortical circuits by using cervicomedullary motor evoked potential (CMEP) elicited through cervicomedullary junction magnetic stimulation. Responses were evoked in the erector spinae (trunk) and flexor carpi radialis (upper-limb) muscles in twelve able-bodied individuals: (1) while participants were relaxed; (2) during trunk muscle contractions while arms were at rest; and (3) during upper-limb muscle contractions while the trunk was at rest. Our results showed that trunk muscle CMEP responses were not affected by upper-limb muscle contractions, while MEP responses were modulated. This indicates that at least the subcortical circuits may not attribute to facilitation of the trunk muscles during upper-limb contractions. On the other hand, in the upper-limb muscles, both CMEP and MEP responses were modulated during trunk contractions. These results indicate that cortical and subcortical mechanisms attributed to facilitation of upper-limb muscles during trunk contractions. In conclusion, our study demonstrated evidence that trunk-limb neural interactions may be attributed to cortical and/or subcortical mechanisms depending on the contracted muscle.
Collapse
|
16
|
Jo HJ, Perez MA. Corticospinal-motor neuronal plasticity promotes exercise-mediated recovery in humans with spinal cord injury. Brain 2020; 143:1368-1382. [PMID: 32355959 DOI: 10.1093/brain/awaa052] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 12/23/2022] Open
Abstract
Rehabilitative exercise in humans with spinal cord injury aims to engage residual neural networks to improve functional recovery. We hypothesized that exercise combined with non-invasive stimulation targeting spinal synapses further promotes functional recovery. Twenty-five individuals with chronic incomplete cervical, thoracic, and lumbar spinal cord injury were randomly assigned to 10 sessions of exercise combined with paired corticospinal-motor neuronal stimulation (PCMS) or sham-PCMS. In an additional experiment, we tested the effect of PCMS without exercise in 13 individuals with spinal cord injury with similar characteristics. During PCMS, 180 pairs of stimuli were timed to have corticospinal volleys evoked by transcranial magnetic stimulation over the primary motor cortex arrive at corticospinal-motor neuronal synapses of upper- or lower-limb muscles (depending on the injury level), 1-2 ms before antidromic potentials were elicited in motor neurons by electrical stimulation of a peripheral nerve. Participants exercised for 45 min after all protocols. We found that the time to complete subcomponents of the Graded and Redefined Assessment of Strength, Sensibility and Prehension (GRASSP) and the 10-m walk test decreased on average by 20% after all protocols. However, the amplitude of corticospinal responses elicited by transcranial magnetic stimulation and the magnitude of maximal voluntary contractions in targeted muscles increased on overage by 40-50% after PCMS combined or not with exercise but not after sham-PCMS combined with exercise. Notably, behavioural and physiological effects were preserved 6 months after the intervention in the group receiving exercise with PCMS but not in the group receiving exercise combined with sham-PCMS, suggesting that the stimulation contributed to preserve exercise gains. Our findings indicate that targeted non-invasive stimulation of spinal synapses might represent an effective strategy to facilitate exercise-mediated recovery in humans with different degrees of paralysis and levels of spinal cord injury.
Collapse
Affiliation(s)
- Hang Jin Jo
- University of Miami, Department of Neurological Surgery, The Miami Project to Cure Paralysis, and Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, USA.,Shirley Ryan AbilityLab, Department of Physical Medicine and Rehabilitation at Northwestern University, and Edward Hines, Jr. VA Hospital, Chicago, IL, USA
| | - Monica A Perez
- University of Miami, Department of Neurological Surgery, The Miami Project to Cure Paralysis, and Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, USA.,Shirley Ryan AbilityLab, Department of Physical Medicine and Rehabilitation at Northwestern University, and Edward Hines, Jr. VA Hospital, Chicago, IL, USA
| |
Collapse
|
17
|
DeForest BA, Bohorquez J, Perez MA. Vibration attenuates spasm-like activity in humans with spinal cord injury. J Physiol 2020; 598:2703-2717. [PMID: 32298483 DOI: 10.1113/jp279478] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/17/2020] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Cutaneous reflexes were tested to examine the neuronal mechanisms contributing to muscle spasms in humans with chronic spinal cord injury (SCI). Specifically, we tested the effect of Achilles and tibialis anterior tendon vibration on the early and late components of the cutaneous reflex and reciprocal Ia inhibition in the soleus and tibialis anterior muscles in humans with chronic SCI. We found that tendon vibration reduced the amplitude of later but not earlier cutaneous reflex in the antagonist but not in the agonist muscle relative to the location of the vibration. In addition, reciprocal Ia inhibition between antagonist ankle muscles increased with tendon vibration and participants with a larger suppression of the later component of the cutaneous reflex had stronger reciprocal Ia inhibition from the antagonistic muscle. Our study is the first to provide evidence that tendon vibration attenuates late cutaneous spasm-like reflex activity, likely via reciprocal inhibitory mechanisms, and may represent a method, when properly targeted, for controlling spasms in humans with SCI. ABSTRACT The neuronal mechanisms contributing to the generation of involuntary muscle contractions (spasms) in humans with spinal cord injury (SCI) remain poorly understood. To address this question, we examined the effect of Achilles and tibialis anterior tendon vibration at 20, 40, 80 and 120 Hz on the amplitude of the long-polysynaptic (LPR, from reflex onset to 500 ms) and long-lasting (LLR, from 500 ms to reflex offset) cutaneous reflex evoked by medial plantar nerve stimulation in the soleus and tibialis anterior, and reciprocal Ia inhibition between these muscles, in 25 individuals with chronic SCI. We found that Achilles tendon vibration at 40 and 80 Hz, but not other frequencies, reduced the amplitude of the LLR in the tibialis anterior, but not the soleus muscle, without affecting the amplitude of the LPR. Vibratory effects were stronger at 80 than 40 Hz. Similar results were found in the soleus muscle when the tibialis anterior tendon was vibrated. Notably, tendon vibration at 80 Hz increased reciprocal Ia inhibition between antagonistic ankle muscles and vibratory-induced increases in reciprocal Ia inhibition were correlated with decreases in the LLR, suggesting that participants with a larger suppression of later cutaneous reflex activity had stronger reciprocal Ia inhibition from the antagonistic muscle. Our study is the first to provide evidence that tendon vibration suppresses late spasm-like activity in antagonist but not agonist muscles, likely via reciprocal inhibitory mechanisms, in humans with chronic SCI. We argue that targeted vibration of antagonistic tendons might help to control spasms after SCI.
Collapse
Affiliation(s)
- Bradley A DeForest
- Department of Neurological Surgery, The Miami Project to Cure Paralysis and Bruce W. Carter Department of Veterans Affairs Medical Center, University of Miami, Miami, FL, 33136.,Shirley Ryan AbilityLab and Edward Jr. Hines VA Hospital, Chicago, IL, 60141
| | - Jorge Bohorquez
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, 33124
| | - Monica A Perez
- Department of Neurological Surgery, The Miami Project to Cure Paralysis and Bruce W. Carter Department of Veterans Affairs Medical Center, University of Miami, Miami, FL, 33136.,Shirley Ryan AbilityLab and Edward Jr. Hines VA Hospital, Chicago, IL, 60141
| |
Collapse
|
18
|
Grip force control during object manipulation in cervical myelopathy. Spinal Cord 2020; 58:689-694. [PMID: 31942043 DOI: 10.1038/s41393-020-0414-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/03/2020] [Accepted: 01/06/2020] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN Cross-sectional research. OBJECTIVES To objectively evaluate grip force (GF) control while holding a freely movable object in individuals with cervical myelopathy (CM). SETTING Harunaso Hospital, Takasaki, Japan. METHODS We studied 52 hands from 26 individuals with CM. Participants performed a grip-and-lift task by pulp pinch using the thumb and index finger before surgery. We monitored individual finger GF (N) during the first 3 s while lifting and holding an object. Correlations between the GF and other clinical tests were evaluated. A multiple stepwise regression analysis was used to examine the contribution of the GF to the severity of clinical symptoms. RESULTS Thumb GF was negatively correlated with the 10-s test (rs = -0.32), and index finger GF was positively correlated with its cutaneous pressure threshold (rs = 0.34). Multiple regression for the severity of upper extremity symptoms revealed that the model including the GF had a larger adjusted R2 and a lower AIC value than that of conventionally used clinical tests. CONCLUSIONS These results suggested that the assessment of individual finger GF control could provide an indicator of the clinical severity of upper extremity in individuals with CM.
Collapse
|
19
|
Cinelli KTM, Green LA, Kalmar JM. The Task at Hand: Fatigue-Associated Changes in Cortical Excitability during Writing. Brain Sci 2019; 9:brainsci9120353. [PMID: 31810290 PMCID: PMC6955716 DOI: 10.3390/brainsci9120353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/15/2019] [Accepted: 11/29/2019] [Indexed: 12/23/2022] Open
Abstract
Measures of corticospinal excitability (CSE) made via transcranial magnetic stimulation (TMS) depend on the task performed during stimulation. Our purpose was to determine whether fatigue-induced changes in CSE made during a conventional laboratory task (isometric finger abduction) reflect the changes measured during a natural motor task (writing). We assessed single-and paired-pulse motor evoked potentials (MEPs) recorded from the first dorsal interosseous (FDI) of 19 participants before and after a fatigue protocol (submaximal isometric contractions) on two randomized days. The fatigue protocol was identical on the two days, but the tasks used to assess CSE before and after fatigue differed. Specifically, MEPs were evoked during a writing task on one day and during isometric finger abduction to a low-level target that matched muscle activation during writing on the other day. There was greater variability in MEP amplitude (F (1,18) = 13.55, p < 0.01) during writing compared to abduction. When participants were divided into groups according to writing style (printers, n = 8; cursive writers, n = 8), a task x fatigue x style interaction was revealed for intracortical facilitation (F (1,14) = 9.90, p < 0.01), which increased by 28% after fatigue in printers but did not change in cursive writers nor during the abduction task. This study is the first to assess CSE during hand-writing. Our finding that fatigue-induced changes in intracortical facilitation depend on the motor task used during TMS, highlights the need to consider the task-dependent nature of CSE when applying results to movement outside of the laboratory.
Collapse
|
20
|
Maxwell DJ, Soteropoulos DS. The mammalian spinal commissural system: properties and functions. J Neurophysiol 2019; 123:4-21. [PMID: 31693445 DOI: 10.1152/jn.00347.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Commissural systems are essential components of motor circuits that coordinate left-right activity of the skeletomuscular system. Commissural systems are found at many levels of the neuraxis including the cortex, brainstem, and spinal cord. In this review we will discuss aspects of the mammalian spinal commissural system. We will focus on commissural interneurons, which project from one side of the cord to the other and form axonal terminations that are confined to the cord itself. Commissural interneurons form heterogeneous populations and influence a variety of spinal circuits. They can be defined according to a variety of criteria including, location in the spinal gray matter, axonal projections and targets, neurotransmitter phenotype, activation properties, and embryological origin. At present, we do not have a comprehensive classification of these cells, but it is clear that cells located within different areas of the gray matter have characteristic properties and make particular contributions to motor circuits. The contribution of commissural interneurons to locomotor function and posture is well established and briefly discussed. However, their role in other goal-orientated behaviors such as grasping, reaching, and bimanual tasks is less clear. This is partly because we only have limited information about the organization and functional properties of commissural interneurons in the cervical spinal cord of primates, including humans. In this review we shall discuss these various issues. First, we will consider the properties of commissural interneurons and subsequently examine what is known about their functions. We then discuss how they may contribute to restoration of function following spinal injury and stroke.
Collapse
Affiliation(s)
- David J Maxwell
- Spinal Cord Group, Institute of Neuroscience and Psychology, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | |
Collapse
|
21
|
Imbalanced Corticospinal and Reticulospinal Contributions to Spasticity in Humans with Spinal Cord Injury. J Neurosci 2019; 39:7872-7881. [PMID: 31413076 DOI: 10.1523/jneurosci.1106-19.2019] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/22/2019] [Accepted: 07/25/2019] [Indexed: 02/04/2023] Open
Abstract
Damage to the corticospinal and reticulospinal tract has been associated with spasticity in humans with upper motor neuron lesions. We hypothesized that these descending motor pathways distinctly contribute to the control of a spastic muscle in humans with incomplete spinal cord injury (SCI). To test this hypothesis, we examined motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation over the leg representation of the primary motor cortex, maximal voluntary contractions (MVCs), and the StartReact response (shortening in reaction time evoked by a startling stimulus) in the quadriceps femoris muscle in male and females with and without incomplete SCI. A total of 66.7% of the SCI participants showed symptoms of spasticity, whereas the other 33.3% showed no or low levels of spasticity. We found that participants with spasticity had smaller MEPs and MVCs and larger StartReact compared with participants with no or low spasticity and control subjects. These results were consistently present in spastic subjects but not in the other populations. Clinical scores of spasticity were negatively correlated with MEP-max and MVC values and positively correlated with shortening in reaction time. These findings provide evidence for lesser corticospinal and larger reticulospinal influences to spastic muscles in humans with SCI and suggest that these imbalanced contributions are important for motor recovery.SIGNIFICANCE STATEMENT Although spasticity is one of the most common symptoms manifested in humans with spinal cord injury (SCI) to date, its mechanisms of action remain poorly understood. We provide evidence, for the first time, of imbalanced contributions of the corticospinal and reticulospinal tract to control a spastic muscle in humans with chronic incomplete SCI. We found that participants with SCI with spasticity showed small corticospinal responses and maximal voluntary contractions and larger reticulospinal gain compared with participants with no or low spasticity and control subjects. These results were consistently present in spastic subjects but not in the other populations. We showed that imbalanced corticospinal and reticulospinal tract contributions are more pronounced in participants with chronic incomplete SCI with lesser recovery.
Collapse
|
22
|
MRI evidence of brain atrophy, white matter damage, and functional adaptive changes in patients with cervical spondylosis and prolonged spinal cord compression. Eur Radiol 2019; 30:357-369. [DOI: 10.1007/s00330-019-06352-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/13/2019] [Accepted: 07/01/2019] [Indexed: 10/26/2022]
|
23
|
Jo HJ, Perez MA. Changes in motor-evoked potential latency during grasping after tetraplegia. J Neurophysiol 2019; 122:1675-1684. [PMID: 30673355 DOI: 10.1152/jn.00671.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The corticospinal pathway contributes to the control of grasping in intact humans. After spinal cord injury (SCI), there is an extensive reorganization in the corticospinal pathway; however, its contribution to the control of grasping after the injury remains poorly understood. We addressed this question by using transcranial magnetic stimulation (TMS) over the hand representation of the motor cortex to elicit motor-evoked potentials (MEPs) in an intrinsic finger muscle during precision grip and power grip with the TMS coil oriented to induce currents in the brain in the latero-medial (LM) direction to activate corticospinal axons directly and in the posterior-anterior (PA) and anterior-posterior (AP) directions to activate the axon indirectly through synaptic inputs in humans with and without cervical incomplete SCI. We found prolonged MEP latencies in all coil orientations in both tasks in SCI compared with control subjects. The latencies of MEPs elicited by AP relative to LM stimuli were consistently longer during power compared with precision grip in controls and SCI subjects. In contrast, PA relative to LM MEP latencies were similar between tasks across groups. Central conduction time of AP MEPs was prolonged during power compared with precision grip in controls and SCI participants. Our results support evidence indicating that inputs activated by AP and PA currents are engaged to a different extent during fine and gross grasping in humans with and without SCI.NEW & NOTEWORTHY The mechanisms contributing to the control of hand function in humans with spinal cord injury (SCI) remain poorly understood. Here, we demonstrate for the first time that the latency of corticospinal responses elicited by transcranial magnetic stimulation anterior-posterior induced currents, relative to latero-medial currents, was prolonged during power compared with precision grip in humans with and without SCI. Gross grasping might represent a stragegy to engage networks activated by anterior-posterior currents after SCI.
Collapse
Affiliation(s)
- Hang Jin Jo
- University of Miami, Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miami, Florida.,Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida
| | - Monica A Perez
- University of Miami, Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miami, Florida.,Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida
| |
Collapse
|
24
|
Jo HJ, Di Lazzaro V, Perez MA. Effect of coil orientation on motor-evoked potentials in humans with tetraplegia. J Physiol 2018; 596:4909-4921. [PMID: 29923194 DOI: 10.1113/jp275798] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 06/12/2018] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Although corticospinal function changes following spinal cord injury (SCI), the extent to which we can activate the corticospinal tract after injury remains poorly understood. To address this question, we used transcranial magnetic stimulation over the hand representation of the primary motor cortex to elicit motor-evoked potentials (MEPs) using posterior-anterior and anterior-posterior induced currents in the brain and compared them with responses evoked using lateral-medial currents in participants with and without cervical incomplete SCI during small levels of index finger abduction. We found prolonged MEP latencies in all coil orientations in SCI compared to control subjects. However, the latencies of MEPs elicited by posterior-anterior and anterior-posterior compared to lateral-medial stimulation were shorter in SCI compared to controls, particularly for MEPs elicited by anterior-posterior currents. Our findings demonstrate for the first time that corticospinal responses elicited by different directions of the induced current in the brain are differentially affected after SCI. ABSTRACT The corticospinal tract undergoes reorganization following spinal cord injury (SCI). However, the extent to which we can activate corticospinal neurons using non-invasive stimulation after injury remains poorly understood. To address this question, we used transcranial magnetic stimulation over the hand representation of the primary motor cortex to elicit motor-evoked potentials (MEPs) using posterior-anterior (PA) and anterior-posterior (AP) induced currents in the brain and compared them with the responses evoked by direct activation of corticospinal axons using lateral-medial (LM) currents. Testing was completed during small levels of index finger abduction in humans with and without (controls) cervical incomplete SCI. We found prolonged MEP latencies in individuals with SCI in all coil orientations compared to controls. However, latencies of MEPs elicited by PA and AP stimulation relative to those elicited by LM stimulation were shorter in SCI compared to control subjects. Notably, the largest difference between SCI and control subjects was present in MEPs elicited by AP currents. Using a novel controllable pulse parameter transcranial magnetic stimulation, we also found that MEPs elicited by AP currents with 30 μs compared to 60 and 120 μs pulse width had increased latency in controls but not in SCI subjects. Our findings demonstrate that differences between corticospinal responses elicited by AP and PA induced currents were not preserved in humans with tetraplegia and suggest that neural structures activated by AP currents change largely after the injury.
Collapse
Affiliation(s)
- Hang Jin Jo
- University of Miami, Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miami, FL, USA.,Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, USA
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Monica A Perez
- University of Miami, Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miami, FL, USA.,Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, USA
| |
Collapse
|
25
|
Gating of Sensory Input at Subcortical and Cortical Levels during Grasping in Humans. J Neurosci 2018; 38:7237-7247. [PMID: 29976624 DOI: 10.1523/jneurosci.0545-18.2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/09/2018] [Accepted: 06/22/2018] [Indexed: 01/27/2023] Open
Abstract
Afferent input from the periphery to the cortex contributes to the control of grasping. How sensory input is gated along the ascending sensory pathway and its functional role during gross and fine grasping in humans remain largely unknown. To address this question, we assessed somatosensory-evoked potential components reflecting activation at subcortical and cortical levels and psychophysical tests at rest, during index finger abduction, precision, and power grip. We found that sensory gating at subcortical level and in the primary somatosensory cortex (S1), as well as intracortical inhibition in the S1, increased during power grip compared with the other tasks. To probe the functional relevance of gating in the S1, we examined somatosensory temporal discrimination threshold by measuring the shortest time interval to perceive a pair of electrical stimuli. Somatosensory temporal discrimination threshold increased during power grip, and higher threshold was associated with increased intracortical inhibition in the S1. These novel findings indicate that humans gate sensory input at subcortical level and in the S1 largely during gross compared with fine grasping. Inhibitory processes in the S1 may increase discrimination threshold to allow better performance during power grip.SIGNIFICANCE STATEMENT Most of our daily life actions involve grasping. Here, we demonstrate that gating of afferent input increases at subcortical level and in the primary somatosensory cortex (S1) during gross compared with fine grasping in intact humans. The precise timing of sensory information is critical for human perception and behavior. Notably, we found that the ability to perceive a pair of electrical stimuli, as measured by the somatosensory temporal discrimination threshold, increased during power grip compared with the other tasks. We propose that reduced afferent input to the S1 during gross grasping behaviors diminishes temporal discrimination of sensory processes related, at least in part, to increased inhibitory processes within the S1.
Collapse
|
26
|
Federico P, Perez MA. Distinct Corticocortical Contributions to Human Precision and Power Grip. Cereb Cortex 2018; 27:5070-5082. [PMID: 27707769 DOI: 10.1093/cercor/bhw291] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/22/2016] [Indexed: 12/21/2022] Open
Abstract
The corticospinal tract contributes to the control of finger muscles during precision and power grip. The involvement of different sets of cortical interneuronal circuits during these distinct grasping behaviors remains unknown. To examine this question in humans we used noninvasive transcranial magnetic stimulation (TMS) over the hand representation of the primary motor cortex to elicit motor evoked potentials (MEPs) in an intrinsic finger muscle during index finger abduction (control task), precision grip, and power grip. The TMS coil was oriented to induce currents in the brain in the latero-medial (LM), posterior-anterior (PA), and anterior-posterior (AP) direction to preferentially activate corticospinal axons directly and early and late synaptic inputs to corticospinal neurons, respectively. We found that AP-LM MEP latency differences were consistently longer during power grip compared with index finger abduction and precision grip, while PA-LM differences remained similar across tasks. Short-interval intracortical facilitation, targeting AP but not PA inputs, increased during power grip compared with other tasks. Our novel findings suggest that cortical structures activated by PA and AP stimuli are differentially active during precision and power grip. We propose that a preferential recruitment of late synaptic inputs to corticospinal neurons may be achieved when humans perform a power grip.
Collapse
Affiliation(s)
- Paolo Federico
- University of Miami, Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miami, FL33136, USA
| | - Monica A Perez
- University of Miami, Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miami, FL33136, USA
| |
Collapse
|
27
|
Chiou SY, Strutton PH, Perez MA. Crossed corticospinal facilitation between arm and trunk muscles in humans. J Neurophysiol 2018; 120:2595-2602. [PMID: 29847230 DOI: 10.1152/jn.00178.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A voluntary contraction of muscles with one arm increases the excitability of corticospinal projections to the contralateral resting arm, a phenomenon known as crossed facilitation. Although many motor tasks engage simultaneous activation of the arm and trunk, interactions between corticospinal projections targeting these segments remain largely unknown. Using transcranial magnetic stimulation over the trunk representation of the primary motor cortex, we examined motor-evoked potentials (MEPs) in the resting erector spinae (ES) muscle when the contralateral arm remained at rest or performed 20% of isometric maximal voluntary contraction (MVC) into index finger abduction, thumb abduction, elbow flexion, and elbow extension. We found that MEP size in the ES increased during all voluntary contractions, with greater facilitation occurring during elbow flexion and index finger abduction. To further examine the origin of changes in MEP size, we measured short-interval intracortical inhibition (SICI) and cervicomedullary MEPs (CMEPs) in the ES muscle during elbow flexion and index finger abduction and when the arm remained at rest. Notably, SICI decreased and CMEPs remained unchanged in the ES during both voluntary contractions compared with rest, suggesting a cortical origin for the effects. Our findings reveal crossed facilitatory interactions between trunk extensor and proximal and distal arm muscles, particularly for elbow flexor and index finger muscles, likely involving cortical mechanisms. These interactions might reflect the different role of these muscles during functionally relevant arm and trunk movements. NEW & NOTEWORTHY Many of the tasks of daily life involve simultaneous activation of the arm and trunk. We found that responses in the erector spinae muscles evoked by motor cortical stimulation increased in size during elbow flexion and extension and during index finger abduction and thumb abduction. Crossed facilitation with the trunk was more pronounced during elbow flexion and index finger abduction. These results might reflect the different role of these muscles during arm and trunk movements.
Collapse
Affiliation(s)
- Shin-Yi Chiou
- Faculty of Medicine, The Nick Davey Laboratory, Division of Surgery, Department of Surgery and Cancer, Imperial College London , London , United Kingdom.,Department of Physical Medicine and Rehabilitation, Systems Neuroscience Institute, University of Pittsburgh, Pennsylvania
| | - Paul H Strutton
- Faculty of Medicine, The Nick Davey Laboratory, Division of Surgery, Department of Surgery and Cancer, Imperial College London , London , United Kingdom
| | - Monica A Perez
- Department of Physical Medicine and Rehabilitation, Systems Neuroscience Institute, University of Pittsburgh, Pennsylvania.,Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami , Miami, Florida.,Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida
| |
Collapse
|
28
|
Yahya A, von Behren T, Levine S, Dos Santos M. Pinch aperture proprioception: reliability and feasibility study. J Phys Ther Sci 2018; 30:734-740. [PMID: 29765192 PMCID: PMC5940484 DOI: 10.1589/jpts.30.734] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/09/2018] [Indexed: 11/24/2022] Open
Abstract
[Purpose] To establish the reliability and feasibility of a novel pinch aperture device to measure proprioceptive joint position sense. [Subjects and Methods] Reliability of the pinch aperture device was assessed in 21 healthy subjects. Following familiarization with a 15° target position of the index finger and thumb, subjects performed 5 trials in which they attempted to actively reproduce the target position without visual feedback. This procedure was repeated at a testing session on a separate date, and the between-session intraclass correlation coefficient (ICC) was calculated. In addition, extensor tendon vibration was applied to 19 healthy subjects, and paired t-tests were conducted to compare performance under vibration and no-vibration conditions. Pinch aperture proprioception was also assessed in two individuals with known diabetic neuropathy. [Results] The pinch aperture device demonstrated excellent reliability in healthy subjects (ICC 0.88, 95% confidence interval 0.70-0.95). Tendon vibration disrupted pinch aperture proprioception, causing subjects to undershoot the target position (18.1 ± 2.6° vs. 14.8° ± 0.76, p<0.001). This tendency to undershoot the target position was also noted in individuals with diabetic neuropathy. [Conclusion] This study describes a reliable, feasible, and functional means of measuring finger proprioception. Further research should investigate the assessment and implications of pinch aperture proprioception in neurological and orthopedic populations.
Collapse
Affiliation(s)
- Abdalghani Yahya
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center: Mail stop 2002, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Timothy von Behren
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center: Mail stop 2002, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Shira Levine
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center: Mail stop 2002, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Marcio Dos Santos
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center: Mail stop 2002, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| |
Collapse
|
29
|
Soteropoulos DS. Corticospinal gating during action preparation and movement in the primate motor cortex. J Neurophysiol 2018; 119:1538-1555. [PMID: 29357454 PMCID: PMC5966733 DOI: 10.1152/jn.00639.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
During everyday actions there is a need to be able to withhold movements until the most appropriate time. This motor inhibition is likely to rely on multiple cortical and subcortical areas, but the primary motor cortex (M1) is a critical component of this process. However, the mechanisms behind this inhibition are unclear, particularly the role of the corticospinal system, which is most often associated with driving muscles and movement. To address this, recordings were made from identified corticospinal (PTN, n = 94) and corticomotoneuronal (CM, n = 16) cells from M1 during an instructed delay reach-to-grasp task. The task involved the animals withholding action for ~2 s until a GO cue, after which they were allowed to reach and perform the task for a food reward. Analysis of the firing of cells in M1 during the delay period revealed that, as a population, non-CM PTNs showed significant suppression in their activity during the cue and instructed delay periods, while CM cells instead showed a facilitation during the preparatory delay. Analysis of cell activity during movement also revealed that a substantial minority of PTNs (27%) showed suppressed activity during movement, a response pattern more suited to cells involved in withholding rather than driving movement. These results demonstrate the potential contributions of the M1 corticospinal system to withholding of actions and highlight that suppression of activity in M1 during movement preparation is not evenly distributed across different neural populations. NEW & NOTEWORTHY Recordings were made from identified corticospinal (PTN) and corticomotoneuronal (CM) cells during an instructed delay task. Activity of PTNs as a population was suppressed during the delay, in contrast to CM cells, which were facilitated. A minority of PTNs showed a rate profile that might be expected from inhibitory cells and could suggest that they play an active role in action suppression, most likely through downstream inhibitory circuits.
Collapse
Affiliation(s)
- Demetris S Soteropoulos
- Institute of Neuroscience, Newcastle University Medical School , Newcastle upon Tyne , United Kingdom
| |
Collapse
|
30
|
Theriault ER, Huang V, Whiteneck G, Dijkers MP, Harel NY. Antispasmodic medications may be associated with reduced recovery during inpatient rehabilitation after traumatic spinal cord injury. J Spinal Cord Med 2018; 41:63-71. [PMID: 27841095 PMCID: PMC5810808 DOI: 10.1080/10790268.2016.1245010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVE To determine whether antispasmodic medications are associated with neurological and functional outcomes during the first year after traumatic spinal cord injury (SCI). DESIGN/METHODS Retrospective analysis of prospectively collected data from six inpatient SCI rehabilitation centers. Baseline-adjusted outcomes at discharge and one-year follow-up were compared using analysis of covariance between patients who received antispasmodic medication on at least 5 days during inpatient rehabilitation and patients who did not. OUTCOME MEASURES Rasch-transformed motor subscore of the Functional Independence Measure (FIM); International Standards for Neurological Classification of Spinal Cord Injury motor scores, grade, and level. RESULTS Of 1,259 patients, 59.8%, 35.4%, and 4.8% were injured at the cervical, thoracic, and lumbosacral levels, respectively. 65.6% had motor complete injury. Rasch-transformed motor FIM score at admission averaged 23.3 (95% confidence interval (CI) 22.4-24.2). Total motor score averaged 39.2 (95% CI 37.8-40.6). 685 patients (54.4%) received one or more antispasmodic medications on at least 5 days. After controlling for demographic and injury variables at admission, Rasch-transformed motor FIM scores at discharge were significantly lower (P = 0.018) in patients receiving antispasmodic medications than in those who did not. This trend persisted in secondary analyses for cervical, thoracic, and lumbosacral subgroups. Multivariate regression showed that receiving antispasmodic medication significantly contributed to discharge motor FIM outcome. At one-year follow-up, no outcomes significantly differed between patients ON or OFF antispasmodics. CONCLUSIONS Antispasmodic medications may be associated with decreased functional recovery at discharge from inpatient traumatic SCI rehabilitation. Randomized prospective studies are needed to directly evaluate the effects of antispasmodic medication on recovery.
Collapse
Affiliation(s)
- Eric R. Theriault
- New York Institute of Technology, Department of Physical Therapy, Old Westbury, NY, USA
| | - Vincent Huang
- Icahn School of Medicine at Mount Sinai, Department of Rehabilitation Medicine, New York, NY, USA
| | | | - Marcel P. Dijkers
- Icahn School of Medicine at Mount Sinai, Department of Rehabilitation Medicine, New York, NY, USA,Department of Physical Medicine and Rehabilitation, Wayne State University, Detroit, MI, USA
| | - Noam Y. Harel
- Icahn School of Medicine at Mount Sinai, Department of Rehabilitation Medicine, New York, NY, USA,James J. Peters VA Medical Center, Spinal Cord Damage Research Center, Bronx, NY, USA,Correspondence to: Noam Y. Harel, James J. Peters VA Medical Center, 130 West Kingsbridge Road, 7A-13G, Bronx, NY, 10468; 718-584-9000 x1742.
| |
Collapse
|
31
|
Lei Y, Perez MA. Phase-dependent deficits during reach-to-grasp after human spinal cord injury. J Neurophysiol 2017; 119:251-261. [PMID: 28931614 DOI: 10.1152/jn.00542.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Most cervical spinal cord injuries result in asymmetrical functional impairments in hand and arm function. However, the extent to which reach-to-grasp movements are affected in humans with incomplete cervical spinal cord injury (SCI) remains poorly understood. Using kinematics and electromyographic (EMG) recordings in hand and arm muscles we studied the different phases of unilateral self-paced reach-to-grasp movements (arm acceleration, hand opening and closing) to a small cylinder in the more and less affected arms of individuals with cervical SCI and in age-matched controls. We found that SCI subjects showed prolonged movement duration in both arms during arm acceleration, and hand opening and closing compared with controls. Notably, the more affected arm showed an additional increase in movement duration at the time to close the hand compared with the less affected arm. Also, the time at which the index finger and thumb contacted the object and the variability of finger movement trajectory were increased in the more compared with the less affected arm of SCI participants. Participants with prolonged movement duration during hand closing were those with more pronounced deficits in sensory function. The muscle activation ratio between the first dorsal interosseous and abductor pollicis brevis muscles decreased during hand closing in the more compared with the less affected arm of SCI participants. Our results suggest that deficits in movement kinematics during reach-to-grasp movements are more pronounced at the time to close the hand in the more affected arm of SCI participants, likely related to deficits in EMG muscle activation and sensory function. NEW & NOTEWORTHY Humans with cervical spinal cord injury usually present asymmetrical functional impairments in hand and arm function. Here, we demonstrate for the first time that deficits in movement kinematics during reaching and grasping movements are more pronounced at the time to close the hand in the more affected arm of spinal cord injury. We suggest that this is in part related to deficits in muscle activation ratios between hand muscles and a decrease in sensory function.
Collapse
Affiliation(s)
- Yuming Lei
- University of Miami, Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miami, Florida.,Bruce W. Carter Department of Veterans Affairs Medical Center , Miami, Florida
| | - Monica A Perez
- University of Miami, Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miami, Florida.,Bruce W. Carter Department of Veterans Affairs Medical Center , Miami, Florida
| |
Collapse
|
32
|
Reticulospinal Contributions to Gross Hand Function after Human Spinal Cord Injury. J Neurosci 2017; 37:9778-9784. [PMID: 28871033 DOI: 10.1523/jneurosci.3368-16.2017] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 08/10/2017] [Accepted: 08/16/2017] [Indexed: 11/21/2022] Open
Abstract
Multiple descending motor pathways likely contribute to the recovery of hand motor function following spinal cord injury (SCI). Reticulospinal neurons project to spinal motor neurons controlling hand muscles and extensively sprout into gray matter structures after SCI; therefore, it has been proposed that the reticulospinal tract is one of the descending motor pathways involved in recovery of hand function after injury. To test this hypothesis, we examined the StartReact response, an involuntary release of a planned movement via a startling stimulus that engages the reticulospinal tract, by measuring reaction times from electromyographic activity in an intrinsic finger muscle during three motor tasks requiring different degrees of hand dexterity: index finger abduction, a precision grip, and a power grip. Males and females with and without incomplete chronic cervical SCI were tested. We found that although SCI participants voluntarily responded to all tasks, reaction times were shorter during a startle cue while performing a power grip but not index finger abduction or precision grip. Control subjects had similarly shorter reaction times during a startle cue in all motor tasks. These results provide the first evidence for a contribution of the reticulospinal tract to hand control in humans with SCI during gross finger manipulations and suggest that this contribution is less pronounced during fine dexterous finger movements.SIGNIFICANCE STATEMENT It has been long proposed that brainstem pathways contribute to the recovery of hand function in humans with spinal cord injury (SCI). Here, we show that individuals with anatomically incomplete chronic cervical SCI responded to a startle stimulus, a test that engages the reticulospinal tract, while performing a power grip but not during index finger abduction or precision grip. Control subjects responded to a startle stimulus similarly across tasks. These observations suggest that reticulospinal outputs after SCI contribute to hand motor tasks involving gross finger movements. Interestingly, this contribution is less pronounced during fine dexterous finger movements.
Collapse
|
33
|
Mayorga T, Giokas E, Abagyan A, Patel D, Sarraf Y, Paula M, Chusid E, D'antoni A, Battaglia F. Motor-Evoked Potentials of the Abductor Hallucis Muscle and Their Relationship with Foot Arch Functional Anatomy. J Am Podiatr Med Assoc 2017; 107:467-470. [PMID: 29077492 DOI: 10.7547/16-049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND The present study aimed to investigate the correlation between abductor hallucis (AH) muscle motor evoked potential (MEP) amplitude and foot arch anatomy. METHODS Twelve healthy individuals underwent foot arch measurement using a digital photographic technique and measurements of cortical excitability using transcranial magnetic stimulation applied on the cortical representation area of the right AH muscle. Truncated foot length and dorsal height were then measured and used to create the arch height index (AHI). Resting motor threshold, MEP amplitude (using a stimulation intensity of 110% resting motor threshold), and cortical silent period duration were also measured. RESULTS Mean ± SE values were as follows: truncated foot length, 16.72 ± 0.3 cm; dorsal height, 5.62 ± 0.13 cm; AHI, 0.34 ± 0.01; resting motor threshold, 81.6% ± 2.12%; MEP amplitude, 0.71 ± 0.1 mV; and cortical silent period duration, 108.05 ± 0.45 msec. A significant correlation was found between MEP amplitude and AHI (Spearman's rho: P < .01). CONCLUSIONS These results indicate that AH muscle functional neuroanatomy measurements are reliable and might be used by clinicians and therapists to investigate foot arch physiology and monitor the efficacy of treatments and rehabilitative protocols.
Collapse
Affiliation(s)
| | - Erato Giokas
- New York College of Podiatric Medicine, New York, NY
| | | | - Dhaval Patel
- New York College of Podiatric Medicine, New York, NY
| | - Yasmin Sarraf
- New York College of Podiatric Medicine, New York, NY
| | - Michael Paula
- New York College of Podiatric Medicine, New York, NY
| | - Eileen Chusid
- New York College of Podiatric Medicine, New York, NY
| | - Anthony D'antoni
- The Sophie Davis School of Biomedical Education, City University of New York, New York, NY
| | - Fortunato Battaglia
- School of Health and Medical Sciences, Seton Hall University, South Orange, NJ
| |
Collapse
|
34
|
Long J, Federico P, Perez MA. A novel cortical target to enhance hand motor output in humans with spinal cord injury. Brain 2017; 140:1619-1632. [PMID: 28549131 DOI: 10.1093/brain/awx102] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 03/04/2017] [Indexed: 01/01/2023] Open
Abstract
A main goal of rehabilitation strategies in humans with spinal cord injury is to strengthen transmission in spared neural networks. Although neuromodulatory strategies have targeted different sites within the central nervous system to restore motor function following spinal cord injury, the role of cortical targets remain poorly understood. Here, we use 180 pairs of transcranial magnetic stimulation for ∼30 min over the hand representation of the motor cortex at an interstimulus interval mimicking the rhythmicity of descending late indirect (I) waves in corticospinal neurons (4.3 ms; I-wave protocol) or at an interstimulus interval in-between I-waves (3.5 ms; control protocol) on separate days in a randomized order. Late I-waves are thought to arise from trans-synaptic cortical inputs and have a crucial role in the recruitment of spinal motor neurons following spinal cord injury. Motor evoked potentials elicited by transcranial magnetic stimulation, paired-pulse intracortical inhibition, spinal motor neuron excitability (F-waves), index finger abduction force and electromyographic activity as well as a hand dexterity task were measured before and after both protocols in 15 individuals with chronic incomplete cervical spinal cord injury and 17 uninjured participants. We found that motor evoked potentials size increased in spinal cord injury and uninjured participants after the I-wave but not the control protocol for ∼30 to 60 min after the stimulation. Intracortical inhibition decreased and F-wave amplitude and persistence increased after the I-wave but not the control protocol, suggesting that cortical and subcortical networks contributed to changes in corticospinal excitability. Importantly, hand motor output and hand dexterity increased in individuals with spinal cord injury after the I-wave protocol. These results provide the first evidence that late synaptic input to corticospinal neurons may represent a novel therapeutic target for improving motor function in humans with paralysis due to spinal cord injury.
Collapse
Affiliation(s)
- Jinyi Long
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami, Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, USA
| | - Paolo Federico
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami, Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, USA
| | - Monica A Perez
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami, Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, USA
| |
Collapse
|
35
|
Tazoe T, Perez MA. Cortical and reticular contributions to human precision and power grip. J Physiol 2017; 595:2715-2730. [PMID: 27891607 DOI: 10.1113/jp273679] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 11/14/2016] [Indexed: 12/26/2022] Open
Abstract
KEY POINTS The corticospinal tract contributes to the control of finger muscles during precision and power grip. We explored the neural mechanisms contributing to changes in corticospinal excitability during these gripping configurations. Motor evoked potentials (MEPs) elicited by cortical, but not by subcortical, stimulation were more suppressed during power grip compared with precision grip and index finger abduction. Intracortical inhibition was more reduced during power grip compared with the other tasks. An acoustic startle cue, a stimulus that engages the reticular system, suppressed MEP size during power grip to a lesser extent than during the other tasks at a cortical level and this positively correlated with changes in intracortical inhibition. Our findings suggest that changes in corticospinal excitability during gross more than fine finger manipulations are largely cortical in origin and that the reticular system contributed, at least in part, to these effects. ABSTRACT It is well accepted that the corticospinal tract contributes to the control of finger muscles during precision and power grip in humans but the neural mechanisms involved remain poorly understood. Here, we examined motor evoked potentials elicited by cortical and subcortical stimulation of corticospinal axons (MEPs and CMEPs, respectively) and the activity in intracortical circuits (suppression of voluntary electromyography) and spinal motoneurons (F-waves) in an intrinsic hand muscle during index finger abduction, precision grip and power grip. We found that the size of MEPs, but not CMEPs, was more suppressed during power grip compared with precision grip and index finger abduction, suggesting a cortical origin for these effects. Notably, intracortical inhibition was more reduced during power grip compared with the other tasks. To further examine the origin of changes in intracortical inhibition we assessed the contribution of the reticular system, which projects to cortical neurons, and projects to spinal motoneurons controlling hand muscles. An acoustic startle cue, which engages the reticular system, suppressed MEP size during power grip to a lesser extent than during the other tasks and this positively correlated with changes in intracortical inhibition. A startle cue decreased intracortical inhibition, but not CMEPs, during power grip. F-waves remained unchanged across conditions. Our novel findings show that changes in corticospinal excitability present during power grip compared with fine finger manipulations are largely cortical in origin and suggest that the reticular system contributed, at least in part, to these effects.
Collapse
Affiliation(s)
- Toshiki Tazoe
- University of Miami, Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miami, FL, 33136, USA.,Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, 33125, USA
| | - Monica A Perez
- University of Miami, Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miami, FL, 33136, USA.,Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, 33125, USA
| |
Collapse
|
36
|
Gomes-Osman J, Tibbett JA, Poe BP, Field-Fote EC. Priming for Improved Hand Strength in Persons with Chronic Tetraplegia: A Comparison of Priming-Augmented Functional Task Practice, Priming Alone, and Conventional Exercise Training. Front Neurol 2017; 7:242. [PMID: 28144229 PMCID: PMC5239780 DOI: 10.3389/fneur.2016.00242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 12/21/2016] [Indexed: 01/24/2023] Open
Abstract
Many everyday tasks cannot be accomplished without adequate grip strength, and corticomotor drive to the spinal motoneurons is a key determinant of grip strength. In persons with tetraplegia, damage to spinal pathways limits transmission of signals from motor cortex to spinal motoneurons. Corticomotor priming, which increases descending drive, should increase corticospinal transmission through the remaining spinal pathways resulting in increased grip strength. Since the motor and somatosensory cortices share reciprocal connections, corticomotor priming may also have potential to influence somatosensory function. The purpose of this study was to assess changes in grip (precision, power) force and tactile sensation associated with two different corticomotor priming approaches and a conventional training approach and to determine whether baseline values can predict responsiveness to training. Participants with chronic (≥1 year) tetraplegia (n = 49) were randomized to one of two corticomotor priming approaches: functional task practice plus peripheral nerve somatosensory stimulation (FTP + PNSS) or PNSS alone, or to conventional exercise training (CET). To assess whether baseline corticospinal excitability (CSE) is predictive of responsiveness to training, in a subset of participants, we assessed pre-intervention CSE of the thenar muscles. Participants were trained 2 h daily, 5 days/week for 4 weeks. Thirty-seven participants completed the study. Following intervention, significant improvements in precision grip force were observed in both the stronger and weaker hand in the FTP + PNSS group (effect size: 0.51, p = 0.04 and 0.54, p = 0.03, respectively), and significant improvements in weak hand precision grip force were associated with both PNSS and CET (effect size: 0.54, p = 0.03 and 0.75, p = 0.02, respectively). No significant changes were observed in power grip force or somatosensory scores in any group. Across all groups, responsiveness to training as measured by change in weak hand power grip force was correlated with baseline force. Change in precision grip strength was correlated with measures of baseline CSE. These findings indicate that corticomotor priming with FTP + PNSS had the greatest influence on precision grip strength in both the stronger and weaker hand; however, both PNSS and CET were associated with improved precision grip strength in the weaker hand. Responsiveness to training may be associated with baseline CSE.
Collapse
Affiliation(s)
- Joyce Gomes-Osman
- Department of Physical Therapy, University of Miami Miller School of Medicine , Coral Gables, FL , USA
| | - Jacqueline A Tibbett
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine , Miami, FL , USA
| | - Brandon P Poe
- Shepherd Center, Crawford Research Institute , Atlanta, GA , USA
| | - Edelle C Field-Fote
- Shepherd Center, Crawford Research Institute, Atlanta, GA, USA; Division of Physical Therapy, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
37
|
Federico P, Perez MA. Altered corticospinal function during movement preparation in humans with spinal cord injury. J Physiol 2016; 595:233-245. [PMID: 27485306 DOI: 10.1113/jp272266] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 07/25/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS In uninjured humans, transmission in the corticospinal pathway changes in a task-dependent manner during movement preparation. We investigated whether this ability is preserved in humans with incomplete chronic cervical spinal cord injury (SCI). Our results show that corticospinal excitability is altered in the preparatory phase of an upcoming movement when there is a need to suppress but not to execute rapid index finger voluntary contractions in individuals with SCI compared with controls. This is probably related to impaired transmission at a cortical and spinal level after SCI. Overall our findings indicate that deficits in corticospinal transmission in humans with chronic incomplete SCI are also present in the preparatory phase of upcoming movements. ABSTRACT Corticospinal output is modulated in a task-dependent manner during the preparatory phase of upcoming movements in humans. Whether this ability is preserved after spinal cord injury (SCI) is unknown. In this study, we examined motor evoked potentials elicited by cortical (MEPs) and subcortical (CMEPs) stimulation of corticospinal axons and short-interval intracortical inhibition in the first dorsal interosseous muscle in the preparatory phase of a reaction time task where individuals with chronic incomplete cervical SCI and age-matched controls needed to suppress (NOGO) or initiate (GO) ballistic index finger isometric voluntary contractions. Reaction times were prolonged in SCI participants compared with control subjects and stimulation was provided ∼90 ms prior to movement onset in each group. During NOGO trials, both MEPs and CMEPs remained unchanged compared to baseline in SCI participants but were suppressed in control subjects. Notably, during GO trials, MEPs increased to a similar extent in both groups but CMEPs increased only in controls. The magnitude of short-interval intracortical inhibition increased in controls but not in SCI subjects during NOGO trials and decreased in both groups in GO trials. These novel observations reveal that humans with incomplete cervical SCI have an altered ability to modulate corticospinal excitability during movement preparation when there is a need to suppress but not to execute upcoming rapid finger movements, which is probably related to impaired transmission at a cortical and spinal level. Thus, deficits in corticospinal transmission after human SCI extend to the preparatory phase of upcoming movements.
Collapse
Affiliation(s)
- Paolo Federico
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA
| | - Monica A Perez
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA
| |
Collapse
|
38
|
Calabro FJ, Perez MA. Bilateral reach-to-grasp movement asymmetries after human spinal cord injury. J Neurophysiol 2015; 115:157-67. [PMID: 26467518 DOI: 10.1152/jn.00692.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/07/2015] [Indexed: 11/22/2022] Open
Abstract
Cervical spinal cord injury (SCI) in humans typically damages both sides of the spinal cord, resulting in asymmetric functional impairments in the arms. Despite this well-accepted notion and the growing emphasis on the use of bimanual training strategies, how movement of one arm affects the motion of the contralateral arm after SCI remains unknown. Using kinematics and multichannel electromyographic (EMG) recordings we studied unilateral and bilateral reach-to-grasp movements to a small and a large cylinder in individuals with asymmetric arm impairments due to cervical SCI and age-matched control subjects. We found that the stronger arm of SCI subjects showed movement durations longer than control subjects during bilateral compared with unilateral trials. Specifically, movement duration was prolonged when opening and closing the hand when reaching for a large and a small object, respectively, accompanied by deficient activation of finger flexor and extensor muscles. In subjects with SCI interlimb coordination was reduced compared with control subjects, and individuals with lesser coordination between hands were those who showed prolonged times to open the hand. Although the weaker arm showed movement durations during bilateral compared with unilateral trials that were proportional to controls, the stronger arm was excessively delayed during bilateral reaching. Altogether, our findings demonstrate that during bilateral reach-to-grasp movements the more impaired arm has detrimental effects on hand opening and closing of the less impaired arm and that they are related, at least in part, to deficient control of EMG activity of hand muscles. We suggest that hand opening might provide a time to drive bimanual coordination adjustments after human SCI.
Collapse
Affiliation(s)
- Finnegan J Calabro
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Center for the Neural Basis of Cognition, Systems Neuroscience Institute, Pittsburgh, Pennsylvania; and
| | - Monica A Perez
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Center for the Neural Basis of Cognition, Systems Neuroscience Institute, Pittsburgh, Pennsylvania; and Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami, Miami, Florida
| |
Collapse
|
39
|
Abstract
We recently showed that subcortical circuits contribute to control the gain of motor cortical inputs to spinal motoneurons during precision grip of a small object. Here, we examine whether the involvement of the motor cortex could be revealed by grasping with different hand postures. Using noninvasive cortical, cervicomedullary, and peripheral nerve stimulation we examined in humans motor-evoked potentials (MEPs) and the activity in intracortical circuits (suppression of voluntary electromyography) and spinal motoneurons (F-waves) in intrinsic hand muscles when grasping a 6 mm cylinder with the index finger and thumb while the hand was held in the neutral position or during full pronation and supination. We demonstrate that the size of cortically evoked MEPs in the first dorsal interosseous, but not in the abductor pollicis brevis and abductor digit minimi muscles, was reduced to a similar extent during grasping with the hand pronated or supinated compared with the neutral position. Notably, the suppression of MEPs was present from the MEP onset, suggesting that indirect corticospinal pathways were less likely to be involved than direct connections. There was less intracortical inhibition targeting the first dorsal interosseous during hand pronation and supination compared with neutral and this negatively correlated with changes in MEP size. In contrast, cervicomedullary MEPs and F-waves remained unchanged across conditions, as did MEPs evoked during unopposed weak flexion of the index finger. Our findings reveal a distinct influence of the posture of the hand on the activity of cortical pathways controlling different hand muscles during grasping.
Collapse
|
40
|
Cirillo J, Calabro FJ, Perez MA. Impaired Organization of Paired-Pulse TMS-Induced I-Waves After Human Spinal Cord Injury. Cereb Cortex 2015; 26:2167-77. [PMID: 25814508 DOI: 10.1093/cercor/bhv048] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Paired-pulse transcranial magnetic stimulation (TMS) of the human motor cortex results in consecutive facilitatory motor-evoked potential (MEP) peaks in surface electromyography in intact humans. Here, we tested the effect of an incomplete cervical spinal cord injury (SCI) on early (first) and late (second and third) MEP peaks in a resting intrinsic finger muscle. We found that all peaks had decreased amplitude in SCI subjects compared with controls. The second and third peaks were delayed with the third peak also showing an increased duration. The delay of the third peak was smaller than that seen in controls at lower stimulation intensity, suggesting lesser influence of decreased corticospinal inputs. A mathematical model showed that after SCI the third peak aberrantly contributed to spinal motoneurone recruitment, regardless on the motor unit threshold tested. Temporal and spatial aspects of the late peaks correlated with MEP size and hand motor output. Thus, early and late TMS-induced MEP peaks undergo distinct modulation after SCI, with the third peak likely reflecting a decreased ability to summate descending volleys at the spinal level. We argue that the later corticospinal inputs on the spinal cord might be crucial for recruitment of motoneurones after human SCI.
Collapse
Affiliation(s)
- John Cirillo
- Department of Physical Medicine and Rehabilitation, Center for the Neural Basis of Cognition, Systems Neuroscience Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Finnegan J Calabro
- Department of Physical Medicine and Rehabilitation, Center for the Neural Basis of Cognition, Systems Neuroscience Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Monica A Perez
- Department of Physical Medicine and Rehabilitation, Center for the Neural Basis of Cognition, Systems Neuroscience Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
41
|
Fakhoury M. Spinal cord injury: overview of experimental approaches used to restore locomotor activity. Rev Neurosci 2015; 26:397-405. [DOI: 10.1515/revneuro-2015-0001] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 01/26/2015] [Indexed: 01/16/2023]
Abstract
AbstractSpinal cord injury affects more than 2.5 million people worldwide and can lead to paraplegia and quadriplegia. Anatomical discontinuity in the spinal cord results in disruption of the impulse conduction that causes temporary or permanent changes in the cord’s normal functions. Although axonal regeneration is limited, damage to the spinal cord is often accompanied by spontaneous plasticity and axon regeneration that help improve sensory and motor skills. The recovery process depends mainly on synaptic plasticity in the preexisting circuits and on the formation of new pathways through collateral sprouting into neighboring denervated territories. However, spontaneous recovery after spinal cord injury can go on for several years, and the degree of recovery is very limited. Therefore, the development of new approaches that could accelerate the gain of motor function is of high priority to patients with damaged spinal cord. Although there are no fully restorative treatments for spinal injury, various rehabilitative approaches have been tested in animal models and have reached clinical trials. In this paper, a closer look will be given at the potential therapies that could facilitate axonal regeneration and improve locomotor recovery after injury to the spinal cord. This article highlights the application of several interventions including locomotor training, molecular and cellular treatments, and spinal cord stimulation in the field of rehabilitation research. Studies investigating therapeutic approaches in both animal models and individuals with injured spinal cords will be presented.
Collapse
|
42
|
Tazoe T, Perez MA. Effects of repetitive transcranial magnetic stimulation on recovery of function after spinal cord injury. Arch Phys Med Rehabil 2014; 96:S145-55. [PMID: 25175159 DOI: 10.1016/j.apmr.2014.07.418] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/02/2014] [Accepted: 07/08/2014] [Indexed: 11/30/2022]
Abstract
A major goal of rehabilitation strategies after spinal cord injury (SCI) is to enhance the recovery of function. One possible avenue to achieve this goal is to strengthen the efficacy of the residual neuronal pathways. Noninvasive repetitive transcranial magnetic stimulation (rTMS) has been used in patients with motor disorders as a tool to modulate activity of corticospinal, cortical, and subcortical pathways to promote functional recovery. This article reviews a series of studies published during the last decade that used rTMS in the acute and chronic stages of paraplegia and tetraplegia in humans with complete and incomplete SCI. In the studies, rTMS has been applied over the arm and leg representations of the primary motor cortex to target 3 main consequences of SCI: sensory and motor function impairments, spasticity, and neuropathic pain. Although some studies demonstrated that consecutive sessions of rTMS improve aspects of particular functions, other studies did not show similar effects. We discuss how rTMS parameters and postinjury reorganization in the corticospinal tract, motor cortical, and spinal cord circuits might be critical factors in understanding the advantages and disadvantages of using rTMS in patients with SCI. The available data highlight the limited information on the use of rTMS after SCI and the need to further understand the pathophysiology of neuronal structures affected by rTMS to maximize the potential beneficial effects of this technique in humans with SCI.
Collapse
Affiliation(s)
- Toshiki Tazoe
- Department of Physical Medicine and Rehabilitation, Center for the Neural Basis of Cognition, Systems Neuroscience Institute, University of Pittsburgh, Pittsburgh, PA; Japanese Society for the Promotion of Science, Tokyo, Japan
| | - Monica A Perez
- Department of Physical Medicine and Rehabilitation, Center for the Neural Basis of Cognition, Systems Neuroscience Institute, University of Pittsburgh, Pittsburgh, PA.
| |
Collapse
|