1
|
Peltier NE, Anzai A, Moreno-Bote R, DeAngelis GC. A neural mechanism for optic flow parsing in macaque visual cortex. Curr Biol 2024; 34:4983-4997.e9. [PMID: 39389059 PMCID: PMC11537840 DOI: 10.1016/j.cub.2024.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/21/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024]
Abstract
For the brain to compute object motion in the world during self-motion, it must discount the global patterns of image motion (optic flow) caused by self-motion. Optic flow parsing is a proposed visual mechanism for computing object motion in the world, and studies in both humans and monkeys have demonstrated perceptual biases consistent with the operation of a flow-parsing mechanism. However, the neural basis of flow parsing remains unknown. We demonstrate, at both the individual unit and population levels, that neural activity in macaque middle temporal (MT) area is biased by peripheral optic flow in a manner that can at least partially account for perceptual biases induced by flow parsing. These effects cannot be explained by conventional surround suppression mechanisms or choice-related activity and have substantial neural latency. Together, our findings establish the first neural basis for the computation of scene-relative object motion based on flow parsing.
Collapse
Affiliation(s)
- Nicole E Peltier
- Department of Brain and Cognitive Sciences, Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
| | - Akiyuki Anzai
- Department of Brain and Cognitive Sciences, Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
| | - Rubén Moreno-Bote
- Center for Brain and Cognition & Department of Engineering, Universitat Pompeu Fabra, Barcelona 08002, Spain; Serra Húnter Fellow Programme, Universitat Pompeu Fabra, Barcelona 08002, Spain
| | - Gregory C DeAngelis
- Department of Brain and Cognitive Sciences, Center for Visual Science, University of Rochester, Rochester, NY 14627, USA.
| |
Collapse
|
2
|
DiRisio GF, Ra Y, Qiu Y, Anzai A, DeAngelis GC. Neurons in Primate Area MSTd Signal Eye Movement Direction Inferred from Dynamic Perspective Cues in Optic Flow. J Neurosci 2023; 43:1888-1904. [PMID: 36725323 PMCID: PMC10027048 DOI: 10.1523/jneurosci.1885-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
Smooth eye movements are common during natural viewing; we frequently rotate our eyes to track moving objects or to maintain fixation on an object during self-movement. Reliable information about smooth eye movements is crucial to various neural computations, such as estimating heading from optic flow or judging depth from motion parallax. While it is well established that extraretinal signals (e.g., efference copies of motor commands) carry critical information about eye velocity, the rotational optic flow field produced by eye rotations also carries valuable information. Although previous work has shown that dynamic perspective cues in optic flow can be used in computations that require estimates of eye velocity, it has remained unclear where and how the brain processes these visual cues and how they are integrated with extraretinal signals regarding eye rotation. We examined how neurons in the dorsal region of the medial superior temporal area (MSTd) of two male rhesus monkeys represent the direction of smooth pursuit eye movements based on both visual cues (dynamic perspective) and extraretinal signals. We find that most MSTd neurons have matched preferences for the direction of eye rotation based on visual and extraretinal signals. Moreover, neural responses to combinations of these signals are well predicted by a weighted linear summation model. These findings demonstrate a neural substrate for representing the velocity of smooth eye movements based on rotational optic flow and establish area MSTd as a key node for integrating visual and extraretinal signals into a more generalized representation of smooth eye movements.SIGNIFICANCE STATEMENT We frequently rotate our eyes to smoothly track objects of interest during self-motion. Information about eye velocity is crucial for a variety of computations performed by the brain, including depth perception and heading perception. Traditionally, information about eye rotation has been thought to arise mainly from extraretinal signals, such as efference copies of motor commands. Previous work shows that eye velocity can also be inferred from rotational optic flow that accompanies smooth eye movements, but the neural origins of these visual signals about eye rotation have remained unknown. We demonstrate that macaque neurons signal the direction of smooth eye rotation based on visual signals, and that they integrate both visual and extraretinal signals regarding eye rotation in a congruent fashion.
Collapse
Affiliation(s)
- Grace F DiRisio
- Department of Brain and Cognitive Sciences, Center for Visual Science, University of Rochester, Rochester, New York 14627
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637
| | - Yongsoo Ra
- Department of Brain and Cognitive Sciences, Center for Visual Science, University of Rochester, Rochester, New York 14627
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Yinghui Qiu
- Department of Brain and Cognitive Sciences, Center for Visual Science, University of Rochester, Rochester, New York 14627
- College of Veterinary Medicine, Cornell University, Ithaca, New York 14853-6401
| | - Akiyuki Anzai
- Department of Brain and Cognitive Sciences, Center for Visual Science, University of Rochester, Rochester, New York 14627
| | - Gregory C DeAngelis
- Department of Brain and Cognitive Sciences, Center for Visual Science, University of Rochester, Rochester, New York 14627
| |
Collapse
|
3
|
Parker PRL, Abe ETT, Beatie NT, Leonard ESP, Martins DM, Sharp SL, Wyrick DG, Mazzucato L, Niell CM. Distance estimation from monocular cues in an ethological visuomotor task. eLife 2022; 11:e74708. [PMID: 36125119 PMCID: PMC9489205 DOI: 10.7554/elife.74708] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
In natural contexts, sensory processing and motor output are closely coupled, which is reflected in the fact that many brain areas contain both sensory and movement signals. However, standard reductionist paradigms decouple sensory decisions from their natural motor consequences, and head-fixation prevents the natural sensory consequences of self-motion. In particular, movement through the environment provides a number of depth cues beyond stereo vision that are poorly understood. To study the integration of visual processing and motor output in a naturalistic task, we investigated distance estimation in freely moving mice. We found that mice use vision to accurately jump across a variable gap, thus directly coupling a visual computation to its corresponding ethological motor output. Monocular eyelid suture did not affect gap jumping success, thus mice can use cues that do not depend on binocular disparity and stereo vision. Under monocular conditions, mice altered their head positioning and performed more vertical head movements, consistent with a shift from using stereopsis to other monocular cues, such as motion or position parallax. Finally, optogenetic suppression of primary visual cortex impaired task performance under both binocular and monocular conditions when optical fiber placement was localized to binocular or monocular zone V1, respectively. Together, these results show that mice can use monocular cues, relying on visual cortex, to accurately judge distance. Furthermore, this behavioral paradigm provides a foundation for studying how neural circuits convert sensory information into ethological motor output.
Collapse
Affiliation(s)
- Philip RL Parker
- Institute of Neuroscience, University of OregonEugeneUnited States
| | - Elliott TT Abe
- Institute of Neuroscience, University of OregonEugeneUnited States
| | - Natalie T Beatie
- Institute of Neuroscience, University of OregonEugeneUnited States
| | | | - Dylan M Martins
- Institute of Neuroscience, University of OregonEugeneUnited States
| | - Shelby L Sharp
- Institute of Neuroscience, University of OregonEugeneUnited States
| | - David G Wyrick
- Institute of Neuroscience, University of OregonEugeneUnited States
| | - Luca Mazzucato
- Institute of Neuroscience, University of OregonEugeneUnited States
- Department of Mathematics, University of OregonEugeneUnited States
| | - Cristopher M Niell
- Institute of Neuroscience, University of OregonEugeneUnited States
- Department of Biology, University of OregonEugeneUnited States
| |
Collapse
|
4
|
陈 霞, 廖 孟, 蒋 苹, 刘 陇, 龚 启. [Abnormal spontaneous brain functional activity in adult patients with amblyopia: a resting-state functional magnetic resonance imaging study]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2022; 39:759-766. [PMID: 36008340 PMCID: PMC10957354 DOI: 10.7507/1001-5515.202203072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Amblyopia is a visual development deficit caused by abnormal visual experience in early life, mainly manifesting as defected visual acuity and binocular visual impairment, which is considered to reflect abnormal development of the brain rather than organic lesions of the eye. Previous studies have reported abnormal spontaneous brain activity in patients with amblyopia. However, the location of abnormal spontaneous activity in patients with amblyopia and the association between abnormal brain function activity and clinical deficits remain unclear. The purpose of this study is to analyze spontaneous brain functional activity abnormalities in patients with amblyopia and their associations with clinical defects using resting-state functional magnetic resonance imaging (fMRI) data. In this study, 31 patients with amblyopia and 31 healthy controls were enrolled for resting-state fMRI scanning. The results showed that spontaneous activity in the right angular gyrus, left posterior cerebellum, and left cingulate gyrus were significantly lower in patients with amblyopia than in controls, and spontaneous activity in the right middle temporal gyrus was significantly higher in patients with amblyopia. In addition, the spontaneous activity of the left cerebellum in patients with amblyopia was negatively associated with the best-corrected visual acuity of the amblyopic eye, and the spontaneous activity of the right middle temporal gyrus was positively associated with the stereoacuity. This study found that adult patients with amblyopia showed abnormal spontaneous activity in the angular gyrus, cerebellum, middle temporal gyrus, and cingulate gyrus. Furthermore, the functional abnormalities in the cerebellum and middle temporal gyrus may be associated with visual acuity defects and stereopsis deficiency in patients with amblyopia. These findings help explain the neural mechanism of amblyopia, thus promoting the improvement of the treatment strategy for amblyopia.
Collapse
Affiliation(s)
- 霞 陈
- 四川大学华西医院 眼科(成都 610041)Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu 610041, P. R. China
- 四川大学 华西临床医学院 眼视光学系(成都 610041)Department of Optometry and Visual Science, West China School of Medicine, Sichuan University, Chengdu 610041, P. R. China
| | - 孟 廖
- 四川大学华西医院 眼科(成都 610041)Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu 610041, P. R. China
- 四川大学 华西临床医学院 眼视光学系(成都 610041)Department of Optometry and Visual Science, West China School of Medicine, Sichuan University, Chengdu 610041, P. R. China
| | - 苹 蒋
- 四川大学华西医院 眼科(成都 610041)Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu 610041, P. R. China
- 四川大学 华西临床医学院 眼视光学系(成都 610041)Department of Optometry and Visual Science, West China School of Medicine, Sichuan University, Chengdu 610041, P. R. China
| | - 陇黔 刘
- 四川大学华西医院 眼科(成都 610041)Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu 610041, P. R. China
- 四川大学 华西临床医学院 眼视光学系(成都 610041)Department of Optometry and Visual Science, West China School of Medicine, Sichuan University, Chengdu 610041, P. R. China
| | - 启勇 龚
- 四川大学华西医院 眼科(成都 610041)Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
5
|
Kim HR, Angelaki DE, DeAngelis GC. A neural mechanism for detecting object motion during self-motion. eLife 2022; 11:74971. [PMID: 35642599 PMCID: PMC9159750 DOI: 10.7554/elife.74971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 05/17/2022] [Indexed: 11/17/2022] Open
Abstract
Detection of objects that move in a scene is a fundamental computation performed by the visual system. This computation is greatly complicated by observer motion, which causes most objects to move across the retinal image. How the visual system detects scene-relative object motion during self-motion is poorly understood. Human behavioral studies suggest that the visual system may identify local conflicts between motion parallax and binocular disparity cues to depth and may use these signals to detect moving objects. We describe a novel mechanism for performing this computation based on neurons in macaque middle temporal (MT) area with incongruent depth tuning for binocular disparity and motion parallax cues. Neurons with incongruent tuning respond selectively to scene-relative object motion, and their responses are predictive of perceptual decisions when animals are trained to detect a moving object during self-motion. This finding establishes a novel functional role for neurons with incongruent tuning for multiple depth cues.
Collapse
Affiliation(s)
- HyungGoo R Kim
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea.,Department of Brain and Cognitive Sciences, Center for Visual Science, University of Rochester, Rochester, United States.,Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
| | - Dora E Angelaki
- Center for Neural Science, New York University, New York, United States
| | - Gregory C DeAngelis
- Department of Brain and Cognitive Sciences, Center for Visual Science, University of Rochester, Rochester, United States
| |
Collapse
|
6
|
Position-theta-phase model of hippocampal place cell activity applied to quantification of running speed modulation of firing rate. Proc Natl Acad Sci U S A 2019; 116:27035-27042. [PMID: 31843934 PMCID: PMC6936353 DOI: 10.1073/pnas.1912792116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spiking activity of place cells in the hippocampus encodes the animal's position as it moves through an environment. Within a cell's place field, both the firing rate and the phase of spiking in the local theta oscillation contain spatial information. We propose a position-theta-phase (PTP) model that captures the simultaneous expression of the firing-rate code and theta-phase code in place cell spiking. This model parametrically characterizes place fields to compare across cells, time, and conditions; generates realistic place cell simulation data; and conceptualizes a framework for principled hypothesis testing to identify additional features of place cell activity. We use the PTP model to assess the effect of running speed in place cell data recorded from rats running on linear tracks. For the majority of place fields, we do not find evidence for speed modulation of the firing rate. For a small subset of place fields, we find firing rates significantly increase or decrease with speed. We use the PTP model to compare candidate mechanisms of speed modulation in significantly modulated fields and determine that speed acts as a gain control on the magnitude of firing rate. Our model provides a tool that connects rigorous analysis with a computational framework for understanding place cell activity.
Collapse
|