1
|
Chen G, Dang D, Zhang C, Qin L, Yan T, Wang W, Liang W. Recent advances in neurotechnology-based biohybrid robots. SOFT MATTER 2024; 20:7993-8011. [PMID: 39328163 DOI: 10.1039/d4sm00768a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Biohybrid robots retain the innate biological characteristics and behavioral traits of animals, making them valuable in applications such as disaster relief, exploration of unknown terrains, and medical care. This review aims to comprehensively discuss the evolution of biohybrid robots, their key technologies and applications, and the challenges they face. By analyzing studies conducted on terrestrial, aquatic, and aerial biohybrid robots, we gain a deeper understanding of how these technologies have made significant progress in simulating natural organisms, improving mechanical performance, and intelligent control. Additionally, we address challenges associated with the application of electrical stimulation technology, the precision of neural signal monitoring, and the ethical considerations for biohybrid robots. We highlight the importance of future research focusing on developing more sophisticated and biocompatible control methods while prioritizing animal welfare. We believe that exploring multimodal monitoring and stimulation technologies holds the potential to enhance the performance of biohybrid robots. These efforts are expected to pave the way for biohybrid robotics technology to introduce greater innovation and well-being to human society in the future.
Collapse
Affiliation(s)
- Guiyong Chen
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, People's Republic of China.
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, People's Republic of China
| | - Dan Dang
- School of Sciences, Shenyang Jianzhu University, Shenyang 110168, People's Republic of China.
| | - Chuang Zhang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, People's Republic of China
| | - Ling Qin
- School of Life Sciences, China Medical University, Shenyang 110122, People's Republic of China
| | - Tao Yan
- Department of Anesthesiology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Beijing 100021, People's Republic of China
- Chinese Academy of Medical Sciences, Beijing 100021, People's Republic of China
- Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Wenxue Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, People's Republic of China
| | - Wenfeng Liang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, People's Republic of China.
| |
Collapse
|
2
|
Sabu S, Parmentier FBR, Horváth J. Involuntary motor responses are elicited both by rare sounds and rare pitch changes. Sci Rep 2024; 14:20235. [PMID: 39215115 PMCID: PMC11364668 DOI: 10.1038/s41598-024-70776-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Unpredictable deviations from an otherwise regular auditory sequence, as well as rare sounds following a period of silence, are detected automatically. Recent evidence suggests that the latter also elicit quick involuntary modulations of ongoing motor activity emerging as early as 100 ms following sound onset, which was attributed to supramodal processing. We explored such force modulations for both rare and deviant sounds. Participants (N = 29) pinched a force sensitive device and maintained a force of 1-2 N for periods of 1 min. Task-irrelevant tones were presented under two conditions. In the Rare condition, 4000 Hz tones were presented every 8-to-16 s. In the Roving condition, 4000 Hz and 2996 Hz tones were presented at rate of 1 s, with infrequent (p = 1/12) frequency changes. In the Rare condition, transient force modulations were observed with a significant increase at ~ 234 ms, and a decrease at ~ 350 ms. In the Roving condition with low frequency deviant tones, an increase in force was observed at ~ 277 ms followed by a decrease at ~ 413 ms. No significant modulations were observed during perception of high frequency deviants. These results suggest that both rare silence-breaking sounds and low-pitched deviants evoke automatic fluctuations of motor responses, which opens up the possibility that these force modulations are triggered by stimulus-specific change-detection processes.
Collapse
Affiliation(s)
- Simily Sabu
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, P.O.B. 286, Budapest, 1519, Hungary
| | - Fabrice B R Parmentier
- Department of Psychology and Research Institute of Health Sciences (IdISBa), University of the Balearic Islands, Ctra. De Valldemossa, Km 7.5, Palma de Mallorca, Balearic Islands, Spain
- School of Psychological Science, University of Western Australia, Perth, Australia
| | - János Horváth
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, P.O.B. 286, Budapest, 1519, Hungary.
- Institute of Psychology, Károli Gáspár University of the Reformed Church in Hungary, Budapest, Hungary.
| |
Collapse
|
3
|
Bianco R, Zuk NJ, Bigand F, Quarta E, Grasso S, Arnese F, Ravignani A, Battaglia-Mayer A, Novembre G. Neural encoding of musical expectations in a non-human primate. Curr Biol 2024; 34:444-450.e5. [PMID: 38176416 DOI: 10.1016/j.cub.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/26/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024]
Abstract
The appreciation of music is a universal trait of humankind.1,2,3 Evidence supporting this notion includes the ubiquity of music across cultures4,5,6,7 and the natural predisposition toward music that humans display early in development.8,9,10 Are we musical animals because of species-specific predispositions? This question cannot be answered by relying on cross-cultural or developmental studies alone, as these cannot rule out enculturation.11 Instead, it calls for cross-species experiments testing whether homologous neural mechanisms underlying music perception are present in non-human primates. We present music to two rhesus monkeys, reared without musical exposure, while recording electroencephalography (EEG) and pupillometry. Monkeys exhibit higher engagement and neural encoding of expectations based on the previously seeded musical context when passively listening to real music as opposed to shuffled controls. We then compare human and monkey neural responses to the same stimuli and find a species-dependent contribution of two fundamental musical features-pitch and timing12-in generating expectations: while timing- and pitch-based expectations13 are similarly weighted in humans, monkeys rely on timing rather than pitch. Together, these results shed light on the phylogeny of music perception. They highlight monkeys' capacity for processing temporal structures beyond plain acoustic processing, and they identify a species-dependent contribution of time- and pitch-related features to the neural encoding of musical expectations.
Collapse
Affiliation(s)
- Roberta Bianco
- Neuroscience of Perception & Action Lab, Italian Institute of Technology, Viale Regina Elena 291, 00161 Rome, Italy.
| | - Nathaniel J Zuk
- Department of Psychology, Nottingham Trent University, 50 Shakespeare Street, Nottingham NG1 4FQ, UK
| | - Félix Bigand
- Neuroscience of Perception & Action Lab, Italian Institute of Technology, Viale Regina Elena 291, 00161 Rome, Italy
| | - Eros Quarta
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Stefano Grasso
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Flavia Arnese
- Neuroscience of Perception & Action Lab, Italian Institute of Technology, Viale Regina Elena 291, 00161 Rome, Italy
| | - Andrea Ravignani
- Comparative Bioacoustics Group, Max Planck Institute for Psycholinguistics, Wundtlaan 1, 6525 XD Nijmegen, the Netherlands; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Universitetsbyen 3, 8000 Aarhus, Denmark; Department of Human Neurosciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Alexandra Battaglia-Mayer
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Giacomo Novembre
- Neuroscience of Perception & Action Lab, Italian Institute of Technology, Viale Regina Elena 291, 00161 Rome, Italy.
| |
Collapse
|