1
|
Blumer R, Streicher J, Carrero-Rojas G, Calvo PM, de la Cruz RR, Pastor AM. Palisade Endings Have an Exocytotic Machinery But Lack Acetylcholine Receptors and Distinct Acetylcholinesterase Activity. Invest Ophthalmol Vis Sci 2020; 61:31. [PMID: 33369640 PMCID: PMC7774060 DOI: 10.1167/iovs.61.14.31] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/05/2020] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this work was to test whether palisade endings express structural and molecular features of exocytotic machinery, and are associated with acetylcholine receptors, and enzymes for neurotransmitter breakdown. Methods Extraocular rectus muscles from six cats were studied. Whole-mount preparations of extraocular muscles (EOMs) were immunolabeled with markers for exocytotic proteins, including synaptosomal-associated protein of 25 kDa (SNAP25), syntaxin, synaptobrevin, synaptotagmin, and complexin. Acetylcholine receptors (AChRs) were visualized with α-bungarotoxin and with an antibody against AChRs, and acetylcholinesterase (AChE) was tagged with anti-AChE. Molecular features of multicolor labeled palisade endings were analyzed in the confocal scanning microscope, and their ultrastructural features were revealed in the transmission electron microscope. Results All palisade endings expressed the exocytotic proteins SNAP25, syntaxin, synaptobrevin, synaptotagmin, and complexin. At the ultrastructural level, vesicles docked at the plasma membrane of terminal varicosities of palisade endings. No AChRs were associated with palisade endings as demonstrated by the absence of α-bungarotoxin and anti-AChR binding. AChE, the degradative enzyme for acetylcholine exhibited low, if any, activity in palisade endings. Axonal tracking showed that axons with multiple en grappe motor terminals were in continuity with palisade endings. Conclusions This study demonstrates that palisade endings exhibit structural and molecular characteristics of exocytotic machinery, suggesting neurotransmitter release. However, AChRs were not associated with palisade endings, so there is no binding site for acetylcholine, and, due to low/absent AChE activity, insufficient neurotransmitter removal. Thus, the present findings indicate that palisade endings belong to an effector system that is very different from that found in other skeletal muscles.
Collapse
Affiliation(s)
- Roland Blumer
- Center of Anatomy and Cell Biology, MIC, Medical University Vienna, Vienna, Austria
| | - Johannes Streicher
- Department of Anatomy and Biomechanics, Division of Anatomy and Developmental Biology, Karl Landsteiner University of Health Science, Krems an der Donau, Austria
| | - Génova Carrero-Rojas
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Paula M. Calvo
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Rosa R. de la Cruz
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Angel M. Pastor
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
2
|
Cloning and characterization of nicotinic acetylcholine receptor γ-like gene in adult transparent Pristella maxillaris. Gene 2020; 769:145193. [PMID: 33007374 DOI: 10.1016/j.gene.2020.145193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 08/26/2020] [Accepted: 09/24/2020] [Indexed: 11/23/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) play an important role in regulating the development and function of nervous system. The muscle AChR is composed of four homologous glycoprotein subunits with a stoichiometry α2βγδ in fetal or α2βεδ in adult. But the mechanism controlling the transition of fetal AChR γ-subunit to adult AChR ε is still unknown. Here a gene annoted AChR γ-like in Pristella maxillaris was first cloned by rapid amplification of cDNA ends (RACE) based on a transcriptome of dorsal fins. The full length of AChR γ-like was 1984 bp and it encoded 518 amino acids from 100 bp to 1653 bp. The multiple alignment analysis showed that AChR γ-like had 98% protein identity to AChR γ-like in Astyanax mexicanus. Then an 11647 bp DNA from 5'-UTR to 3'-UTR was cloned based on gene structure of AChR γ-like in A.mexicanus. Additionally a 2768 bp DNA upstream 5'-UTR was cloned by chromosome walking method. Furthermore, the results from semi-quantitative PCR showed that AChR γ-like was highly expressed in embryo and adult tissues, such as the muscle, eye, heart and intestine. While it showed low expression in the brain and gill. Significantly, the results of in situ hybridization showed strong diffused expression of AChR γ-like in the muscle of 1 dpf (day post-fertilization) embryo. And weak signal was observed in the muscle of 2-4 dpf embryos. All these data indicated that AChR γ-like could be one subunit of AChRs in the muscle and it could be used to study the development of the neuromuscular junction in adult transparent Pristella maxillaris. Thus our work will lay the foundation for using Pristella maxillaris to analyze the in vivo function of the nAChRs in adult vertebrate.
Collapse
|
3
|
Lee DW, Kim E, Jeong I, Kim HK, Kim S, Park HC. Schwann cells selectively myelinate primary motor axons via neuregulin-ErbB signaling. Glia 2020; 68:2585-2600. [PMID: 32589818 DOI: 10.1002/glia.23871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 11/06/2022]
Abstract
Spinal motor neurons project their axons out of the spinal cord via the motor exit point (MEP) and regulate their target muscle fibers for diverse behaviors. Several populations of glial cells including Schwann cells, MEP glia, and perineurial glia are tightly associated with spinal motor axons in nerve fascicles. Zebrafish have two types of spinal motor neurons, primary motor neurons (PMNs) and secondary motor neurons (SMNs). PMNs are implicated in the rapid response, whereas SMNs are implicated in normal and slow movements. However, the precise mechanisms mediating the distinct functions of PMNs and SMNs in zebrafish are unclear. In this study, we found that PMNs were myelinated by MEP glia and Schwann cells, whereas SMNs remained unmyelinated at the examined stages. Immunohistochemical analysis revealed that myelinated PMNs solely innervated fast muscle through a distributed neuromuscular junction (NMJ), whereas unmyelinated SMNs innervated both fast and slow muscle through distributed and myoseptal NMJs, respectively, indicating that myelinated PMNs could provide rapid responses for startle and escape movements, while unmyelinated SMNs regulated normal, slow movement. Further, we demonstrate that neuregulin 1 (Nrg1) type III-ErbB signaling provides a key instructive signal that determines the myelination of primary motor axons by MEP glia and Schwann cells. Perineurial glia ensheathed unmyelinated secondary motor axons and myelinated primary motor nerves. Ensheathment required interaction with both MEP glia and Schwann cells. Collectively, these data suggest that primary and secondary motor neurons contribute to the regulation of movement in zebrafish with distinct patterns of myelination.
Collapse
Affiliation(s)
- Dong-Won Lee
- Department of Biomedical Sciences, College of Medicine, Korea University, Ansan, Republic of Korea
| | - Eunmi Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Ansan, Republic of Korea
| | - Inyoung Jeong
- Department of Biomedical Sciences, College of Medicine, Korea University, Ansan, Republic of Korea
| | - Hwan-Ki Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Ansan, Republic of Korea
| | - Suhyun Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Ansan, Republic of Korea
| | - Hae-Chul Park
- Department of Biomedical Sciences, College of Medicine, Korea University, Ansan, Republic of Korea
| |
Collapse
|
4
|
Zempo B, Yamamoto Y, Williams T, Ono F. Synaptic silencing of fast muscle is compensated by rewired innervation of slow muscle. SCIENCE ADVANCES 2020; 6:eaax8382. [PMID: 32284992 PMCID: PMC7141830 DOI: 10.1126/sciadv.aax8382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 01/09/2020] [Indexed: 05/09/2023]
Abstract
For decades, numerous studies have proposed that fast muscles contribute to quick movement, while slow muscles underlie locomotion requiring endurance. By generating mutant zebrafish whose fast muscles are synaptically silenced, we examined the contribution of fast muscles in both larval and adult zebrafish. In the larval stage, mutants lacked the characteristic startle response to tactile stimuli: bending of the trunk (C-bend) followed by robust forward propulsion. Unexpectedly, adult mutants with silenced fast muscles showed robust C-bends and forward propulsion upon stimulation. Retrograde labeling revealed that motor neurons genetically programmed to form synapses on fast muscles are instead rerouted and innervate slow muscles, which led to partial conversion of slow and intermediate muscles to fast muscles. Thus, extended silencing of fast muscle synapses changed motor neuron innervation and caused muscle cell type conversion, revealing an unexpected mechanism of locomotory adaptation.
Collapse
Affiliation(s)
- Buntaro Zempo
- Department of Physiology, Osaka Medical College, Takatsuki 569-8686, Japan
| | - Yasuhiro Yamamoto
- Department of Physiology, Osaka Medical College, Takatsuki 569-8686, Japan
| | - Tory Williams
- Laboratory of Molecular Physiology, NIAAA, NIH, Bethesda, MD 20892, USA
| | - Fumihito Ono
- Department of Physiology, Osaka Medical College, Takatsuki 569-8686, Japan
- Laboratory of Molecular Physiology, NIAAA, NIH, Bethesda, MD 20892, USA
- Corresponding author.
| |
Collapse
|
5
|
Amin MR, Ahmed KT, Ali DW. Early Exposure to THC Alters M-Cell Development in Zebrafish Embryos. Biomedicines 2020; 8:biomedicines8010005. [PMID: 31947970 PMCID: PMC7168183 DOI: 10.3390/biomedicines8010005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/29/2019] [Accepted: 12/31/2019] [Indexed: 12/22/2022] Open
Abstract
Cannabis is one of the most commonly used illicit recreational drugs that is often taken for medicinal purposes. The psychoactive ingredient in cannabis is Δ9-Tetrahydrocannabinol (Δ9-THC, hereafter referred to as THC), which is an agonist at the endocannabinoid receptors CB1R and CB2R. Here, we exposed zebrafish embryos to THC during the gastrulation phase to determine the long-term effects during development. We specifically focused on reticulospinal neurons known as the Mauthner cells (M-cell) that are involved in escape response movements. The M- cells are born during gastrulation, thus allowing us to examine neuronal morphology of neurons born during the time of exposure. After the exposure, embryos were allowed to develop normally and were examined at two days post-fertilization for M-cell morphology and escape responses. THC treated embryos exhibited subtle alterations in M-cell axon diameter and small changes in escape response dynamics to touch. Because escape responses were altered, we also examined muscle fiber development. The fluorescent labelling of red and white muscle fibers showed that while muscles were largely intact, the fibers were slightly disorganized with subtle but significant changes in the pattern of expression of nicotinic acetylcholine receptors. However, there were no overt changes in the expression of nicotinic receptor subunit mRNA ascertained by qPCR. Embryos were allowed to further develop until 5 dpf, when they were examined for overall levels of movement. Animals exposed to THC during gastrulation exhibited reduced activity compared with vehicle controls. Together, these findings indicate that zebrafish exposed to THC during the gastrula phase exhibit small changes in neuronal and muscle morphology that may impact behavior and locomotion.
Collapse
Affiliation(s)
- Md Ruhul Amin
- Department of Biological Sciences, CW-405 Biological Sciences Bldg., University of Alberta, Edmonton, AB T6G 2E9, Canada; (M.R.A.); (K.T.A.)
| | - Kazi T. Ahmed
- Department of Biological Sciences, CW-405 Biological Sciences Bldg., University of Alberta, Edmonton, AB T6G 2E9, Canada; (M.R.A.); (K.T.A.)
| | - Declan W. Ali
- Department of Biological Sciences, CW-405 Biological Sciences Bldg., University of Alberta, Edmonton, AB T6G 2E9, Canada; (M.R.A.); (K.T.A.)
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Correspondence: ; Tel.: +1-780-492-6094
| |
Collapse
|
6
|
Egashira Y, Zempo B, Sakata S, Ono F. Recent advances in neuromuscular junction research prompted by the zebrafish model. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2018.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
7
|
Expressing acetylcholine receptors after innervation suppresses spontaneous vesicle release and causes muscle fatigue. Sci Rep 2017; 7:1674. [PMID: 28490756 PMCID: PMC5431962 DOI: 10.1038/s41598-017-01900-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/04/2017] [Indexed: 02/04/2023] Open
Abstract
The formation and function of synapses are tightly orchestrated by the precise timing of expression of specific molecules during development. In this study, we determined how manipulating the timing of expression of postsynaptic acetylcholine receptors (AChRs) impacts presynaptic release by establishing a genetically engineered zebrafish line in which we can freely control the timing of AChR expression in an AChR-less fish background. With the delayed induction of AChR expression after an extensive period of AChR-less development, paralyzed fish displayed a remarkable level of recovery, exhibiting a robust escape response following developmental delay. Despite their apparent behavioral rescue, synapse formation in these fish was significantly altered as a result of delayed AChR expression. Motor neuron innervation determined the sites for AChR clustering, a complete reversal of normal neuromuscular junction (NMJ) development where AChR clustering precedes innervation. Most importantly, among the three modes of presynaptic vesicle release, only the spontaneous release machinery was strongly suppressed in these fish, while evoked vesicle release remained relatively unaffected. Such a specific presynaptic change, which may constitute a part of the compensatory mechanism in response to the absence of postsynaptic AChRs, may underlie symptoms of neuromuscular diseases characterized by reduced AChRs, such as myasthenia gravis.
Collapse
|
8
|
Analysis of Nicotinic Acetylcholine Receptor (nAChR) Gene Expression in Zebrafish (Danio rerio) by In Situ Hybridization and PCR. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-1-4939-3768-4_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
9
|
Ahmed KT, Ali DW. Nicotinic acetylcholine receptors (nAChRs) at zebrafish red and white muscle show different properties during development. Dev Neurobiol 2015; 76:916-36. [DOI: 10.1002/dneu.22366] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/15/2015] [Accepted: 11/16/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Kazi T. Ahmed
- Department of Biological Sciences; University of Alberta, Edmonton; Alberta Canada
| | - Declan W. Ali
- Department of Biological Sciences; University of Alberta, Edmonton; Alberta Canada
- Department of Physiology; University of Alberta, Edmonton; Alberta Canada
- Centre for Neuroscience; University of Alberta, Edmonton; Alberta Canada
| |
Collapse
|
10
|
Luna VM, Daikoku E, Ono F. "Slow" skeletal muscles across vertebrate species. Cell Biosci 2015; 5:62. [PMID: 26568818 PMCID: PMC4644285 DOI: 10.1186/s13578-015-0054-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/03/2015] [Indexed: 11/13/2022] Open
Abstract
Skeletal muscle fibers are generally classified into two groups: slow (type I) and fast (type II). Fibers in each group are uniquely designed for specific locomotory needs based on their intrinsic cellular properties and the types of motor neurons that innervate them. In this review, we will focus on the current concept of slow muscle fibers which, unlike the originally proposed version based purely on amphibian muscles, varies widely depending on the animal model system studied. We will discuss recent findings from zebrafish neuromuscular junction synapses that may provide the framework for establishing a more unified view of slow muscles across mammalian and non-mammalian species.
Collapse
Affiliation(s)
- Victor M Luna
- Division of Integrative Neuroscience, Department of Psychiatry, New York State Psychiatric Institute, Columbia University, New York, NY 10032 USA
| | - Eriko Daikoku
- Department of Molecular Physiology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686 Japan
| | - Fumihito Ono
- Department of Molecular Physiology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686 Japan.,Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
11
|
Daikoku E, Saito M, Ono F. Zebrafish mutants of the neuromuscular junction: swimming in the gene pool. J Physiol Sci 2015; 65:217-21. [PMID: 25782439 PMCID: PMC4408355 DOI: 10.1007/s12576-015-0372-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 02/28/2015] [Indexed: 01/07/2023]
Abstract
This review provides an overview of zebrafish mutants with dysfunctional acetylcholine receptors or related proteins at the neuromuscular junction (NMJ). The NMJ, which has served as the classical model of the chemical synapse, uses acetylcholine as the neurotransmitter, and mutations of proteins involved in the signaling cascade lead to a variety of behavioral phenotypes. Mutants isolated after random chemical mutagenesis screening are summarized, and advances in the field resulting from these mutants are discussed.
Collapse
Affiliation(s)
- Eriko Daikoku
- Department of Physiology, Osaka Medical College, Takatsuki, 569-8686 Japan
| | - Masahisa Saito
- Department of Physiology, Osaka Medical College, Takatsuki, 569-8686 Japan
| | - Fumihito Ono
- Department of Physiology, Osaka Medical College, Takatsuki, 569-8686 Japan
- Laboratory of Molecular Physiology, NIAAA, NIH, Bethesda, MD 20892 USA
| |
Collapse
|
12
|
Inherited disorders of the neuromuscular junction: an update. J Neurol 2014; 261:2234-43. [PMID: 25305004 DOI: 10.1007/s00415-014-7520-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 09/23/2014] [Indexed: 10/24/2022]
Abstract
Congenital myasthenic syndromes (CMSs) are a group of heterogeneous inherited disorders caused by mutations in genes affecting the function and structure of the neuromuscular junction. This review updates the reader on established and novel subtypes of congenital myasthenia, and the treatment strategies for these increasingly heterogeneous disorders. The discovery of mutations associated with the N-glycosylation pathway and in the family of serine peptidases has shown that causative genes encoding ubiquitously expressed molecules can produce defects at the human neuromuscular junction. By contrast, mutations in lipoprotein-like receptor 4 (LRP4), a long-time candidate gene for congenital myasthenia, and a novel phenotype of myasthenia with distal weakness and atrophy due to mutations in AGRN have now been described. In addition, a pathogenic splicing mutation in a nonfunctional exon of CHRNA1 has been reported emphasizing the importance of analysing nonfunctional exons in genetic analysis. The benefit of salbutamol and ephedrine alone or combined with pyridostigmine or 3,4-DAP is increasingly being reported for particular subtypes of CMS.
Collapse
|