1
|
Abhyankar SD, Luo Q, Hartman GD, Mahajan N, Corson TW, Oblak AL, Lamb BT, Bhatwadekar AD. Retinal dysfunction in APOE4 knock-in mouse model of Alzheimer's disease. Alzheimers Dement 2025; 21:e14433. [PMID: 39749840 PMCID: PMC11848189 DOI: 10.1002/alz.14433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 01/04/2025]
Abstract
INTRODUCTION Late-onset Alzheimer's Disease (LOAD) is the predominant form of Alzheimer's disease (AD), and apolipoprotein E (APOE) ε4 is a strong genetic risk factor for LOAD. As an integral part of the central nervous system, the retina displays a variety of abnormalities in LOAD. Our study is focused on age-dependent retinal impairments in humanized APOE4-knock-in (KI) and APOE3-KI mice developed by the Model Organism Development and Evaluation for Late-Onset Alzheimer's Disease (MODEL-AD) consortium. METHODS All the experiments were performed on 52- to 57-week-old mice. The retina was assessed by optical coherence tomography, fundoscopy, fluorescein angiography, electroretinography, optomotor response, gliosis, and neuroinflammation. mRNA sequencing was performed to find molecular pathways. RESULTS APOE4-KI mice showed impaired retinal structure, vasculature, function, vision, increased gliosis and neuroinflammation, and downregulation of synaptogenesis. DISCUSSION The APOE ε4 allele is associated with increased susceptibility to retinal degeneration compared to the APOE ε3 allele. HIGHLIGHTS Apolipoprotein E (APOE)4 mice exhibit structural and functional deficits of the retina. The retinal defects in APOE4 mice are attributed to increased neuroinflammation. APOE4 mice show a unique retinal transcriptome, yet with key brain similarities. The retina offers a non-invasive biomarker for the detection and monitoring of Alzheimer's disease.
Collapse
Affiliation(s)
- Surabhi D. Abhyankar
- Department of OphthalmologyIndiana University School of MedicineIndianapolisIndianaUSA
- Department of Biochemistry and Molecular BiologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Qianyi Luo
- Department of OphthalmologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Gabriella D. Hartman
- Department of OphthalmologyIndiana University School of MedicineIndianapolisIndianaUSA
- Stark Neurosciences Research InstituteIndianapolisIndianaUSA
| | - Neha Mahajan
- Department of OphthalmologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Timothy W. Corson
- Department of OphthalmologyIndiana University School of MedicineIndianapolisIndianaUSA
- Department of Biochemistry and Molecular BiologyIndiana University School of MedicineIndianapolisIndianaUSA
- Stark Neurosciences Research InstituteIndianapolisIndianaUSA
- Leslie Dan Faculty of PharmacyUniversity of TorontoTorontoOntarioCanada
| | - Adrian L. Oblak
- Stark Neurosciences Research InstituteIndianapolisIndianaUSA
| | - Bruce T. Lamb
- Stark Neurosciences Research InstituteIndianapolisIndianaUSA
| | - Ashay D. Bhatwadekar
- Department of OphthalmologyIndiana University School of MedicineIndianapolisIndianaUSA
- Department of Biochemistry and Molecular BiologyIndiana University School of MedicineIndianapolisIndianaUSA
- Stark Neurosciences Research InstituteIndianapolisIndianaUSA
| |
Collapse
|
2
|
Blades B, Hung YH, Belaidi AA, Volitakis I, Schultz AG, Cater MA, Cheung NS, Bush AI, Ayton S, La Fontaine S. Impaired cellular copper regulation in the presence of ApoE4. J Neurochem 2024; 168:3284-3307. [PMID: 39135362 DOI: 10.1111/jnc.16198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 10/04/2024]
Abstract
The strongest genetic risk factor for late-onset Alzheimer's disease (AD) is allelic variation of the APOE gene, with the following risk structure: ε4 > ε3 > ε2. The biochemical basis for this risk profile is unclear. Here, we reveal a new role for the APOE gene product, apolipoprotein E (ApoE) in regulating cellular copper homeostasis, which is perturbed in the AD brain. Exposure of ApoE target replacement (TR) astrocytes (immortalised astrocytes from APOE knock-in mice) to elevated copper concentrations resulted in exacerbated copper accumulation in ApoE4- compared to ApoE2- and ApoE3-TR astrocytes. This effect was also observed in SH-SY5Y neuroblastoma cells treated with conditioned medium from ApoE4-TR astrocytes. Increased intracellular copper levels in the presence of ApoE4 may be explained by reduced levels and delayed trafficking of the copper transport protein, copper-transporting ATPase 1 (ATP7A/Atp7a), potentially leading to impaired cellular copper export. This new role for ApoE in copper regulation lends further biochemical insight into how APOE genotype confers risk for AD and reveals a potential contribution of ApoE4 to the copper dysregulation that is a characteristic pathological feature of the AD brain.
Collapse
Affiliation(s)
- Bryce Blades
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
| | - Ya Hui Hung
- The Florey Neuroscience Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Abdel A Belaidi
- The Florey Neuroscience Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Irene Volitakis
- The Florey Neuroscience Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Aaron G Schultz
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
| | - Michael A Cater
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
| | - Nam Sang Cheung
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
| | - Ashley I Bush
- The Florey Neuroscience Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Scott Ayton
- The Florey Neuroscience Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Sharon La Fontaine
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
- The Florey Neuroscience Institute, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
3
|
Keum M, Lee BC, Choe YM, Suh GH, Kim SG, Kim HS, Hwang J, Yi D, Kim JW. Protein intake and episodic memory: the moderating role of the apolipoprotein E ε4 status. Alzheimers Res Ther 2024; 16:181. [PMID: 39135146 PMCID: PMC11318328 DOI: 10.1186/s13195-024-01546-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/26/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND This study investigated the correlation between protein intake and Alzheimer's disease (AD)-related cognitive decline, particularly in episodic memory, among older adults without dementia. Furthermore, we assessed the moderating effect of apolipoprotein ε4 (APOE4) on this association and analyzed its influence on other cognitive functions beyond memory. METHODS The study involved 196 participants who underwent assessments for protein intake, cognitive performance, APOE4 genotyping, and nutritional biomarkers. Protein intake was categorized into low, medium, and high based on the consumption of dairy, legumes, eggs, meat, and fish. RESULTS High protein intake was significantly associated with better episodic memory and overall cognition. Moreover, a significant interaction was found between high protein intake and APOE4, indicating that APOE4 moderates the association between high protein intake level and episodic memory. Sensitivity analysis confirmed these results among participants with stable food intake. CONCLUSIONS Our study results demonstrated that high protein intake is associated with better episodic memory among older adults without dementia. Furthermore, the findings highlight the significant role of APOE4 status in moderating the relationship between protein consumption and episodic memory. These results suggest that dietary interventions focusing on protein intake could be beneficial for cognitive health, particularly in individuals with a genetic predisposition to AD.
Collapse
Affiliation(s)
- Musung Keum
- Department of Neuropsychiatry, Hallym University Dongtan Sacred Heart Hospital, 7 Keunjaebong-gil, Hwaseong, Gyeonggi, 18450, Republic of Korea
| | - Boung Chul Lee
- Department of Psychiatry, Hallym University College of Medicine, Chuncheon, Gangwon, 24252, Republic of Korea
- Department of Neuropsychiatry, Hallym University Hangang Sacred Heart Hospital, Seoul, 07247, Republic of Korea
| | - Young Min Choe
- Department of Neuropsychiatry, Hallym University Dongtan Sacred Heart Hospital, 7 Keunjaebong-gil, Hwaseong, Gyeonggi, 18450, Republic of Korea
- Department of Psychiatry, Hallym University College of Medicine, Chuncheon, Gangwon, 24252, Republic of Korea
| | - Guk-Hee Suh
- Department of Neuropsychiatry, Hallym University Dongtan Sacred Heart Hospital, 7 Keunjaebong-gil, Hwaseong, Gyeonggi, 18450, Republic of Korea
- Department of Psychiatry, Hallym University College of Medicine, Chuncheon, Gangwon, 24252, Republic of Korea
| | - Shin Gyeom Kim
- Department of Neuropsychiatry, Soonchunhyang University Hospital Bucheon, Bucheon, 14584, Republic of Korea
| | - Hyun Soo Kim
- Department of Laboratory Medicine, Hallym University Dongtan Sacred Heart Hospital, 7 Keunjaebong-gil, Hwaseong, Gyeonggi, 18450, Republic of Korea
| | - Jaeuk Hwang
- Department of Psychiatry, Soonchunhyang University Hospital Seoul, Seoul, 04401, Republic of Korea
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, 03080, Republic of Korea
| | - Jee Wook Kim
- Department of Neuropsychiatry, Hallym University Dongtan Sacred Heart Hospital, 7 Keunjaebong-gil, Hwaseong, Gyeonggi, 18450, Republic of Korea.
- Department of Psychiatry, Hallym University College of Medicine, Chuncheon, Gangwon, 24252, Republic of Korea.
| |
Collapse
|
4
|
Ramakrishna S, Radhakrishna BK, Kaladiyil AP, Shah NM, Basavaraju N, Freude KK, Kommaddi RP, Muddashetty RS. Distinct calcium sources regulate temporal profiles of NMDAR and mGluR-mediated protein synthesis. Life Sci Alliance 2024; 7:e202402594. [PMID: 38749544 PMCID: PMC11096670 DOI: 10.26508/lsa.202402594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
Calcium signaling is integral for neuronal activity and synaptic plasticity. We demonstrate that the calcium response generated by different sources modulates neuronal activity-mediated protein synthesis, another process essential for synaptic plasticity. Stimulation of NMDARs generates a protein synthesis response involving three phases-increased translation inhibition, followed by a decrease in translation inhibition, and increased translation activation. We show that these phases are linked to NMDAR-mediated calcium response. Calcium influx through NMDARs elicits increased translation inhibition, which is necessary for the successive phases. Calcium through L-VGCCs acts as a switch from translation inhibition to the activation phase. NMDAR-mediated translation activation requires the contribution of L-VGCCs, RyRs, and SOCE. Furthermore, we show that IP3-mediated calcium release and SOCE are essential for mGluR-mediated translation up-regulation. Finally, we signify the relevance of our findings in the context of Alzheimer's disease. Using neurons derived from human fAD iPSCs and transgenic AD mice, we demonstrate the dysregulation of NMDAR-mediated calcium and translation response. Our study highlights the complex interplay between calcium signaling and protein synthesis, and its implications in neurodegeneration.
Collapse
Affiliation(s)
- Sarayu Ramakrishna
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
| | - Bindushree K Radhakrishna
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
- Manipal Academy of Higher Education, Manipal, India
| | - Ahamed P Kaladiyil
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
| | - Nisa Manzoor Shah
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
- Manipal Academy of Higher Education, Manipal, India
| | - Nimisha Basavaraju
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
- Manipal Academy of Higher Education, Manipal, India
| | - Kristine K Freude
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | | | - Ravi S Muddashetty
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
| |
Collapse
|
5
|
Nepomuceno M, Monllor P, Cardells MJ, Ftara A, Magallon M, Dasí F, Badia MC, Viña J, Lloret A. Redox-associated changes in healthy individuals at risk of Alzheimer's disease. A ten-year follow-up study. Free Radic Biol Med 2024; 215:56-63. [PMID: 38417685 DOI: 10.1016/j.freeradbiomed.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 03/01/2024]
Abstract
Carrying an allele 4 of the apolipoprotein E (ApoE) is the best-established genetic risk factor to develop Alzheimer's disease (AD). Fifty percent of ApoE4/4 individuals develop the disease at 70 years of age. ApoE3/4 carriers have a lower risk of developing the disease, still 50% of them suffer AD at around 80 years. In a previous study we showed that healthy young individuals, who had a parent with AD and were carriers of at least one ApoE4 allele displayed reductive stress. This was evidenced as a decrease in oxidative markers, such as oxidized glutathione, p-p38, and NADP+/NADPH ratio, and an increase of antioxidant enzymes, such as glutathione peroxidase (Gpx1) and both the catalytic and regulatory subunits of glutamyl-cysteinyl (GCLM and GCLC). Moreover, we found an increase in stress-related proteins involved in tau physiopathology. Now, 10 years later, we have conducted a follow-up study measuring the same parameters in the same cohort. Our results show that reductive stress has reversed, as we could now observe an increase in lipid peroxidation and in the oxidation of glutathione along with a decrease in the expression of Gpx1 and SOD1 antioxidant enzymes in ApoE4 carriers. Furthermore, we found an increase in plasma levels of IL1β levels and in PKR (eukaryotic translation initiation factor 2 alpha kinase 2) gene expression in isolated lymphocytes. Altogether, our results suggest that, in the continuum of Alzheimer's disease, people at risk of developing the disease go through different redox phases, from stablished reductive stress to oxidative stress.
Collapse
Affiliation(s)
- Mariana Nepomuceno
- Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain
| | - Paloma Monllor
- Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain; Internal Medicine Department, University Hospital of La Plana, Vila-Real, Spain
| | - Maria Jose Cardells
- Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain
| | - Artemis Ftara
- Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain
| | - Maria Magallon
- Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain
| | - Francisco Dasí
- Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain
| | | | - Jose Viña
- Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain.
| | - Ana Lloret
- Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain.
| |
Collapse
|
6
|
Scheinman SB, Tseng KY, Alford S, Tai LM. Higher Neuronal Facilitation and Potentiation with APOE4 Suppressed by Angiotensin II. Mol Neurobiol 2024; 61:120-131. [PMID: 37589833 PMCID: PMC10843153 DOI: 10.1007/s12035-023-03556-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/01/2023] [Indexed: 08/18/2023]
Abstract
Progressive hippocampal degeneration is a key component of Alzheimer's disease (AD) progression. Therefore, identifying how hippocampal neuronal function is modulated early in AD is an important approach to eventually prevent degeneration. AD-risk factors and signaling molecules likely modulate neuronal function, including APOE genotype and angiotensin II. Compared to APOE3, APOE4 increases AD risk up to 12-fold, and high levels of angiotensin II are hypothesized to disrupt neuronal function in AD. However, the extent that APOE and angiotensin II modulates the hippocampal neuronal phenotype in AD-relevant models is unknown. To address this issue, we used electrophysiological techniques to assess the impact of APOE genotype and angiotensin II on basal synaptic transmission, presynaptic, and post-synaptic activity in mice that express human APOE3 (E3FAD) or APOE4 (E4FAD) and overproduce Aβ. We found that compared to E3FAD mice, E4FAD mice have lower synaptic activity, but higher levels of paired-pulse facilitation (PPF) and long-term potentiation (LTP) in the Schaffer Collateral Commissural Pathway (SCCP) of the hippocampus. We also found that exogenous angiotensin II has a profound inhibitory effect on hippocampal LTP in both E3FAD and E4FAD mice. Collectively, our data suggests that APOE4 and Aβ are associated with a hippocampal phenotype comprised of lower basal activity and higher responses to high-frequency stimulation, the latter of which is suppressed by angiotensin II. These novel data suggest a potential mechanistic link between hippocampal activity, APOE4 genotype, and angiotensin II in AD.
Collapse
Affiliation(s)
- Sarah B Scheinman
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 S. Wood St. Rm 578 MC 512, Chicago, IL, 60612, USA
| | - Kuei Y Tseng
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 S. Wood St. Rm 578 MC 512, Chicago, IL, 60612, USA
| | - Simon Alford
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 S. Wood St. Rm 578 MC 512, Chicago, IL, 60612, USA
| | - Leon M Tai
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 S. Wood St. Rm 578 MC 512, Chicago, IL, 60612, USA.
| |
Collapse
|
7
|
Huang Z. Evidence that Alzheimer's Disease Is a Disease of Competitive Synaptic Plasticity Gone Awry. J Alzheimers Dis 2024; 99:447-470. [PMID: 38669548 PMCID: PMC11119021 DOI: 10.3233/jad-240042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Mounting evidence indicates that a physiological function of amyloid-β (Aβ) is to mediate neural activity-dependent homeostatic and competitive synaptic plasticity in the brain. I have previously summarized the lines of evidence supporting this hypothesis and highlighted the similarities between Aβ and anti-microbial peptides in mediating cell/synapse competition. In cell competition, anti-microbial peptides deploy a multitude of mechanisms to ensure both self-protection and competitor elimination. Here I review recent studies showing that similar mechanisms are at play in Aβ-mediated synapse competition and perturbations in these mechanisms underpin Alzheimer's disease (AD). Specifically, I discuss evidence that Aβ and ApoE, two crucial players in AD, co-operate in the regulation of synapse competition. Glial ApoE promotes self-protection by increasing the production of trophic monomeric Aβ and inhibiting its assembly into toxic oligomers. Conversely, Aβ oligomers, once assembled, promote the elimination of competitor synapses via direct toxic activity and amplification of "eat-me" signals promoting the elimination of weak synapses. I further summarize evidence that neuronal ApoE may be part of a gene regulatory network that normally promotes competitive plasticity, explaining the selective vulnerability of ApoE expressing neurons in AD brains. Lastly, I discuss evidence that sleep may be key to Aβ-orchestrated plasticity, in which sleep is not only induced by Aβ but is also required for Aβ-mediated plasticity, underlining the link between sleep and AD. Together, these results strongly argue that AD is a disease of competitive synaptic plasticity gone awry, a novel perspective that may promote AD research.
Collapse
Affiliation(s)
- Zhen Huang
- Departments of Neuroscience and Neurology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
8
|
Cobelo-Gómez S, Sánchez-Iglesias S, Rábano A, Senra A, Aguiar P, Gómez-Lado N, García-Varela L, Burgueño-García I, Lampón-Fernández L, Fernández-Pombo A, Díaz-López EJ, Prado-Moraña T, San Millán B, Araújo-Vilar D. A murine model of BSCL2-associated Celia's encephalopathy. Neurobiol Dis 2023; 187:106300. [PMID: 37717662 DOI: 10.1016/j.nbd.2023.106300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023] Open
Abstract
Celia's encephalopathy or progressive encephalopathy with/without lipodystrophy is a neurodegenerative disease with a fatal prognosis in childhood. It is generally caused by the c.985C > T variant in the BSCL2 gene, leading to the skipping of exon 7 and resulting in an aberrant seipin protein (Celia-seipin). To precisely define the temporal evolution and the mechanisms involved in neurodegeneration, lipodystrophy and fatty liver in Celia's encephalopathy, our group has generated the first global knock-in murine model for the aberrant human transcript of BSCL2 (Bscl2Celia/Celia) using a strategy based on the Cre/loxP recombination system. In order to carry out a characterization at the neurological, adipose tissue and hepatic level, behavioral studies, brain PET, metabolic, histological and molecular studies were performed. Around 12% of homozygous and 5.4% of heterozygous knock-in mice showed severe neurological symptoms early in life, and their life expectancy was dramatically reduced. Severe generalized lipodystrophy and mild hepatic steatosis were present in these affected animals, while serum triglycerides and glucose metabolism were normal, with no insulin resistance. Furthermore, the study revealed a reduction in brain glucose uptake, along with patchy loss of Purkinje cells and the presence of intranuclear inclusions in cerebellar cortex cells. Homozygous, non-severely-affected knock-in mice showed a decrease in locomotor activity and greater anxiety compared with their wild type littermates. Bscl2Celia/Celia is the first murine model of Celia's encephalopathy which partially recapitulates the phenotype and severe neurodegenerative picture suffered by these patients. This model will provide a helpful tool to investigate both the progressive encephalopathy with/without lipodystrophy and congenital generalized lipodystrophy.
Collapse
Affiliation(s)
- Silvia Cobelo-Gómez
- UETeM-Molecular Pathology Group. Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, Spain
| | - Sofía Sánchez-Iglesias
- UETeM-Molecular Pathology Group. Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, Spain
| | - Alberto Rábano
- Alzheimer's Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Ana Senra
- Department of Physiology, CIMUS, University of Santiago de Compostela, Spain
| | - Pablo Aguiar
- Molecular Imaging and Medical Physics, University of Santiago de Compostela-IDIS, Spain; Nuclear Medicine and Molecular Imaging Group, IDIS, University Clinical Hospital of Santiago de Compostela, Spain
| | - Noemí Gómez-Lado
- Molecular Imaging and Medical Physics, University of Santiago de Compostela-IDIS, Spain; Nuclear Medicine and Molecular Imaging Group, IDIS, University Clinical Hospital of Santiago de Compostela, Spain
| | - Lara García-Varela
- Molecular Imaging and Medical Physics, University of Santiago de Compostela-IDIS, Spain; Nuclear Medicine and Molecular Imaging Group, IDIS, University Clinical Hospital of Santiago de Compostela, Spain
| | - Iván Burgueño-García
- Alzheimer's Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Laura Lampón-Fernández
- UETeM-Molecular Pathology Group. Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, Spain
| | - Antía Fernández-Pombo
- UETeM-Molecular Pathology Group. Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, Spain; Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, Spain
| | - Everardo Josué Díaz-López
- UETeM-Molecular Pathology Group. Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, Spain; Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, Spain
| | - Teresa Prado-Moraña
- UETeM-Molecular Pathology Group. Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, Spain; Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, Spain
| | - Beatriz San Millán
- Grupo de Enfermedades Raras y Medicina Pediátrica, Instituto de Investigación Sanitaria Galicia Sur (IISGS), Vigo, Spain; Pathology Department, Alvaro Cunqueiro Hospital, Vigo, Spain
| | - David Araújo-Vilar
- UETeM-Molecular Pathology Group. Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, Spain; Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, Spain.
| |
Collapse
|
9
|
Watanabe H, Murakami R, Tsumagari K, Morimoto S, Hashimoto T, Imaizumi K, Sonn I, Yamada K, Saito Y, Murayama S, Iwatsubo T, Okano H. Astrocytic APOE4 genotype-mediated negative impacts on synaptic architecture in human pluripotent stem cell model. Stem Cell Reports 2023; 18:1854-1869. [PMID: 37657448 PMCID: PMC10545487 DOI: 10.1016/j.stemcr.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 09/03/2023] Open
Abstract
The APOE4 genotype is the strongest risk factor for the pathogenesis of sporadic Alzheimer's disease (AD), but the detailed molecular mechanism of APOE4-mediated synaptic impairment remains to be determined. In this study, we generated a human astrocyte model carrying the APOE3 or APOE4 genotype using human induced pluripotent stem cells (iPSCs) in which isogenic APOE4 iPSCs were genome edited from healthy control APOE3 iPSCs. Next, we demonstrated that the astrocytic APOE4 genotype negatively affects dendritic spine dynamics in a co-culture system with primary neurons. Transcriptome analysis revealed an increase of EDIL3, an extracellular matrix glycoprotein, in human APOE4 astrocytes, which could underlie dendritic spine reduction in neuronal cultures. Accordingly, postmortem AD brains carrying the APOE4 allele have elevated levels of EDIL3 protein deposits within amyloid plaques. Together, these results demonstrate the novel deleterious effect of human APOE4 astrocytes on synaptic architecture and may help to elucidate the mechanism of APOE4-linked AD pathogenesis.
Collapse
Affiliation(s)
- Hirotaka Watanabe
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| | - Rei Murakami
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; Research Fellow of Japan Society for the Promotion of Science (JSPS), Tokyo 102-0083, Japan
| | - Kazuya Tsumagari
- Center for Integrated Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Satoru Morimoto
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Tadafumi Hashimoto
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
| | - Kent Imaizumi
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Iki Sonn
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; Research Fellow of Japan Society for the Promotion of Science (JSPS), Tokyo 102-0083, Japan
| | - Kaoru Yamada
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuko Saito
- Department of Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo 173-0015, Japan
| | - Shigeo Murayama
- Department of Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo 173-0015, Japan; Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Osaka 565-0871, Japan
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| |
Collapse
|
10
|
Kovalska M, Hnilicova P, Kalenska D, Adamkov M, Kovalska L, Lehotsky J. Alzheimer's Disease-like Pathological Features in the Dorsal Hippocampus of Wild-Type Rats Subjected to Methionine-Diet-Evoked Mild Hyperhomocysteinaemia. Cells 2023; 12:2087. [PMID: 37626897 PMCID: PMC10453870 DOI: 10.3390/cells12162087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/27/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Multifactorial interactions, including nutritional state, likely participate in neurodegeneration's pathogenesis and evolution. Dysregulation in methionine (Met) metabolism could lead to the development of hyperhomocysteinaemia (hHcy), playing an important role in neuronal dysfunction, which could potentially lead to the development of Alzheimer's disease (AD)-like pathological features. This study combines proton magnetic resonance spectroscopy (1H MRS) with immunohistochemical analysis to examine changes in the metabolic ratio and histomorphological alterations in the dorsal rat hippocampus (dentate gyrus-DG) subjected to a high Met diet. Male Wistar rats (420-480 g) underwent hHcy evoked by a Met-enriched diet (2 g/kg of weight/day) lasting four weeks. Changes in the metabolic ratio profile and significant histomorphological alterations have been found in the DG of hHcy rats. We have detected increased morphologically changed neurons and glial cells with increased neurogenic markers and apolipoprotein E positivity parallel with a diminished immunosignal for the N-Methyl-D-Aspartate receptor 1 in hHcy animals. A Met diet induced hHcy, likely via direct Hcy neurotoxicity, an interference with one carbon unit metabolism, and/or epigenetic regulation. These conditions lead to the progression of neurodegeneration and the promotion of AD-like pathological features in the less vulnerable hippocampal DG, which presents a plausible therapeutic target.
Collapse
Affiliation(s)
- Maria Kovalska
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.K.); (M.A.)
| | - Petra Hnilicova
- Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Dagmar Kalenska
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Marian Adamkov
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.K.); (M.A.)
| | - Libusa Kovalska
- Clinic of Stomatology and Maxillofacial Surgery, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Jan Lehotsky
- Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| |
Collapse
|
11
|
Scheinman SB, Tseng KY, Alford S, Tai LM. Higher Neuronal Facilitation and Potentiation with APOE4 Suppressed by Angiotensin II. RESEARCH SQUARE 2023:rs.3.rs-2960437. [PMID: 37292788 PMCID: PMC10246245 DOI: 10.21203/rs.3.rs-2960437/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Progressive hippocampal degeneration is a key component of Alzheimer's disease (AD) progression. Therefore, identifying how hippocampal neuronal function is modulated early in AD is an important approach to eventually prevent degeneration. AD-risk factors and signaling molecules likely modulate neuronal function, including APOE genotype and angiotensin II. Compared to APOE3 , APOE4 increases AD risk up to 12-fold, and high levels of angiotensin II are hypothesized to disrupt neuronal function in AD. However, the extent that APOE and angiotensin II modulates the hippocampal neuronal phenotype in AD-relevant models is unknown. To address this issue, we used electrophysiological techniques to assess the impact of APOE genotype and angiotensin II on basal synaptic transmission, presynaptic and post-synaptic activity in mice that express human APOE3 (E3FAD) or APOE4 (E4FAD) and overproduce Aβ. We found that compared to E3FAD mice, E4FAD mice had lower basal synaptic activity, but higher levels of paired pulse facilitation (PPF) and Long-Term Potentiation (LTP) in the Schaffer Collateral Commissural Pathway (SCCP) of the hippocampus. We also found that exogenous angiotensin II has a profound inhibitory effect on hippocampal LTP in both E3FAD and E4FAD mice. Collectively, our data suggests that APOE4 and Aβ are associated with a hippocampal phenotype comprised of lower basal activity and higher responses to high frequency stimulation, the latter of which is suppressed by angiotensin II. These novel data suggest a potential mechanistic link between hippocampal activity, APOE4 genotype and angiotensin II in AD.
Collapse
Affiliation(s)
| | - Kuei Y Tseng
- University of Illinois at Chicago College of Medicine
| | - Simon Alford
- University of Illinois at Chicago College of Medicine
| | - Leon M Tai
- University of Illinois at Chicago College of Medicine
| |
Collapse
|
12
|
Zhang H, Zhou H, Guo X, Zhang G, Xiao M, Wu S, Jin C, Yang J, Lu X. Cigarette smoke triggers calcium overload in mouse hippocampal neurons via the ΔFOSB-CACNA2D1 axis to impair cognitive performance. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 258:114996. [PMID: 37167740 DOI: 10.1016/j.ecoenv.2023.114996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/24/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023]
Abstract
A growing body of evidence shows that cigarette smoking impairs cognitive performance. The 'Calcium Hypothesis' theory of neuronopathies reveals a critical role of aberrant calcium signaling in compromised cognitive functions. However, the underlying implications of abnormalities in calcium signaling in the neurotoxicity induced by cigarette smoke (CS) have not yet been identified. CACNA2D1, an important auxiliary subunit involved in the composition of voltage-gated calcium channels (VGCCs), was reported to affect the calcium signaling in neurons by facilitating VGCCs-mediated Ca2+ influx. ΔFOSB, an alternatively-spliced product of the Fosb gene, is an activity-dependent transcription factor induced robustly in the brain in response to environmental stimuli such as CS. Interestingly, our preliminary bioinformatics analysis revealed a significant co-expression between ΔFOSB and CACNA2D1 in brain tissues of patients with neurodegenerative diseases characterized by progressive cognitive decline. Therefore, we hypothesized that the activation of the ΔFOSB-CACNA2D1 axis in response to CS exposure might cause dysregulation of calcium homeostasis in hippocampal neurons via VGCCs-mediated Ca2+ influx, thereby contributing to cognitive deficits. To this end, the present study established a CS-induced mouse model of hippocampus-dependent cognitive impairment, in which the activation of the ΔFOSB-CACNA2D1 axis accompanied by severe calcium overload was observed in the mouse hippocampal tissues. More importantly, ΔFOSB knockdown-/overexpression-mediated inactivation/activation of the ΔFOSB-CACNA2D1 axis interdicted/mimicked CS-induced dysregulation of calcium homeostasis followed by severe cellular damage in HT22 mouse hippocampal neurons. Mechanistically speaking, a further ChIP-qPCR assay confirmed the physical interaction between transcription factor ΔFOSB and the Cacna2d1 gene promoter, suggesting a direct transcriptional regulation of the Cacna2d1 gene by ΔFOSB. Overall, our current work aims to deliver a unique insight into the neurotoxic mechanisms induced by CS to explore potential targets for intervention.
Collapse
Affiliation(s)
- Hongchao Zhang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, People's Republic of China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Huabin Zhou
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Xianhe Guo
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Guopei Zhang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, People's Republic of China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Mingyang Xiao
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, People's Republic of China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Shengwen Wu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, People's Republic of China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Cuihong Jin
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, People's Republic of China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Jinghua Yang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, People's Republic of China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Xiaobo Lu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, People's Republic of China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China.
| |
Collapse
|
13
|
Wang W, Zhang X, He R, Li S, Fang D, Pang C. Gamma frequency entrainment rescues cognitive impairment by decreasing postsynaptic transmission after traumatic brain injury. CNS Neurosci Ther 2023; 29:1142-1153. [PMID: 36740277 PMCID: PMC10018095 DOI: 10.1111/cns.14096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION The relationship between oscillatory activity in hippocampus and cognitive impairment in traumatic brain injury (TBI) remains unclear. Although TBI decreases gamma oscillations and 40 Hz light flicker improves TBI prognosis, the effects and mechanism of rhythmic flicker on TBI remain unclear. AIMS In this study, we aimed to explore whether light flicker could reverse cognitive deficits, and further explore its potential mechanisms in TBI mouse model. METHODS The Morris water maze test (MWM), step-down test (SDT), and novel object recognition test (NOR) were applied to evaluate the cognitive ability. The local field potential (LFP) recording was applied to measure low gamma reduction of CA1 in hippocampus after TBI. And electrophysiological experiments were applied to explore effects of the gamma frequency entrainment on long-term potentiation (LTP), postsynaptic transmission, and intrinsic excitability of CA1 pyramidal cells (PCs) in TBI mice. Immunofluorescence staining and western blotting were applied to explore the effects of 40 Hz light flicker on the expression of PSD95 in hippocampus of TBI mice. RESULTS We found that 40 Hz light flicker restored low gamma reduction of CA1 in hippocampus after TBI. And 40 Hz, but not random or 80 Hz light flicker, reversed cognitive impairment after TBI in behavioral tests. Moreover, 40 Hz light flicker improved N-methyl-D-aspartate (NMDA) receptor-dependent LTP (LTPNMDAR ) and L-type voltage-gated calcium channel-dependent LTP (LTPL-VGCC ) after TBI treatment. And gamma frequency entrainment decreased excitatory postsynaptic currents (EPSCs) of CA1 PCs in TBI mice. Our results have illustrated that 40 Hz light flicker could decrease intrinsic excitability of PCs after TBI treatment in mice. Furthermore, 40 Hz light flicker decreased the expression of PSD95 in hippocampus of TBI mice. CONCLUSION These results demonstrated that 40 Hz light flicker rescues cognitive impairment by decreasing postsynaptic transmission in PCs after TBI treatment in mice.
Collapse
Affiliation(s)
- Weijie Wang
- Department of Neurosurgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Xiaotian Zhang
- Department of Neurosurgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Ruixing He
- Department of Neurosurgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Shaoxun Li
- Department of Neurosurgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Dazhao Fang
- Department of Neurosurgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Cong Pang
- Department of Neurosurgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| |
Collapse
|
14
|
Fu WY, Ip NY. The role of genetic risk factors of Alzheimer's disease in synaptic dysfunction. Semin Cell Dev Biol 2023; 139:3-12. [PMID: 35918217 DOI: 10.1016/j.semcdb.2022.07.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by the progressive deterioration of cognitive functions. Due to the extended global life expectancy, the prevalence of AD is increasing among aging populations worldwide. While AD is a multifactorial disease, synaptic dysfunction is one of the major neuropathological changes that occur early in AD, before clinical symptoms appear, and is associated with the progression of cognitive deterioration. However, the underlying pathological mechanisms leading to this synaptic dysfunction remains unclear. Recent large-scale genomic analyses have identified more than 40 genetic risk factors that are associated with AD. In this review, we discuss the functional roles of these genes in synaptogenesis and synaptic functions under physiological conditions, and how their functions are dysregulated in AD. This will provide insights into the contributions of these encoded proteins to synaptic dysfunction during AD pathogenesis.
Collapse
Affiliation(s)
- Wing-Yu Fu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
| | - Nancy Y Ip
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China; Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, Guangdong 518057, China.
| |
Collapse
|
15
|
Steele OG, Stuart AC, Minkley L, Shaw K, Bonnar O, Anderle S, Penn AC, Rusted J, Serpell L, Hall C, King S. A multi-hit hypothesis for an APOE4-dependent pathophysiological state. Eur J Neurosci 2022; 56:5476-5515. [PMID: 35510513 PMCID: PMC9796338 DOI: 10.1111/ejn.15685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/31/2022] [Accepted: 04/25/2022] [Indexed: 01/01/2023]
Abstract
The APOE gene encoding the Apolipoprotein E protein is the single most significant genetic risk factor for late-onset Alzheimer's disease. The APOE4 genotype confers a significantly increased risk relative to the other two common genotypes APOE3 and APOE2. Intriguingly, APOE4 has been associated with neuropathological and cognitive deficits in the absence of Alzheimer's disease-related amyloid or tau pathology. Here, we review the extensive literature surrounding the impact of APOE genotype on central nervous system dysfunction, focussing on preclinical model systems and comparison of APOE3 and APOE4, given the low global prevalence of APOE2. A multi-hit hypothesis is proposed to explain how APOE4 shifts cerebral physiology towards pathophysiology through interconnected hits. These hits include the following: neurodegeneration, neurovascular dysfunction, neuroinflammation, oxidative stress, endosomal trafficking impairments, lipid and cellular metabolism disruption, impaired calcium homeostasis and altered transcriptional regulation. The hits, individually and in combination, leave the APOE4 brain in a vulnerable state where further cumulative insults will exacerbate degeneration and lead to cognitive deficits in the absence of Alzheimer's disease pathology and also a state in which such pathology may more easily take hold. We conclude that current evidence supports an APOE4 multi-hit hypothesis, which contributes to an APOE4 pathophysiological state. We highlight key areas where further study is required to elucidate the complex interplay between these individual mechanisms and downstream consequences, helping to frame the current landscape of existing APOE-centric literature.
Collapse
Affiliation(s)
| | | | - Lucy Minkley
- School of Life SciencesUniversity of SussexBrightonUK
| | - Kira Shaw
- School of Life SciencesUniversity of SussexBrightonUK
| | - Orla Bonnar
- School of Life SciencesUniversity of SussexBrightonUK
| | | | | | | | | | | | - Sarah King
- School of PsychologyUniversity of SussexBrightonUK
| |
Collapse
|
16
|
Gowda NKC, Nawalpuri B, Ramakrishna S, Jhaveri V, Muddashetty RS. NMDAR mediated dynamic changes in m 6A inversely correlates with neuronal translation. Sci Rep 2022; 12:11317. [PMID: 35790863 PMCID: PMC9256623 DOI: 10.1038/s41598-022-14798-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Epitranscriptome modifications are crucial in translation regulation and essential for maintaining cellular homeostasis. N6 methyladenosine (m6A) is one of the most abundant and well-conserved epitranscriptome modifications, which is known to play a pivotal role in diverse aspects of neuronal functions. However, the role of m6A modifications with respect to activity-mediated translation regulation and synaptic plasticity has not been studied. Here, we investigated the role of m6A modification in response to NMDAR stimulation. We have consistently observed that 5 min NMDAR stimulation causes an increase in eEF2 phosphorylation. Correspondingly, NMDAR stimulation caused a significant increase in the m6A signal at 5 min time point, correlating with the global translation inhibition. The NMDAR induced increase in the m6A signal is accompanied by the redistribution of the m6A marked RNAs from translating to the non-translating pool of ribosomes. The increased m6A levels are well correlated with the reduced FTO levels observed on NMDAR stimulation. Additionally, we show that inhibition of FTO prevents NMDAR mediated changes in m6A levels. Overall, our results establish RNA-based molecular readout which corelates with the NMDAR-dependent translation regulation which helps in understanding changes in protein synthesis.
Collapse
Affiliation(s)
- Naveen Kumar Chandappa Gowda
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, 560065, India.,Centre for Brain Research, Indian Institute of Science, Bangalore, 560012, India
| | - Bharti Nawalpuri
- Centre for Brain Research, Indian Institute of Science, Bangalore, 560012, India
| | - Sarayu Ramakrishna
- Centre for Brain Research, Indian Institute of Science, Bangalore, 560012, India
| | - Vishwaja Jhaveri
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, 560065, India
| | - Ravi S Muddashetty
- Centre for Brain Research, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
17
|
Zhang S, Huang M, Zhi J, Wu S, Wang Y, Pei F. Research Hotspots and Trends of Peripheral Nerve Injuries Based on Web of Science From 2017 to 2021: A Bibliometric Analysis. Front Neurol 2022; 13:872261. [PMID: 35669875 PMCID: PMC9163812 DOI: 10.3389/fneur.2022.872261] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/19/2022] [Indexed: 12/17/2022] Open
Abstract
BackgroundPeripheral nerve injury (PNI) is very common in clinical practice, which often reduces the quality of life of patients and imposes a serious medical burden on society. However, to date, there have been no bibliometric analyses of the PNI field from 2017 to 2021. This study aimed to provide a comprehensive overview of the current state of research and frontier trends in the field of PNI research from a bibliometric perspective.MethodsArticles and reviews on PNI from 2017 to 2021 were extracted from the Web of Science database. An online bibliometric platform, CiteSpace, and VOSviewer software were used to generate viewable views and perform co-occurrence analysis, co-citation analysis, and burst analysis. The quantitative indicators such as the number of publications, citation frequency, h-index, and impact factor of journals were analyzed by using the functions of “Create Citation Report” and “Journal Citation Reports” in Web of Science Database and Excel software.ResultsA total of 4,993 papers was identified. The number of annual publications in the field remained high, with an average of more than 998 publications per year. The number of citations increased year by year, with a high number of 22,272 citations in 2021. The United States and China had significant influence in the field. Johns Hopkins University, USA had a leading position in this field. JESSEN KR and JOURNAL OF NEUROSCIENCE were the most influential authors and journals in the field, respectively. Meanwhile, we found that hot topics in the field of PNI focused on dorsal root ganglion (DRG) and satellite glial cells (SGCs) for neuropathic pain relief and on combining tissue engineering techniques and controlling the repair Schwann cell phenotype to promote nerve regeneration, which are not only the focus of research now but is also forecast to be of continued focus in the future.ConclusionThis is the first study to conduct a comprehensive bibliometric analysis of publications related to PNI from 2017 to 2021, whose bibliometric results can provide a reliable source for researchers to quickly understand key information in this field and identify potential research frontiers and hot directions.
Collapse
Affiliation(s)
- Shiwen Zhang
- Department of Rehabilitation Medicine and Physical Therapy, Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Meiling Huang
- Department of Rehabilitation Medicine and Physical Therapy, Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Jincao Zhi
- Department of Rehabilitation Medicine and Physical Therapy, Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Shanhong Wu
- Department of Rehabilitation Medicine and Physical Therapy, Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Yan Wang
- Rehabilitation Center, The Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
- *Correspondence: Yan Wang
| | - Fei Pei
- Rehabilitation Center, The Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
- Fei Pei
| |
Collapse
|
18
|
Berrocal M, Mata AM. The Plasma Membrane Ca 2+-ATPase, a Molecular Target for Tau-induced Cytosolic Calcium Dysregulation. Neuroscience 2022; 518:112-118. [PMID: 35469971 DOI: 10.1016/j.neuroscience.2022.04.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/04/2022] [Accepted: 04/18/2022] [Indexed: 11/28/2022]
Abstract
Disruption of calcium (Ca2+) homeostasis is emerging as a prevalent feature of aging and aging-associated neurodegenerative diseases, including Alzheimer's disease (AD), the most common type of tauopathy. This disease is characterized by the combined presence of extracellular neuritic plaques composed by amyloid β-peptides (Aβ) and neurofibrillary tangles of tau. The association of calcium dyshomeostasis with Aβ has been extensively studied, however its link with tau has been less investigated. Thus, this review will concentrate on the functional link between tau and the plasma membrane Ca2+ pump (PMCA) and other membrane proteins involved in the regulation of intracellular calcium and/or its association with neurodegeneration.
Collapse
Affiliation(s)
- María Berrocal
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Ana M Mata
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain.
| |
Collapse
|