1
|
Fakharian MA, Shoup AM, Hage P, Elseweifi HY, Shadmehr R. A vector calculus for neural computation in the cerebellum. Science 2025; 388:869-875. [PMID: 40403076 DOI: 10.1126/science.adu6331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/24/2025] [Indexed: 05/24/2025]
Abstract
Null space theory predicts that neurons generate spikes not only to produce behavior but also to prevent the undesirable effect of other neurons on behavior. In this work, we show that this competitive cancellation is essential for understanding computation in the cerebellum. In marmosets, we identified a vector for each Purkinje cell (P cell) along which its spikes displaced the eyes. Two spikes in two different P cells produced superposition of their vectors. In the resulting population activity, the spikes were canceled if their contributions were perpendicular to the intended movement. Mossy fibers provided a copy of the motor commands and the goal of the movement. Molecular layer interneurons transformed these inputs so that the P cell population predicted when the movement had reached the goal and should be stopped.
Collapse
Affiliation(s)
- Mohammad Amin Fakharian
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Alden M Shoup
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Paul Hage
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Hisham Y Elseweifi
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Reza Shadmehr
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Zhang G, Huang S, Wei M, Wu Y, Wang J. Excitatory Amino Acid Transporters as Therapeutic Targets in the Treatment of Neurological Disorders: Their Roles and Therapeutic Prospects. Neurochem Res 2025; 50:155. [PMID: 40299102 DOI: 10.1007/s11064-025-04400-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/01/2025] [Accepted: 04/09/2025] [Indexed: 04/30/2025]
Abstract
Excitatory amino acid transporters (EAATs) are pivotal regulators of glutamate homeostasis in the central nervous system and orchestrate synaptic glutamate clearance through transmembrane transport and the glutamine‒glutamate cycle. The five EAAT subtypes (GLAST/EAAT1, GLT-1/EAAT2, EAAC1/EAAT3, EAAT4, and EAAT5) exhibit spatiotemporal-specific expression patterns in neurons and glial cells, and their dysfunction is implicated in diverse neurological pathologies, including epilepsy, amyotrophic lateral sclerosis (ALS), schizophrenia, depression, and retinal degeneration. Mechanistic studies revealed that astrocytic GLT-1 deficiency disrupts glutamate clearance in ALS motor neurons, whereas GLAST genetic variants are linked to both epilepsy susceptibility and glaucomatous retinal ganglion cell degeneration. Three major challenges persist in ongoing research: ① subtype-specific regulatory mechanisms remain unclear; ② compensatory functions of transporters vary significantly across disease models; and ③ clinical translation lacks standardized evaluation criteria. The interaction mechanisms and dynamic roles of EAATs in neurological disorders were systematically investigated in this study, and an integrated approach combining single-cell profiling, stem cell-based disease modeling, and drug screening platforms was proposed. These findings lay the groundwork for novel therapeutic strategies targeting glutamate homeostasis.
Collapse
Affiliation(s)
- Guirui Zhang
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Shupeng Huang
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Mingzhen Wei
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Yongmo Wu
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Jin Wang
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China.
- Department of Medical Oncology, Liuzhou Workers' Hospital, Liuzhou, 5450054, China.
- The Second Affiliated Hospital of Guangxi, University of Science and Technology, Guangxi Zhuang Autonomous Region, Liuzhou, 5450054, China.
| |
Collapse
|
3
|
Chai A. Pleiotropic neurotransmitters: neurotransmitter-receptor crosstalk regulates excitation-inhibition balance in social brain functions and pathologies. Front Neurosci 2025; 19:1552145. [PMID: 40161576 PMCID: PMC11950657 DOI: 10.3389/fnins.2025.1552145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 02/12/2025] [Indexed: 04/02/2025] Open
Abstract
Neuronal excitation-inhibition (E/I) balance is essential for maintaining neuronal stability and proper brain functioning. Disruptions in this balance are implicated in various neurological disorders, including autism spectrum disorder, schizophrenia and epilepsy. The E/I balance is thought to be primarily mediated by intrinsic excitability, governed by an array of voltage-gated ion channels, and extrinsic excitability, maintained through a counterbalance between excitatory synaptic transmission primarily mediated by excitatory transmitter glutamate acting on excitatory ion-tropic glutamate receptors and inhibitory synaptic transmissions chiefly mediated by GABA or glycine acting on their respective inhibitory ion-tropic receptors. However, recent studies reveal that neurotransmitters can exhibit interactions that extend beyond their traditional targets, leading to a phenomenon called neurotransmitter-receptor crosstalk. Examples of such crosstalks include earlier discovery of inhibitory glycine functioning as co-transmitter gating on the NMDA subtype of excitatory glutamate receptor, and the most recent demonstration that shows the excitatory glutamate transmitter binds to the inhibitory GABAA receptor, thereby allosterically potentiating its inhibitory function. These studies demonstrate structurally and physiologically important crosstalk between excitatory and inhibitory synaptic transmission, blurring the distinction between the concepts of classic excitatory and inhibitory synaptic transmission. In this article, evidence supporting the forms of excitatory and inhibitory crosstalks will be briefly summarized and their underlying mechanisms will be discussed. Furthermore, this review will discuss the implications of these crosstalks in maintaining the E/I balance, as well as their potential involvement in synaptic plasticity and cognition in the context of social conditions.
Collapse
Affiliation(s)
- Anping Chai
- Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Fakharian MA, Shoup AM, Hage P, Elseweifi HY, Shadmehr R. A vector calculus for neural computation in the cerebellum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.14.623565. [PMID: 39605699 PMCID: PMC11601439 DOI: 10.1101/2024.11.14.623565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Null space theory predicts that a neuron will often generate spikes not to produce behavior, but to prevent another neuron's impact on behavior. Here, we present a direct test of this theory in the brain. In the marmoset cerebellum, spike-triggered averaging identified a vector for each Purkinje cell (P-cell) along which its spikes displaced the eyes. Two spikes in two different P-cells produced superposition of their vectors. In the resulting population activity, the spikes were canceled if their contributions were perpendicular to the intended movement. Mossy fibers provided a copy of the motor commands and the sensory goal of the movement. Molecular layer interneurons transformed these inputs so that the P-cell population predicted when the movement had reached the goal and should be stopped.
Collapse
Affiliation(s)
- Mohammad Amin Fakharian
- Laboratory for Computational Motor Control, Dept. of Biomedical Engineering Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - Alden M. Shoup
- Laboratory for Computational Motor Control, Dept. of Biomedical Engineering Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - Paul Hage
- Laboratory for Computational Motor Control, Dept. of Biomedical Engineering Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - Hisham Y. Elseweifi
- Laboratory for Computational Motor Control, Dept. of Biomedical Engineering Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - Reza Shadmehr
- Laboratory for Computational Motor Control, Dept. of Biomedical Engineering Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
5
|
Pennock RL, Coddington LT, Yan X, Overstreet-Wadiche L, Wadiche JI. Afferent convergence to a shared population of interneuron AMPA receptors. Nat Commun 2023; 14:3113. [PMID: 37253743 PMCID: PMC10229553 DOI: 10.1038/s41467-023-38854-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/12/2023] [Indexed: 06/01/2023] Open
Abstract
Precise alignment of pre- and postsynaptic elements optimizes the activation of glutamate receptors at excitatory synapses. Nonetheless, glutamate that diffuses out of the synaptic cleft can have actions at distant receptors, a mode of transmission called spillover. To uncover the extrasynaptic actions of glutamate, we localized AMPA receptors (AMPARs) mediating spillover transmission between climbing fibers and molecular layer interneurons in the cerebellar cortex. We found that climbing fiber spillover generates calcium transients mediated by Ca2+-permeable AMPARs at parallel fiber synapses. Spillover occludes parallel fiber synaptic currents, indicating that separate, independently regulated afferent pathways converge onto a common pool of AMPARs. Together these findings demonstrate a circuit motif wherein glutamate 'spill-in' from an unconnected afferent pathway co-opts synaptic receptors, allowing activation of postsynaptic AMPARs even when canonical glutamate release is suppressed.
Collapse
Affiliation(s)
- Reagan L Pennock
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Luke T Coddington
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA, 20147, USA
| | - Xiaohui Yan
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | | | - Jacques I Wadiche
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
6
|
Sedaghat-Nejad E, Pi JS, Hage P, Fakharian MA, Shadmehr R. Synchronous spiking of cerebellar Purkinje cells during control of movements. Proc Natl Acad Sci U S A 2022; 119:e2118954119. [PMID: 35349338 PMCID: PMC9168948 DOI: 10.1073/pnas.2118954119] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/13/2022] [Indexed: 11/18/2022] Open
Abstract
SignificanceThe information that one region of the brain transmits to another is usually viewed through the lens of firing rates. However, if the output neurons could vary the timing of their spikes, then, through synchronization, they would spotlight information that may be critical for control of behavior. Here we report that, in the cerebellum, Purkinje cell populations that share a preference for error convey, to the nucleus, when to decelerate the movement, by reducing their firing rates and temporally synchronizing the remaining spikes.
Collapse
Affiliation(s)
- Ehsan Sedaghat-Nejad
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Jay S. Pi
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Paul Hage
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Mohammad Amin Fakharian
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, 1956836484, Iran
| | - Reza Shadmehr
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205
| |
Collapse
|
7
|
Viet NM, Wang T, Tran-Anh K, Sugihara I. Heterogeneity of intrinsic plasticity in cerebellar Purkinje cells linked with cortical molecular zones. iScience 2022; 25:103705. [PMID: 35059609 PMCID: PMC8760437 DOI: 10.1016/j.isci.2021.103705] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/26/2021] [Accepted: 12/23/2021] [Indexed: 11/28/2022] Open
Abstract
In the cerebellar cortex, heterogeneous populations of Purkinje cells (PCs), classified into zebrin (aldolase C)-positive (Z+) and -negative (Z-) types, are arranged into separate longitudinal zones. They have different topographic neuronal connections and show different patterns of activity in behavior tasks. However, whether the zebrin type of PCs directly links with the physiological properties of the PC has not been well clarified. Therefore, we applied in vitro whole-cell patch-clamp recording in Z+ and Z- PCs in vermal and hemispheric neighboring zebrin zones in zebrin-visualized mice. Intrinsic excitability is significantly higher in Z- PCs than in Z+ PCs. Furthermore, intrinsic plasticity and synaptic long-term potentiation are enhanced more in Z- PCs than in Z+ PCs. The difference was mediated by different modulation of SK channel activities between Z+ and Z- PCs. The results indicate that cellular physiology differentially tunes to the functional compartmentalization of heterogeneous PCs.
Collapse
Affiliation(s)
- Nguyen-Minh Viet
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tianzhuo Wang
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Khoa Tran-Anh
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Izumi Sugihara
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|