1
|
Deng Z, Oosterboer S, Wei W. Short-term plasticity and context-dependent circuit function: Insights from retinal circuitry. SCIENCE ADVANCES 2024; 10:eadp5229. [PMID: 39303044 PMCID: PMC11414732 DOI: 10.1126/sciadv.adp5229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/15/2024] [Indexed: 09/22/2024]
Abstract
Changes in synaptic strength across timescales are integral to algorithmic operations of neural circuits. However, pinpointing synaptic loci that undergo plasticity in intact brain circuits and delineating contributions of synaptic plasticity to circuit function remain challenging. The whole-mount retina preparation provides an accessible platform for measuring plasticity at specific synapses while monitoring circuit-level behaviors during visual processing ex vivo. In this review, we discuss insights gained from retina studies into the versatile roles of short-term synaptic plasticity in context-dependent circuit functions. Plasticity at single synapse level greatly expands the algorithms of common microcircuit motifs and contributes to diverse circuit-level behaviors such as gain modulation, selective gating, and stimulus-dependent excitatory/inhibitory balance. Examples in retinal circuitry offer unequivocal support that synaptic plasticity increases the computational capacity of hardwired neural circuitry.
Collapse
Affiliation(s)
- Zixuan Deng
- The Committee on Neurobiology Graduate Program, The University of Chicago, Chicago, IL 60637, USA
| | - Swen Oosterboer
- The Committee on Neurobiology Graduate Program, The University of Chicago, Chicago, IL 60637, USA
| | - Wei Wei
- Department of Neurobiology and the Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
2
|
Furukawa K, Inoshita T, Kawaguchi SY. Graded control of Purkinje cell outputs by cAMP through opposing actions on axonal action potential and transmitter release. J Physiol 2024. [PMID: 39052311 DOI: 10.1113/jp286668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024] Open
Abstract
All-or-none signalling by action potentials (APs) in neuronal axons is pivotal for the precisely timed and identical size of outputs to multiple distant targets. However, technical limitations with respect to measuring the signalling in small intact axons have hindered the evaluation of high-fidelity signal propagation. Here, using direct recordings from axonal trunks and/or terminals of cerebellar Purkinje cells in slice and culture, we demonstrate that the timing and amplitude of axonal outputs are gradually modulated by cAMP depending on the length of axon. During the propagation in long axon, APs were attenuated and slowed in conduction by cAMP via specifically decreasing axonal Na+ currents. Consequently, the Ca2+ influx and transmitter release at distal boutons are reduced by cAMP, counteracting its direct facilitating effect on release machinery as observed at various CNS synapses. Together, our tour de force functional dissection has unveiled the axonal distance-dependent graded control of output timing and strength by intracellular signalling. KEY POINTS: The information processing in the nervous system has been classically thought to rely on the axonal faithful and high-speed conduction of action potentials (APs). We demonstrate that the strength and timing of axonal outputs are weakened and delayed, respectively, by cytoplasmic cAMP depending on the axonal length in cerebellar Purkinje cells (PCs). Direct axonal patch clamp recordings uncovered axon-specific attenuation of APs by cAMP through reduction of axonal Na+ currents. cAMP directly augments transmitter release at PC terminals without changing presynaptic Ca2+ influx or readily releasable pool of vesicles, although the extent is weaker compared to other CNS synapses. Two opposite actions of cAMP on PC axons, AP attenuation and release augmentation, together give rise to graded control of synaptic outputs in a manner dependent on the axonal length.
Collapse
Affiliation(s)
- Kei Furukawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Takuma Inoshita
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Shin-Ya Kawaguchi
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Estay SF, Morales-Moraga C, Vielma AH, Palacios-Muñoz A, Chiu CQ, Chávez AE. Non-canonical type 1 cannabinoid receptor signaling regulates night visual processing in the inner rat retina. iScience 2024; 27:109920. [PMID: 38799553 PMCID: PMC11126983 DOI: 10.1016/j.isci.2024.109920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/18/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024] Open
Abstract
Type 1 cannabinoid receptors (CB1Rs) are expressed in major retinal neurons within the rod-pathway suggesting a role in regulating night visual processing, but the underlying mechanisms remain poorly understood. Using acute rat retinal slices, we show that CB1R activation reduces glutamate release from rod bipolar cell (RBC) axon terminals onto AII and A17 amacrine cells through a pathway that requires exchange proteins directly activated by cAMP (EPAC1/2) signaling. Consequently, CB1R activation abrogates reciprocal GABAergic feedback inhibition from A17 amacrine cells. Moreover, the activation of CB1Rs in vivo enhances and prolongs the time course of the dim-light rod-driven visual responses, an effect that was eliminated when both GABAA and GABAC receptors were blocked. Altogether, our findings underscore a non-canonical mechanism by which cannabinoid signaling regulates RBC dyad synapses in the inner retina to regulate dim-light visual responses to fine-tune night vision.
Collapse
Affiliation(s)
- Sebastián F. Estay
- Programa de Doctorado en Ciencias, Mención Neurociencia, Valparaíso 2340000, Chile
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Camila Morales-Moraga
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Alex H. Vielma
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Angelina Palacios-Muñoz
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Chiayu Q. Chiu
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Andrés E. Chávez
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| |
Collapse
|
4
|
Boff JM, Shrestha AP, Madireddy S, Viswaprakash N, Della Santina L, Vaithianathan T. The Interplay between Neurotransmitters and Calcium Dynamics in Retinal Synapses during Development, Health, and Disease. Int J Mol Sci 2024; 25:2226. [PMID: 38396913 PMCID: PMC10889697 DOI: 10.3390/ijms25042226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The intricate functionality of the vertebrate retina relies on the interplay between neurotransmitter activity and calcium (Ca2+) dynamics, offering important insights into developmental processes, physiological functioning, and disease progression. Neurotransmitters orchestrate cellular processes to shape the behavior of the retina under diverse circumstances. Despite research to elucidate the roles of individual neurotransmitters in the visual system, there remains a gap in our understanding of the holistic integration of their interplay with Ca2+ dynamics in the broader context of neuronal development, health, and disease. To address this gap, the present review explores the mechanisms used by the neurotransmitters glutamate, gamma-aminobutyric acid (GABA), glycine, dopamine, and acetylcholine (ACh) and their interplay with Ca2+ dynamics. This conceptual outline is intended to inform and guide future research, underpinning novel therapeutic avenues for retinal-associated disorders.
Collapse
Affiliation(s)
- Johane M. Boff
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (J.M.B.); (A.P.S.)
| | - Abhishek P. Shrestha
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (J.M.B.); (A.P.S.)
| | - Saivikram Madireddy
- College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Nilmini Viswaprakash
- Department of Medical Education, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | | | - Thirumalini Vaithianathan
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (J.M.B.); (A.P.S.)
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
5
|
Sbornova I, van der Sande E, Milosavljevic S, Amurrio E, Burbano SD, Das PK, Do HH, Fisher JL, Kargbo P, Patel J, Porcher L, De Zeeuw CI, Meester-Smoor MA, Winkelman BHJ, Klaver CCW, Pocivavsek A, Kelly MP. The Sleep Quality- and Myopia-Linked PDE11A-Y727C Variant Impacts Neural Physiology by Reducing Catalytic Activity and Altering Subcellular Compartmentalization of the Enzyme. Cells 2023; 12:2839. [PMID: 38132157 PMCID: PMC10742168 DOI: 10.3390/cells12242839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Recently, a Y727C variant in the dual-specific 3',5'-cyclic nucleotide phosphodiesterase 11A (PDE11A-Y727C) was linked to increased sleep quality and reduced myopia risk in humans. Given the well-established role that the PDE11 substrates cAMP and cGMP play in eye physiology and sleep, we determined if (1) PDE11A protein is expressed in the retina or other eye segments in mice, (2) PDE11A-Y7272C affects catalytic activity and/or subcellular compartmentalization more so than the nearby suicide-associated PDE11A-M878V variant, and (3) Pde11a deletion alters eye growth or sleep quality in male and female mice. Western blots show distinct protein expression of PDE11A4, but not PDE11A1-3, in eyes of Pde11a WT, but not KO mice, that vary by eye segment and age. In HT22 and COS-1 cells, PDE11A4-Y727C reduces PDE11A4 catalytic activity far more than PDE11A4-M878V, with both variants reducing PDE11A4-cAMP more so than PDE11A4-cGMP activity. Despite this, Pde11a deletion does not alter age-related changes in retinal or lens thickness or axial length, nor vitreous or anterior chamber depth. Further, Pde11a deletion only minimally changes refractive error and sleep quality. That said, both variants also dramatically alter the subcellular compartmentalization of human and mouse PDE11A4, an effect occurring independently of dephosphorylating PDE11A4-S117/S124 or phosphorylating PDE11A4-S162. Rather, re-compartmentalization of PDE11A4-Y727C is due to the loss of the tyrosine changing how PDE11A4 is packaged/repackaged via the trans-Golgi network. Therefore, the protective impact of the Y727C variant may reflect a gain-of-function (e.g., PDE11A4 displacing another PDE) that warrants further investigation in the context of reversing/preventing sleep disturbances or myopia.
Collapse
Affiliation(s)
- Irina Sbornova
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 20 Penn St., Baltimore, MD 21201, USA (P.K.D.); (J.P.)
| | - Emilie van der Sande
- Department of Ophthalmology, Erasmus Medical Center, Wytemaweg 40, 3015 CN Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Wytemaweg 40, 3015 CN Rotterdam, The Netherlands
- The Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Art & Science (KNAW), Meibergdreef 47, 1105 AZ Amsterdam, The Netherlands
| | - Snezana Milosavljevic
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Garners Ferry Rd., Columbia, SC 29209, USA
| | - Elvis Amurrio
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 20 Penn St., Baltimore, MD 21201, USA (P.K.D.); (J.P.)
| | - Steven D. Burbano
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 20 Penn St., Baltimore, MD 21201, USA (P.K.D.); (J.P.)
| | - Prosun K. Das
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 20 Penn St., Baltimore, MD 21201, USA (P.K.D.); (J.P.)
| | - Helen H. Do
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 20 Penn St., Baltimore, MD 21201, USA (P.K.D.); (J.P.)
| | - Janet L. Fisher
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Garners Ferry Rd., Columbia, SC 29209, USA
| | - Porschderek Kargbo
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 20 Penn St., Baltimore, MD 21201, USA (P.K.D.); (J.P.)
| | - Janvi Patel
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 20 Penn St., Baltimore, MD 21201, USA (P.K.D.); (J.P.)
| | - Latarsha Porcher
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 20 Penn St., Baltimore, MD 21201, USA (P.K.D.); (J.P.)
| | - Chris I. De Zeeuw
- The Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Art & Science (KNAW), Meibergdreef 47, 1105 AZ Amsterdam, The Netherlands
- Department of Neuroscience, Erasmus Medical Center, Wytemaweg 40, 3015 CN Rotterdam, The Netherlands
| | - Magda A. Meester-Smoor
- Department of Ophthalmology, Erasmus Medical Center, Wytemaweg 40, 3015 CN Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Wytemaweg 40, 3015 CN Rotterdam, The Netherlands
| | - Beerend H. J. Winkelman
- Department of Ophthalmology, Erasmus Medical Center, Wytemaweg 40, 3015 CN Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Wytemaweg 40, 3015 CN Rotterdam, The Netherlands
- The Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Art & Science (KNAW), Meibergdreef 47, 1105 AZ Amsterdam, The Netherlands
- Department of Neuroscience, Erasmus Medical Center, Wytemaweg 40, 3015 CN Rotterdam, The Netherlands
| | - Caroline C. W. Klaver
- Department of Ophthalmology, Erasmus Medical Center, Wytemaweg 40, 3015 CN Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Wytemaweg 40, 3015 CN Rotterdam, The Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
- Institute of Molecular and Clinical Ophthalmology, Mittlere Strasse 91, 4070 Basel, Switzerland
| | - Ana Pocivavsek
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Garners Ferry Rd., Columbia, SC 29209, USA
| | - Michy P. Kelly
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 20 Penn St., Baltimore, MD 21201, USA (P.K.D.); (J.P.)
- Center for Research on Aging, University of Maryland School of Medicine, 20 Penn St., Baltimore, MD 21201, USA
| |
Collapse
|
6
|
Sbornova I, van der Sande E, Milosavljevic S, Amurrio E, Burbano SD, Das P, Do H, Fisher JL, Kargbo P, Patel J, Porcher L, De Zeeuw CI, Meester-Smoor MA, Winkelman BH, Klaver CC, Pocivavsek A, Kelly MP. The sleep quality- and myopia-linked PDE11A-Y727C variant impacts neural physiology by reducing catalytic activity and altering subcellular compartmentalization of the enzyme. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.16.567422. [PMID: 38014312 PMCID: PMC10680747 DOI: 10.1101/2023.11.16.567422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Recently, a Y727C variant in the dual-specific 3',5'-cyclic nucleotide phosphodiesterase 11A (PDE11A-Y727C) was linked to increased sleep quality and reduced myopia risk in humans. Given the well-established role that the PDE11 substrates cAMP and cGMP play in eye physiology and sleep, we determined if 1) PDE11A protein is expressed in the retina or other eye segments in mouse, 2) PDE11A-Y7272C affects catalytic activity and/or subcellular compartmentalization more so than the nearby suicide-associated PDE11A-M878V variant, and 3) Pde11a deletion alters eye growth or sleep quality in male and female mice. Western blots show distinct protein expression of PDE11A4, but not PDE11A1-3, in eyes of Pde11a WT-but not KO mice-that vary by eye segment and age. In HT22 and COS-1 cells, PDE11A4-Y727C reduces PDE11A4 catalytic activity far more than PDE11A4-M878V, with both variants reducing PDE11A4-cAMP more so than PDE11A4-cGMP activity. Despite this, Pde11a deletion does not alter age-related changes in retinal or lens thickness, axial length, nor vitreous or anterior chamber depth. Further, Pde11a deletion only minimally changes refractive error and sleep quality. That said, both variants also dramatically alter the subcellular compartmentalization of human and mouse PDE11A4, an effect occurring independently of dephosphorylating PDE11A4-S117/S124 or phosphorylating PDE11A4-S162. Rather, re-compartmentalization of PDE11A4-Y727C is due to the loss of the tyrosine changing how PDE11A4 is packaged/repackaged via the trans-Golgi network. Therefore, the protective impact of the Y727C variant may reflect a gain-of-function (e.g., PDE11A4 displacing another PDE) that warrants further investigation in the context of reversing/preventing sleep disturbances or myopia.
Collapse
Affiliation(s)
- Irina Sbornova
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 20 Penn St, Baltimore, MD 21201
| | - Emilie van der Sande
- Department of Ophthalmology, Erasmus Medical Center, Wytemaweg 40, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Wytemaweg 40, Rotterdam, The Netherlands
- The Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Art & Science (KNAW), Meibergdreef 47, Amsterdam, The Netherlands
| | - Snezana Milosavljevic
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Garners Ferry Rd, Columbia, SC
| | - Elvis Amurrio
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 20 Penn St, Baltimore, MD 21201
| | - Steven D. Burbano
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 20 Penn St, Baltimore, MD 21201
| | - Prosun Das
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 20 Penn St, Baltimore, MD 21201
| | - Helen Do
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 20 Penn St, Baltimore, MD 21201
| | - Janet L. Fisher
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Garners Ferry Rd, Columbia, SC
| | - Porschderek Kargbo
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 20 Penn St, Baltimore, MD 21201
| | - Janvi Patel
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 20 Penn St, Baltimore, MD 21201
| | - Latarsha Porcher
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 20 Penn St, Baltimore, MD 21201
| | - Chris I. De Zeeuw
- The Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Art & Science (KNAW), Meibergdreef 47, Amsterdam, The Netherlands
- Department of Neuroscience, Erasmus Medical Center, Wytemaweg 40, Rotterdam, The Netherlands
| | - Magda A Meester-Smoor
- Department of Ophthalmology, Erasmus Medical Center, Wytemaweg 40, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Wytemaweg 40, Rotterdam, The Netherlands
| | - Beerend H.J. Winkelman
- Department of Ophthalmology, Erasmus Medical Center, Wytemaweg 40, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Wytemaweg 40, Rotterdam, The Netherlands
- The Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Art & Science (KNAW), Meibergdreef 47, Amsterdam, The Netherlands
- Department of Neuroscience, Erasmus Medical Center, Wytemaweg 40, Rotterdam, The Netherlands
| | - Caroline C.W. Klaver
- Department of Ophthalmology, Erasmus Medical Center, Wytemaweg 40, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Wytemaweg 40, Rotterdam, The Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Geert Grooteplein Zuid 10, Nijmegen, The Netherlands
- Institute of Molecular and Clinical Ophthalmology, Mittlere Strasse 91, Basel, Switzerland
| | - Ana Pocivavsek
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Garners Ferry Rd, Columbia, SC
| | - Michy P. Kelly
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 20 Penn St, Baltimore, MD 21201
- Center for Research on Aging, University of Maryland School of Medicine, 20 Penn St, Baltimore, MD 21201
| |
Collapse
|
7
|
Erofeeva N, Meshalkina D, Firsov M. Multiple Roles of cAMP in Vertebrate Retina. Cells 2023; 12:cells12081157. [PMID: 37190066 DOI: 10.3390/cells12081157] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
cAMP is a key regulatory molecule that controls many important processes in the retina, including phototransduction, cell development and death, growth of neural processes, intercellular contacts, retinomotor effects, and so forth. The total content of cAMP changes in the retina in a circadian manner following the natural light cycle, but it also shows local and even divergent changes in faster time scales in response to local and transient changes in the light environment. Changes in cAMP might also manifest or cause various pathological processes in virtually all cellular components of the retina. Here we review the current state of knowledge and understanding of the regulatory mechanisms by which cAMP influences the physiological processes that occur in various retinal cells.
Collapse
Affiliation(s)
- Natalia Erofeeva
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| | - Darya Meshalkina
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| | - Michael Firsov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| |
Collapse
|
8
|
Yperman K, Kuijpers M. Neuronal endoplasmic reticulum architecture and roles in axonal physiology. Mol Cell Neurosci 2023; 125:103822. [PMID: 36781033 DOI: 10.1016/j.mcn.2023.103822] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023] Open
Abstract
The endoplasmic reticulum (ER) is the largest membrane compartment within eukaryotic cells and is emerging as a key coordinator of many cellular processes. The ER can modulate local calcium fluxes and communicate with other organelles like the plasma membrane. The importance of ER in neuronal processes such as neurite growth, axon repair and neurotransmission has recently gained much attention. In this review, we highlight the importance of the ER tubular network in axonal homeostasis and discuss how the generation and maintenance of the thin tubular ER network in axons and synapses, requires a cooperative effort of ER-shaping proteins, cytoskeleton and autophagy processes.
Collapse
Affiliation(s)
- Klaas Yperman
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Marijn Kuijpers
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, 6525 AJ Nijmegen, the Netherlands.
| |
Collapse
|
9
|
Chanaday NL, Kavalali ET. Role of the endoplasmic reticulum in synaptic transmission. Curr Opin Neurobiol 2022; 73:102538. [PMID: 35395547 PMCID: PMC9167765 DOI: 10.1016/j.conb.2022.102538] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/25/2022] [Accepted: 03/06/2022] [Indexed: 11/03/2022]
Abstract
Neurons possess a complex morphology spanning long distances and a large number of subcellular specializations such as presynaptic terminals and dendritic spines. This structural complexity is essential for maintenance of synaptic junctions and associated electrical as well as biochemical signaling events. Given the structural and functional complexity of neurons, neuronal endoplasmic reticulum is emerging as a key regulator of neuronal function, in particular synaptic signaling. Neuronal endoplasmic reticulum mediates calcium signaling, calcium and lipid homeostasis, vesicular trafficking, and proteostasis events that underlie autonomous functions of numerous subcellular compartments. However, based on its geometric complexity spanning the whole neuron, endoplasmic reticulum also integrates the activity of these autonomous compartments across the neuron and coordinates their interactions with the soma. In this article, we review recent work regarding neuronal endoplasmic reticulum function and its relationship to neurotransmission and plasticity.
Collapse
Affiliation(s)
- Natali L Chanaday
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, 37240-7933, USA.
| | - Ege T Kavalali
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, 37240-7933, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37240-7933, USA.
| |
Collapse
|