1
|
Anderson MC, Crespo-Garcia M, Subbulakshmi S. Brain mechanisms underlying the inhibitory control of thought. Nat Rev Neurosci 2025:10.1038/s41583-025-00929-y. [PMID: 40379896 DOI: 10.1038/s41583-025-00929-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2025] [Indexed: 05/19/2025]
Abstract
Controlling action and thought requires the capacity to stop mental processes. Over the past two decades, evidence has grown that a domain-general inhibitory control mechanism supported by the right lateral prefrontal cortex achieves these functions. However, current views of the neural mechanisms of inhibitory control derive largely from research into the stopping of action. Whereas action stopping is a convenient empirical model, it does not invoke thought inhibition and cannot be used to identify the unique features of this process. Here, we review research that addresses how organisms stop a key process that drives thoughts: memory retrieval. This work has shown that retrieval stopping shares right dorsolateral and ventrolateral prefrontal mechanisms with action stopping, consistent with a domain-general inhibitory control mechanism, but also recruits a distinct fronto-temporal pathway that determines the success of mental control. As part of this pathway, GABAergic inhibition within the hippocampus influences the efficacy of prefrontal control over thought. These unique elements of mental control suggest that hippocampal disinhibition is a transdiagnostic factor underlying intrusive thinking, linking the fronto-temporal control pathway to preclinical models of psychiatric disorders and fear extinction. We suggest that retrieval-stopping deficits may underlie the intrusive thinking that is common across many psychiatric disorders.
Collapse
Affiliation(s)
- Michael C Anderson
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.
- Behavioural and Clinical Neurosciences Unit, University of Cambridge, Cambridge, UK.
| | - Maite Crespo-Garcia
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - S Subbulakshmi
- Department of Psychology, Stanford University, Stanford, CA, USA
| |
Collapse
|
2
|
Hackländer RPM, Schlüter H, Rolke AK, Schuster S, Bermeitinger C. Less Than Zero? Exp Psychol 2025; 72:27-41. [PMID: 40265196 DOI: 10.1027/1618-3169/a000641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Not all information encountered is equally important to remember. Some information may be valuable, while others may be irrelevant. Importantly, retrieving and acting upon some information may even have negative consequences. Research has shown that information associated with negative consequences when retrieved is remembered worse than information associated with positive consequences when retrieved. The current experiments address a hitherto understudied aspect of memory for values, namely about how neutral and negative valued information is remembered and which processes underly the encoding and retrieval of this information. Across four experiments, we presented participants with words and an associated positive, neutral, or negative point value. Participants thought the associated values would be added to their total score, thus incentivizing the recall of positive value words and forgetting of negative value words. However, at retrieval participants were told to ignore previously associated values and to try to retrieve as many words from the study phase as possible. Replicating previous research, we found superior retrieval for words associated with positive compared to negative values. More importantly for the current investigation, across four experiments, we found no evidence that words associated with negative values were remembered worse than words associated with a neutral value.
Collapse
Affiliation(s)
| | - Helge Schlüter
- Department of Psychology, University of Hildesheim, Germany
| | | | - Simon Schuster
- Department of Psychology, University of Hildesheim, Germany
| | | |
Collapse
|
3
|
Bretton ZH, Kim H, Banich MT, Lewis-Peacock JA. Suppressing the Maintenance of Information in Working Memory Alters Long-term Memory Traces. J Cogn Neurosci 2024; 36:2117-2136. [PMID: 38940738 PMCID: PMC11383534 DOI: 10.1162/jocn_a_02206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The sensory recruitment hypothesis conceptualizes information in working memory as being activated representations of information in long-term memory. Accordingly, changes made to an item in working memory would be expected to influence its subsequent retention. Here, we tested the hypothesis that suppressing information from working memory, which can reduce short-term access to that information, may also alter its long-term neural representation. We obtained fMRI data (n = 25; 13 female / 12 male participants) while participants completed a working memory removal task with scene images as stimuli, followed by a final surprise recognition test of the examined items. We applied a multivariate pattern analysis to the data to quantify the engagement of suppression on each trial, to track the contents of working memory during suppression, and to assess representational changes afterward. Our analysis confirms previous reports that suppression of information in working memory involves focused attention to target and remove unwanted information. Furthermore, our findings provide new evidence that even a single dose of suppression of an item in working memory can (if engaged with sufficient strength) produce lasting changes in its neural representation, particularly weakening the unique, item-specific features, which leads to forgetting. Our study sheds light on the underlying mechanisms that contribute to the suppression of unwanted thoughts and highlights the dynamic interplay between working memory and long-term memory.
Collapse
Affiliation(s)
| | - Hyojeong Kim
- University of Texas at Austin
- University of Colorado
| | | | | |
Collapse
|
4
|
Khan A, Ti CHE, Yuan K, Crespo Garcia M, Anderson MC, Tong RKY. Medial Prefrontal Cortex Stimulation Reduces Retrieval-Induced Forgetting via Fronto-parietal Beta Desynchronization. J Neurosci 2024; 44:e0189242024. [PMID: 39147592 PMCID: PMC11391495 DOI: 10.1523/jneurosci.0189-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/17/2024] Open
Abstract
The act of recalling memories can paradoxically lead to the forgetting of other associated memories, a phenomenon known as retrieval-induced forgetting (RIF). Inhibitory control mechanisms, primarily mediated by the prefrontal cortex, are thought to contribute to RIF. In this study, we examined whether stimulating the medial prefrontal cortex (mPFC) with transcranial direct current stimulation modulates RIF and investigated the associated electrophysiological correlates. In a randomized study, 50 participants (27 males and 23 females) received either real or sham stimulation before performing retrieval practice on target memories. After retrieval practice, a final memory test to assess RIF was administered. We found that stimulation selectively increased the retrieval accuracy of competing memories, thereby decreasing RIF, while the retrieval accuracy of target memories remained unchanged. The reduction in RIF was associated with a more pronounced beta desynchronization within the left dorsolateral prefrontal cortex (left-DLPFC), in an early time window (<500 ms) after cue onset during retrieval practice. This led to a stronger beta desynchronization within the parietal cortex in a later time window, an established marker for successful memory retrieval. Together, our results establish the causal involvement of the mPFC in actively suppressing competing memories and demonstrate that while forgetting arises as a consequence of retrieving specific memories, these two processes are functionally independent. Our findings suggest that stimulation potentially disrupted inhibitory control processes, as evidenced by reduced RIF and stronger beta desynchronization in fronto-parietal brain regions during memory retrieval, although further research is needed to elucidate the specific mechanisms underlying this effect.
Collapse
Affiliation(s)
- Ahsan Khan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, United Kingdom
| | - Chun Hang Eden Ti
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Kai Yuan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Maite Crespo Garcia
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, United Kingdom
| | - Michael C Anderson
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, United Kingdom
| | - Raymond Kai-Yu Tong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
5
|
Ter Horst J, Boillot M, Cohen MX, Englitz B. Decreased Beta Power and OFC-STN Phase Synchronization during Reactive Stopping in Freely Behaving Rats. J Neurosci 2024; 44:e0463242024. [PMID: 38866485 PMCID: PMC11308328 DOI: 10.1523/jneurosci.0463-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/30/2024] [Accepted: 05/24/2024] [Indexed: 06/14/2024] Open
Abstract
During natural behavior, an action often needs to be suddenly stopped in response to an unexpected sensory input-referred to as reactive stopping. Reactive stopping has been mostly investigated in humans, which led to hypotheses about the involvement of different brain structures, in particular the hyperdirect pathway. Here, we directly investigate the contribution and interaction of two key regions of the hyperdirect pathway, the orbitofrontal cortex (OFC) and subthalamic nucleus (STN), using dual-area, multielectrode recordings in male rats performing a stop-signal task. In this task, rats have to initiate movement to a go-signal, and occasionally stop their movement to the go-signal side after a stop-signal, presented at various stop-signal delays. Both the OFC and STN show near-simultaneous field potential reductions in the beta frequency range (12-30 Hz) compared with the period preceding the go-signal and the movement period. These transient reductions (∼200 ms) only happen during reactive stopping, which is when the stop-signal was received after action initiation, and are well timed after stop-signal onset and before the estimated time of stopping. Phase synchronization analysis also showed a transient attenuation of synchronization between the OFC and STN in the beta range during reactive stopping. The present results provide the first direct quantification of local neural oscillatory activity in the OFC and STN and interareal synchronization specifically timed during reactive stopping.
Collapse
Affiliation(s)
- Jordi Ter Horst
- Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen 6525 EN, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6525 EN, The Netherlands
| | - Morgane Boillot
- Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen 6525 EN, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6525 EN, The Netherlands
| | - Michael X Cohen
- Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen 6525 EN, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6525 EN, The Netherlands
| | - Bernhard Englitz
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6525 EN, The Netherlands
| |
Collapse
|
6
|
Lundqvist M, Miller EK, Nordmark J, Liljefors J, Herman P. Beta: bursts of cognition. Trends Cogn Sci 2024; 28:662-676. [PMID: 38658218 DOI: 10.1016/j.tics.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/26/2024]
Abstract
Beta oscillations are linked to the control of goal-directed processing of sensory information and the timing of motor output. Recent evidence demonstrates they are not sustained but organized into intermittent high-power bursts mediating timely functional inhibition. This implies there is a considerable moment-to-moment variation in the neural dynamics supporting cognition. Beta bursts thus offer new opportunities for studying how sensory inputs are selectively processed, reshaped by inhibitory cognitive operations and ultimately result in motor actions. Recent method advances reveal diversity in beta bursts that provide deeper insights into their function and the underlying neural circuit activity motifs. We propose that brain-wide, spatiotemporal patterns of beta bursting reflect various cognitive operations and that their dynamics reveal nonlinear aspects of cortical processing.
Collapse
Affiliation(s)
- Mikael Lundqvist
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden; The Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Earl K Miller
- The Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jonatan Nordmark
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Johan Liljefors
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Pawel Herman
- School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden; Digital Futures, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
7
|
Ubeda Matzilevich E, Daniel PL, Little S. Towards therapeutic electrophysiological neurofeedback in Parkinson's disease. Parkinsonism Relat Disord 2024; 121:106010. [PMID: 38245382 DOI: 10.1016/j.parkreldis.2024.106010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
Neurofeedback (NF) techniques support individuals to self-regulate specific features of brain activity, which has been shown to impact behavior and potentially ameliorate clinical symptoms. Electrophysiological NF (epNF) may be particularly impactful for patients with Parkinson's disease (PD), as evidence mounts to suggest a central role of pathological neural oscillations underlying symptoms in PD. Exaggerated beta oscillations (12-30 Hz) in the basal ganglia-cortical network are linked to motor symptoms (e.g., bradykinesia, rigidity), and beta is reduced by successful therapy with dopaminergic medication and Deep Brain Stimulation (DBS). PD patients also experience non-motor symptoms related to sleep, mood, motivation, and cognitive control. Although less is known about the mechanisms of non-motor symptoms in PD and how to successfully treat them, low frequency neural oscillations (1-12 Hz) in the basal ganglia-cortical network are particularly implicated in non-motor symptoms. Here, we review how cortical and subcortical epNF could be used to target motor and non-motor specific oscillations, and potentially serve as an adjunct therapy that enables PD patients to endogenously control their own pathological neural activities. Recent studies have demonstrated that epNF protocols can successfully support volitional control of cortical and subcortical beta rhythms. Importantly, this endogenous control of beta has been linked to changes in motor behavior. epNF for PD, as a casual intervention on neural signals, has the potential to increase understanding of the neurophysiology of movement, mood, and cognition and to identify new therapeutic approaches for motor and non-motor symptoms.
Collapse
Affiliation(s)
- Elena Ubeda Matzilevich
- Movement Disorders and Neuromodulation Division, Department of Neurology, University of California San Francisco, CA, USA
| | - Pria Lauren Daniel
- Movement Disorders and Neuromodulation Division, Department of Neurology, University of California San Francisco, CA, USA; Department of Psychology, University of California San Diego, CA, USA.
| | - Simon Little
- Movement Disorders and Neuromodulation Division, Department of Neurology, University of California San Francisco, CA, USA
| |
Collapse
|
8
|
Wessel JR, Anderson MC. Neural mechanisms of domain-general inhibitory control. Trends Cogn Sci 2023; 28:S1364-6613(23)00258-9. [PMID: 39492255 DOI: 10.1016/j.tics.2023.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 11/05/2024]
Abstract
Inhibitory control is a fundamental mechanism underlying flexible behavior and features in theories across many areas of cognitive and psychological science. However, whereas many theories implicitly or explicitly assume that inhibitory control is a domain-general process, the vast majority of neuroscientific work has hitherto focused on individual domains, such as motor, mnemonic, or attentional inhibition. Here, we attempt to close this gap by highlighting recent work that demonstrates shared neuroanatomical and neurophysiological signatures of inhibitory control across domains. We propose that the regulation of thalamocortical drive by a fronto-subthalamic mechanism operating in the β band might be a domain-general mechanism for inhibitory control in the human brain.
Collapse
Affiliation(s)
- Jan R Wessel
- Cognitive Control Collaborative, Department of Psychological and Brain Sciences, Department of Neurology, University of Iowa, Iowa City, IA, USA.
| | - Michael C Anderson
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|