1
|
Chen F, Wang XM, Huang X. Abnormal topological organization of functional brain networks in the patients with anterior segment ischemic optic neuropathy. Front Neurosci 2024; 18:1458897. [PMID: 39649661 PMCID: PMC11621095 DOI: 10.3389/fnins.2024.1458897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/05/2024] [Indexed: 12/11/2024] Open
Abstract
Objective An increasing amount of neuroimaging evidence indicates that patients with anterior segment ischemic optic neuropathy (AION) exhibit abnormal brain function and structural architecture. Some studies have shown that there are abnormal functional and structural changes in the brain visual area of AION patients. Nevertheless, the alterations in the topological properties of brain functional connectivity among patients with AION remain unclear. This study aimed to investigate the topological organization of brain functional connectivity in a group of AION patients using graph theory methods. Methods Resting-state magnetic resonance imaging was conducted on 30 AION patients and 24 healthy controls (HCs) matched for age, gender, and education level. For each participant, a high-resolution brain functional network was constructed using time series correlation and quantified through graph theory analysis. Results Both the AION and HC groups presented high-efficiency small-world networks in their brain functional networks. In comparison to the HCs, the AION group exhibited notable reductions in clustering coefficient (Cp) and local efficiency (Eloc). Specifically, significant decreases in Nodal local efficiency were observed in the right Amygdala of the AION group. Moreover, the NBS method detected a significantly modified network (15 nodes, 15 connections) in the AION group compared to the HCs (p < 0.05). Conclusion Patients with AION exhibited topological abnormalities in the human brain connectivity group. Particularly, there was a decrease in Cp and Eloc in the AION group compared to the HC group. The anomalous node centers and functional connections in AION patients were predominantly situated in the prefrontal lobe, temporal lobe, and parietal lobe. These discoveries offer valuable perspectives into the neural mechanisms associated with visual loss, disrupted emotion regulation, and cognitive impairments in individuals with AION.
Collapse
Affiliation(s)
- Fei Chen
- Department of Opthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xin-Miao Wang
- School of Ophthalmology and Optometry, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xin Huang
- Department of Ophthalmology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Feng YY, Bromberg-Martin ES, Monosov IE. Dorsal raphe neurons integrate the values of reward amount, delay, and uncertainty in multi-attribute decision-making. Cell Rep 2024; 43:114341. [PMID: 38878290 DOI: 10.1016/j.celrep.2024.114341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/27/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024] Open
Abstract
The dorsal raphe nucleus (DRN) is implicated in psychiatric disorders that feature impaired sensitivity to reward amount, impulsivity when facing reward delays, and risk-seeking when confronting reward uncertainty. However, it has been unclear whether and how DRN neurons signal reward amount, reward delay, and reward uncertainty during multi-attribute value-based decision-making, where subjects consider these attributes to make a choice. We recorded DRN neurons as monkeys chose between offers whose attributes, namely expected reward amount, reward delay, and reward uncertainty, varied independently. Many DRN neurons signaled offer attributes, and this population tended to integrate the attributes in a manner that reflected monkeys' preferences for amount, delay, and uncertainty. After decision-making, in response to post-decision feedback, these same neurons signaled signed reward prediction errors, suggesting a broader role in tracking value across task epochs and behavioral contexts. Our data illustrate how the DRN participates in value computations, guiding theories about the role of the DRN in decision-making and psychiatric disease.
Collapse
Affiliation(s)
- Yang-Yang Feng
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | | | - Ilya E Monosov
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO, USA; Washington University Pain Center, Washington University, St. Louis, MO, USA; Department of Neurosurgery, Washington University, St. Louis, MO, USA; Department of Electrical Engineering, Washington University, St. Louis, MO, USA.
| |
Collapse
|
3
|
Seamans JK, White S, Morningstar M, Emberly E, Linsenbardt D, Ma B, Czachowski CL, Lapish CC. Neural basis of cognitive control signals in anterior cingulate cortex during delay discounting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597894. [PMID: 38895238 PMCID: PMC11185781 DOI: 10.1101/2024.06.07.597894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Cognitive control involves allocating cognitive effort according to internal needs and task demands and the Anterior Cingulate Cortex (ACC) is hypothesized to play a central role in this process. We investigated the neural basis of cognitive control in the ACC of rats performing an adjusting-amount delay discounting task. Decision-making in this this task can be guided by using either a lever-value tracking strategy, requiring a 'resource-based' form of cognitive effort or a lever-biased strategy requiring a 'resistance-based' form of cognitive effort. We found that ACC ensembles always tightly tracked lever value on each trial, indicative of a resource-based control signal. These signals were prevalent in the neural recordings and were influenced by the delay. A shorter delay was associated with devaluing of the immediate option and a longer delay was associated with overvaluing of the immediate option. In addition, ACC theta (6-12Hz) oscillations were observed at the choice point of rats exhibiting a resistance-based strategy. These data provide candidates of neural activity patterns in the ACC that underlie the use of 'resource-based' and 'resistance-based' cognitive effort. Furthermore, these data illustrate how strategies can be engaged under different conditions in individual subjects.
Collapse
Affiliation(s)
- Jeremy K. Seamans
- Dept of Psychiatry, Djavad Mowafaghian Centre for Brain Health, 2211 Wesbrook Mall, UBC, Vancouver BC, V6T2B5
| | - Shelby White
- Stark Neuroscience Institute, Department of Anatomy, Cell Biology, and Physiology, Indianapolis, 46202, USA
| | | | - Eldon Emberly
- Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6
| | - David Linsenbardt
- University of New Mexico, Department of Neurosciences, Albuquerque, 87131, USA
| | - Baofeng Ma
- Stark Neuroscience Institute, Department of Anatomy, Cell Biology, and Physiology, Indianapolis, 46202, USA
| | - Cristine L. Czachowski
- Indiana University-Purdue University, Indianapolis, Psychology Department, Indianapolis, 46202, USA
| | - Christopher C. Lapish
- Stark Neuroscience Institute, Department of Anatomy, Cell Biology, and Physiology, Indianapolis, 46202, USA
| |
Collapse
|
4
|
Hein TP, Gong Z, Ivanova M, Fedele T, Nikulin V, Herrojo Ruiz M. Anterior cingulate and medial prefrontal cortex oscillations underlie learning alterations in trait anxiety in humans. Commun Biol 2023; 6:271. [PMID: 36922553 PMCID: PMC10017780 DOI: 10.1038/s42003-023-04628-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
Anxiety has been linked to altered belief formation and uncertainty estimation, impacting learning. Identifying the neural processes underlying these changes is important for understanding brain pathology. Here, we show that oscillatory activity in the medial prefrontal, anterior cingulate and orbitofrontal cortex (mPFC, ACC, OFC) explains anxiety-related learning alterations. In a magnetoencephalography experiment, two groups of human participants pre-screened with high and low trait anxiety (HTA, LTA: 39) performed a probabilistic reward-based learning task. HTA undermined learning through an overestimation of volatility, leading to faster belief updating, more stochastic decisions and pronounced lose-shift tendencies. On a neural level, we observed increased gamma activity in the ACC, dmPFC, and OFC during encoding of precision-weighted prediction errors in HTA, accompanied by suppressed ACC alpha/beta activity. Our findings support the association between altered learning and belief updating in anxiety and changes in gamma and alpha/beta activity in the ACC, dmPFC, and OFC.
Collapse
Affiliation(s)
- Thomas P Hein
- Goldsmiths, University of London, Psychology Department, Whitehead Building New Cross, London, SE14 6NW, UK
| | - Zheng Gong
- Centre for Cognition and Decision making, Institute for Cognitive Neuroscience, HSE University, Moscow, Russian Federation
| | - Marina Ivanova
- Centre for Cognition and Decision making, Institute for Cognitive Neuroscience, HSE University, Moscow, Russian Federation
| | - Tommaso Fedele
- Centre for Cognition and Decision making, Institute for Cognitive Neuroscience, HSE University, Moscow, Russian Federation
| | - Vadim Nikulin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Maria Herrojo Ruiz
- Goldsmiths, University of London, Psychology Department, Whitehead Building New Cross, London, SE14 6NW, UK.
| |
Collapse
|
5
|
Zyuzin J, Combs D, Melrose J, Kodaverdian N, Leather C, Carrillo JD, Monterosso JR, Brocas I. The neural correlates of value representation: From single items to bundles. Hum Brain Mapp 2023; 44:1476-1495. [PMID: 36440955 PMCID: PMC9921239 DOI: 10.1002/hbm.26137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 11/30/2022] Open
Abstract
One of the core questions in Neuro-economics is to determine where value is represented. To date, most studies have focused on simple options and identified the ventromedial prefrontal cortex (VMPFC) as the common value region. We report the findings of an fMRI study in which we asked participants to make pairwise comparisons involving options of varying complexity: single items (Control condition), bundles made of the same two single items (Scaling condition) and bundles made of two different single items (Bundling condition). We construct a measure of choice consistency to capture how coherent the choices of a participant are with one another. We also record brain activity while participants make these choices. We find that a common core of regions involving the left VMPFC, the left dorsolateral prefrontal cortex (DLPFC), regions associated with complex visual processing and the left cerebellum track value across all conditions. Also, regions in the DLPFC, the ventrolateral prefrontal cortex (VLPFC) and the cerebellum are differentially recruited across conditions. Last, variations in activity in VMPFC and DLPFC value-tracking regions are associated with variations in choice consistency. This suggests that value based decision-making recruits a core set of regions as well as specific regions based on task demands. Further, correlations between consistency and the magnitude of signal change with lateral portions of the PFC suggest the possibility that activity in these regions may play a causal role in decision quality.
Collapse
Affiliation(s)
| | - Dalton Combs
- University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - James Melrose
- Department of EconomicsUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Niree Kodaverdian
- Argyros School of Business and EconomicsChapman UniversityOrangeCAUSA
| | - Calvin Leather
- Department of EconomicsUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Juan D. Carrillo
- Department of EconomicsUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - John R. Monterosso
- Department of PsychologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Isabelle Brocas
- Department of EconomicsUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
6
|
Dutta CN, Christov-Moore L, Ombao H, Douglas PK. Neuroprotection in late life attention-deficit/hyperactivity disorder: A review of pharmacotherapy and phenotype across the lifespan. Front Hum Neurosci 2022; 16:938501. [PMID: 36226261 PMCID: PMC9548548 DOI: 10.3389/fnhum.2022.938501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
For decades, psychostimulants have been the gold standard pharmaceutical treatment for attention-deficit/hyperactivity disorder (ADHD). In the United States, an astounding 9% of all boys and 4% of girls will be prescribed stimulant drugs at some point during their childhood. Recent meta-analyses have revealed that individuals with ADHD have reduced brain volume loss later in life (>60 y.o.) compared to the normal aging brain, which suggests that either ADHD or its treatment may be neuroprotective. Crucially, these neuroprotective effects were significant in brain regions (e.g., hippocampus, amygdala) where severe volume loss is linked to cognitive impairment and Alzheimer's disease. Historically, the ADHD diagnosis and its pharmacotherapy came about nearly simultaneously, making it difficult to evaluate their effects in isolation. Certain evidence suggests that psychostimulants may normalize structural brain changes typically observed in the ADHD brain. If ADHD itself is neuroprotective, perhaps exercising the brain, then psychostimulants may not be recommended across the lifespan. Alternatively, if stimulant drugs are neuroprotective, then this class of medications may warrant further investigation for their therapeutic effects. Here, we take a bottom-up holistic approach to review the psychopharmacology of ADHD in the context of recent models of attention. We suggest that future studies are greatly needed to better appreciate the interactions amongst an ADHD diagnosis, stimulant treatment across the lifespan, and structure-function alterations in the aging brain.
Collapse
Affiliation(s)
- Cintya Nirvana Dutta
- Biostatistics Group, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- School of Modeling, Simulation, and Training, and Computer Science, University of Central Florida, Orlando, FL, United States
| | - Leonardo Christov-Moore
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA, United States
| | - Hernando Ombao
- Biostatistics Group, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Pamela K. Douglas
- School of Modeling, Simulation, and Training, and Computer Science, University of Central Florida, Orlando, FL, United States
- Department of Psychiatry and Biobehavioral Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
7
|
Kantak SS, Johnson T, Zarzycki R. Linking Pain and Motor Control: Conceptualization of Movement Deficits in Patients With Painful Conditions. Phys Ther 2022; 102:6497839. [PMID: 35079833 DOI: 10.1093/ptj/pzab289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 09/13/2021] [Accepted: 12/10/2021] [Indexed: 12/20/2022]
Abstract
UNLABELLED When people experience or expect pain, they move differently. Pain-altered movement strategies, collectively described here as pain-related movement dysfunction (PRMD), may persist well after pain resolves and, ultimately, may result in altered kinematics and kinetics, future reinjury, and disability. Although PRMD may manifest as abnormal movements that are often evident in clinical assessment, the underlying mechanisms are complex, engaging sensory-perceptual, cognitive, psychological, and motor processes. Motor control theories provide a conceptual framework to determine, assess, and target processes that contribute to normal and abnormal movement and thus are important for physical therapy and rehabilitation practice. Contemporary understanding of motor control has evolved from reflex-based understanding to a more complex task-dependent interaction between cognitive and motor systems, each with distinct neuroanatomic substrates. Though experts have recognized the importance of motor control in the management of painful conditions, there is no comprehensive framework that explicates the processes engaged in the control of goal-directed actions, particularly in the presence of pain. This Perspective outlines sensory-perceptual, cognitive, psychological, and motor processes in the contemporary model of motor control, describing the neural substrates underlying each process and highlighting how pain and anticipation of pain influence motor control processes and consequently contribute to PRMD. Finally, potential lines of future inquiry-grounded in the contemporary model of motor control-are outlined to advance understanding and improve the assessment and treatment of PRMD. IMPACT This Perspective proposes that approaching PRMD from a contemporary motor control perspective will uncover key mechanisms, identify treatment targets, inform assessments, and innovate treatments across sensory-perceptual, cognitive, and motor domains, all of which have the potential to improve movement and functional outcomes in patients with painful conditions.
Collapse
Affiliation(s)
- Shailesh S Kantak
- Neuroplasticity and Motor Behavior Laboratory, Moss Rehabilitation Research Institute, Elkins Park, Pennsylvania, USA.,Department of Physical Therapy, Arcadia University, Glenside, Pennsylvania, USA
| | - Tessa Johnson
- Neuroplasticity and Motor Behavior Laboratory, Moss Rehabilitation Research Institute, Elkins Park, Pennsylvania, USA
| | - Ryan Zarzycki
- Department of Physical Therapy, Arcadia University, Glenside, Pennsylvania, USA
| |
Collapse
|
8
|
Lawrance EL, Gagne CR, O’Reilly JX, Bjisterbosch J, Bishop SJ. The Computational and Neural Substrates of Ambiguity Avoidance in Anxiety. COMPUTATIONAL PSYCHIATRY (CAMBRIDGE, MASS.) 2022; 6:8-33. [PMID: 35757373 PMCID: PMC9223033 DOI: 10.5334/cpsy.67] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 01/11/2022] [Indexed: 11/26/2022]
Abstract
Theoretical accounts have linked anxiety to intolerance of ambiguity. However, this relationship has not been well operationalized empirically. Here, we used computational and neuro-imaging methods to characterize anxiety-related differences in aversive decision-making under ambiguity and associated patterns of cortical activity. Adult human participants chose between two urns on each trial. The ratio of tokens ('O's and 'X's) in each urn determined probability of electrical stimulation receipt. A number above each urn indicated the magnitude of stimulation that would be received if a shock was delivered. On ambiguous trials, one of the two urns had tokens occluded. By varying the number of tokens occluded, we manipulated the extent of missing information. At higher levels of missing information, there is greater second order uncertainty, i.e., more uncertainty as to the probability of pulling a given type of token from the urn. Adult human participants demonstrated avoidance of ambiguous options which increased with level of missing information. Extent of 'information-level dependent' ambiguity aversion was significantly positively correlated with trait anxiety. Activity in both the dorsal anterior cingulate cortex and inferior frontal sulcus during the decision-making period increased as a function of missing information. Greater engagement of these regions, on high missing information trials, was observed when participants went on to select the ambiguous option; this was especially apparent in high trait anxious individuals. These findings are consistent with individuals vulnerable to anxiety requiring greater activation of frontal regions supporting rational decision-making to overcome a predisposition to engage in ambiguity avoidance at high levels of missing information.
Collapse
Affiliation(s)
- Emma L. Lawrance
- Institute for Global Health Innovation, Imperial College London, Kensington, London SW7 2AZ, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | | | - Jill X. O’Reilly
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford, OX3 9DU, UK
- Department of Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Woodstock Rd, Oxford OX2 6HG, US
- Donders Centre for Cognition, Donders Institute, Montessorilaan 3, 6525 HR Nijmegen, NL
| | - Janine Bjisterbosch
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sonia J. Bishop
- Department of Psychology, UC Berkeley, Berkeley, California 94720, USA
- Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
9
|
Magrabi A, Ludwig VU, Stoppel CM, Paschke LM, Wisniewski D, Heekeren HR, Walter H. Dynamic Computation of Value Signals via a Common Neural Network in Multi-Attribute Decision-Making. Soc Cogn Affect Neurosci 2021; 17:683-693. [PMID: 34850226 PMCID: PMC9250299 DOI: 10.1093/scan/nsab125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 10/12/2021] [Accepted: 11/25/2021] [Indexed: 11/14/2022] Open
Abstract
Studies in decision neuroscience have identified robust neural representations for the value of choice options. However, overall values often depend on multiple attributes, and it is not well understood how the brain evaluates different attributes and integrates them to combined values. In particular, it is not clear whether attribute values are computed in distinct attribute-specific regions or within the general valuation network known to process overall values. Here, we used an fMRI choice task in which abstract stimuli had to be evaluated based on variations of the attributes color and motion. The behavioral data showed that participants responded faster when overall values were high and attribute value differences were low. On the neural level, we did not find that attribute values were systematically represented in areas V4 and V5, even though these regions are associated with attribute-specific processing of color and motion, respectively. Instead, attribute values were associated with activity in the posterior cingulate cortex, ventral striatum, and posterior inferior temporal gyrus. Further, overall values were represented in dorsolateral and ventromedial prefrontal cortex, and attribute value differences in dorsomedial prefrontal cortex, which suggests that these regions play a key role for the neural integration of attribute values.
Collapse
Affiliation(s)
- Amadeus Magrabi
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin 10117, Germany.,Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Vera U Ludwig
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin 10117, Germany.,Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin 10117, Germany.,Wharton Neuroscience Initiative, University of Pennsylvania, Philadelphia, PA, USA
| | - Christian M Stoppel
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Lena M Paschke
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin 10117, Germany.,Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin 10117, Germany.,Department of Psychology, Humboldt-Universität zu Berlin, Berlin 12489, Germany
| | - David Wisniewski
- Department of Experimental Psychology, Ghent University, Gent 9000, Belgium
| | - Hauke R Heekeren
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin 10117, Germany.,Department of Education and Psychology, Freie Universität Berlin, Berlin 14195, Germany
| | - Henrik Walter
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin 10117, Germany.,Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin 10117, Germany.,Berlin Center for Advanced Neuroimaging, Charité-Universitätsmedizin Berlin, Berlin 10119, Germany
| |
Collapse
|
10
|
Zhao P, Lv H, Guo P, Su Y, Liu M, Wang Y, Hua H, Kang S. Altered Brain Functional Connectivity at Resting-State in Patients With Non-arteritic Anterior Ischemic Optic Neuropathy. Front Neurosci 2021; 15:712256. [PMID: 34658763 PMCID: PMC8517223 DOI: 10.3389/fnins.2021.712256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/09/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose: To investigate the possible changes in functional connectivity (FC) in patients with non-arteritic anterior ischemic optic neuropathy (NAION) using resting-state functional MRI (fMRI). Methods: Thirty-one NAION patients and 31 healthy controls were recruited and underwent resting-state fMRI scans. Regions of interest (ROIs) were defined as bilateral Brodmann’s area 17 (BA17). FC analysis was performed between the ROIs and the rest of the brain regions, and the between group comparisons of FC were performed. We conducted correlation analysis between the FC changes and the clinical variables in NAION patients. Results: Compared with healthy controls, patients with NAION showed significantly decreased FC between the left BA17 and the right inferior frontal gyrus, left caudate nucleus. As for the right BA17, patients exhibited significantly increased FC with the left olfactory gyrus and decreased FC with the right superior frontal gyrus (SFG), right insula. Moreover, FC values between the right insula and the right BA17 were positively correlated with the right side of mean sensitivity in the central visual field (r = 0.52, P < 0.01) and negatively correlated with the right side of mean defect in the central visual field (r = −0.55, P < 0.01). Conclusion: Our study indicated that patients with NAION showed significantly abnormal functional reorganization between the primary visual cortex and several other brain regions not directly related to visual function, which supports that NAION may not only be an ophthalmic disease but also a neuro-ophthalmological disease.
Collapse
Affiliation(s)
- Pengbo Zhao
- Department of Ophthalmology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Pengde Guo
- Department of Radiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Su
- Department of Ophthalmology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ming Liu
- Department of Radiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Wang
- Department of Radiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Haiqin Hua
- Department of Radiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Shaohong Kang
- Department of Radiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
11
|
Seak LCU, Volkmann K, Pastor-Bernier A, Grabenhorst F, Schultz W. Single-Dimensional Human Brain Signals for Two-Dimensional Economic Choice Options. J Neurosci 2021; 41:3000-3013. [PMID: 33568490 PMCID: PMC8018883 DOI: 10.1523/jneurosci.1555-20.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 11/29/2022] Open
Abstract
Rewarding choice options typically contain multiple components, but neural signals in single brain voxels are scalar and primarily vary up or down. In a previous study, we had designed reward bundles that contained the same two milkshakes with independently set amounts; we had used psychophysics and rigorous economic concepts to estimate two-dimensional choice indifference curves (ICs) that represented revealed stochastic preferences for these bundles in a systematic, integrated manner. All bundles on the same ICs were equally revealed preferred (and thus had same utility, as inferred from choice indifference); bundles on higher ICs (higher utility) were preferred to bundles on lower ICs (lower utility). In the current study, we used the established behavior for testing with functional magnetic resonance imaging (fMRI). We now demonstrate neural responses in reward-related brain structures of human female and male participants, including striatum, midbrain, and medial orbitofrontal cortex (mid-OFC) that followed the characteristic pattern of ICs: similar responses along ICs (same utility despite different bundle composition), but monotonic change across ICs (different utility). Thus, these brain structures integrated multiple reward components into a scalar signal, well beyond the known subjective value coding of single-component rewards.SIGNIFICANCE STATEMENT Rewards have several components, like the taste and size of an apple, but it is unclear how each component contributes to the overall value of the reward. While choice indifference curves (ICs) of economic theory provide behavioral approaches to this question, it is unclear whether brain responses capture the preference and utility integrated from multiple components. We report activations in striatum, midbrain, and orbitofrontal cortex (OFC) that follow choice ICs representing behavioral preferences over and above variations of individual reward components. In addition, the concept-driven approach encourages future studies on natural, multicomponent rewards that are prone to irrational choice of normal and brain-damaged individuals.
Collapse
Affiliation(s)
- Leo Chi U Seak
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom
| | - Konstantin Volkmann
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom
| | - Alexandre Pastor-Bernier
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom
| | - Fabian Grabenhorst
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom
| | - Wolfram Schultz
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom
| |
Collapse
|
12
|
Pettine WW, Louie K, Murray JD, Wang XJ. Excitatory-inhibitory tone shapes decision strategies in a hierarchical neural network model of multi-attribute choice. PLoS Comput Biol 2021; 17:e1008791. [PMID: 33705386 PMCID: PMC7987200 DOI: 10.1371/journal.pcbi.1008791] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/23/2021] [Accepted: 02/15/2021] [Indexed: 12/14/2022] Open
Abstract
We are constantly faced with decisions between alternatives defined by multiple attributes, necessitating an evaluation and integration of different information sources. Time-varying signals in multiple brain areas are implicated in decision-making; but we lack a rigorous biophysical description of how basic circuit properties, such as excitatory-inhibitory (E/I) tone and cascading nonlinearities, shape attribute processing and choice behavior. Furthermore, how such properties govern choice performance under varying levels of environmental uncertainty is unknown. We investigated two-attribute, two-alternative decision-making in a dynamical, cascading nonlinear neural network with three layers: an input layer encoding choice alternative attribute values; an intermediate layer of modules processing separate attributes; and a final layer producing the decision. Depending on intermediate layer E/I tone, the network displays distinct regimes characterized by linear (I), convex (II) or concave (III) choice indifference curves. In regimes I and II, each option's attribute information is additively integrated. In regime III, time-varying nonlinear operations amplify the separation between offer distributions by selectively attending to the attribute with the larger differences in input values. At low environmental uncertainty, a linear combination most consistently selects higher valued alternatives. However, at high environmental uncertainty, regime III is more likely than a linear operation to select alternatives with higher value. Furthermore, there are conditions where readout from the intermediate layer could be experimentally indistinguishable from the final layer. Finally, these principles are used to examine multi-attribute decisions in systems with reduced inhibitory tone, leading to predictions of different choice patterns and overall performance between those with restrictions on inhibitory tone and neurotypicals.
Collapse
Affiliation(s)
- Warren Woodrich Pettine
- Center for Neural Science, New York University, New York, United States of America
- Department of Psychiatry, Yale University School of Medicine, New Haven, United States of America
| | - Kenway Louie
- Center for Neural Science, New York University, New York, United States of America
| | - John D. Murray
- Department of Psychiatry, Yale University School of Medicine, New Haven, United States of America
| | - Xiao-Jing Wang
- Center for Neural Science, New York University, New York, United States of America
| |
Collapse
|
13
|
Anterior cingulate cortex and adaptive control of brain and behavior. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 158:283-309. [PMID: 33785148 DOI: 10.1016/bs.irn.2020.11.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Research examining the functional underpinnings of anterior cingulate cortex (ACC) and its relationship to cognitive control have been described as "perennially controversial" and a "Rorschach Test" for modern neuroscience. Although there is near universal agreement that ACC is important for the adaptation of behavior, debate, despite decades of work, stems from the exact manner in which ACC goes about doing this. This chapter provides a brief overview of the various past and present theoretical arguments and research surrounding ACC function, and highlights an emerging literature of single unit ACC recordings from several species that support these theories. We will finish the chapter by focusing on our work examining the firing of single neurons in rat dorsal medial striatum (DMS) and ACC, and examining DMS's dependency on ACC to accurately signal adaptive behavioral output. Ultimately, we will conclude that ACC carries a myriad of signals (error detection, reinforcement/feedback, value, response conflict, etc.) necessary for the modulation of attention and task-relevant/irrelevant signals so that difficult decisions can be made and action plans adapted when necessary.
Collapse
|
14
|
Emberly E, Seamans JK. Abrupt, Asynchronous Changes in Action Representations by Anterior Cingulate Cortex Neurons during Trial and Error Learning. Cereb Cortex 2020; 30:4336-4345. [PMID: 32239139 DOI: 10.1093/cercor/bhaa019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/09/2020] [Accepted: 01/12/2020] [Indexed: 11/13/2022] Open
Abstract
The ability to act on knowledge about the value of stimuli or actions factors into simple foraging behaviors as well as complex forms of decision-making. In striatal regions, action representations are thought to acquire value through a gradual (reinforcement-learning based) process. It is unclear whether this is also true for anterior cingulate cortex (ACC) where neuronal representations tend to change abruptly. We recorded from ensembles of ACC neurons as rats deduced which of 3 levers was rewarded each day. The rat's lever preferences changed gradually throughout the sessions as they eventually came to focus on the rewarded lever. Most individual neurons changed their responses to both rewarded and nonrewarded lever presses abruptly (<2 trials). These transitions occurred asynchronously across the population but peaked near the point where the rats began to focus on the rewarded lever. Because the individual transitions were asynchronous, the overall change at the population level appeared gradual. Abrupt transitions in action representations of ACC neurons may be part of a mechanism that alters choice strategies as new information is acquired.
Collapse
Affiliation(s)
- Eldon Emberly
- Department of Physics, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Jeremy K Seamans
- Department of Psychiatry, Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
15
|
Affective evaluation of others' altruistic decisions under risk and ambiguity. Neuroimage 2020; 218:116996. [PMID: 32470571 DOI: 10.1016/j.neuroimage.2020.116996] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 01/09/2023] Open
Abstract
Gratitude arises when one is the target of an altruistic decision, particularly when this decision incurs cost to the agent. Here we examined how individuals evaluate others' altruistic decisions under risky (uncertainty with known probabilities) and ambiguous (uncertainty with unknown probabilities) costs and respond with gratitude and reciprocity. Participants played an interactive game in an fMRI scanner in which they would receive painful electric shocks. An anonymous co-player either intentionally (Human conditions) or unintentionally (Computer conditions) decided whether to help the participant reduce half of the pain by undertaking an amount of pain (i.e., cost) with varying level of uncertainty (Certain vs. Risky vs. Ambiguous). Participants could then transfer monetary points to the co-player knowing that the co-player was unaware of this transfer. Behaviorally, monetary allocation and gratitude rating increased as the uncertainty level of cost increased in Human conditions; these effects were reduced in Computer conditions. The effect of cost uncertainty on gratitude was mediated by the perceived kind intention behind the help. FMRI revealed both shared and differential neurocognitive substrates for evaluating the benefactor's altruistic decisions under risk and ambiguity: both were associated with fear- and anxiety-related processes, involving right lateral orbitofrontal cortex and anterior insula; ambiguity additionally recruited mentalizing- and conflict monitoring-related processes, involving dorsal medial prefrontal cortex and dorsal anterior cingulate cortex. These findings underscore the crucial role of social uncertainty perception in the generation of gratitude.
Collapse
|
16
|
A Critical Role for Human Ventromedial Frontal Lobe in Value Comparison of Complex Objects Based on Attribute Configuration. J Neurosci 2019; 39:4124-4132. [PMID: 30867258 DOI: 10.1523/jneurosci.2969-18.2019] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/05/2019] [Accepted: 03/04/2019] [Indexed: 11/21/2022] Open
Abstract
In making decisions, we often choose from among options with multiple value-relevant attributes. Neuroeconomic models propose that the value associated with each attribute is integrated in a global value for each option. However, some evidence from patients with ventromedial frontal lobe (VMF) damage argues against a very general role for this region in value integration, suggesting instead that it contributes critically to a specific value inference or comparison process. Here, we tested value-based decision-making involving artificial multiattribute objects in humans with focal damage to the VMF (N = 12) compared with a healthy group matched for age and education (N = 24) and with a group with frontal lobe damage sparing the VMF (N = 12). In a "configural" condition, overall object value was predicted by the conjunction of two attributes, while in an "elemental" condition, object value could be assessed by combining the independent values of individual attributes. Patients with VMF damage were impaired in making choices when value was uniquely predicted by the configuration of attributes, but intact when choosing based on elemental attribute values. This is evidence that the VMF is critical for inferring the value of whole objects in a multiattribute choice. These findings have implications for models of value-based choice and add to emerging views of how this region may interact with medial temporal lobe systems involved in configural object processing and relational memory.SIGNIFICANCE STATEMENT Neuroeconomic models propose that the ventromedial frontal lobe (VMF) supports multiattribute decisions by integrating the values of attributes. However, researchers have been uncertain about the underlying mechanisms for this process. Patients with VMF damage made multiattribute choices under two conditions: in one, attribute values could be summed to guide choice; in the other, value was predicted by the conjunction of attributes. VMF damage impaired only the latter. This argues that the VMF is critical for inferring value from configural information to guide multiattribute object choice. This region may be key for judging the emergent "value of the forest," rather than for integrating the individual "value of each tree."
Collapse
|