1
|
Tien R, Platt J, Mendlen M, Kern D, Ojemann S, Thompson J, Kramer D. Neurons in human motor thalamus encode reach kinematics and positional errors related to braking. RESEARCH SQUARE 2025:rs.3.rs-6165736. [PMID: 40195992 PMCID: PMC11975039 DOI: 10.21203/rs.3.rs-6165736/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Deep brain stimulation of the cerebellar-receiving region of motor thalamus, the ventral intermediate nucleus of the thalamus (VIM), effectively reduces the action tremor associated with essential tremor. However, the neural contribution of the VIM to the control of voluntary movement, and how that function relates to action tremor pathophysiology, is not well understood. In single thalamic neurons recorded during a naturalistic reaching task in essential tremor patients undergoing deep brain stimulation surgery, we find that firing rate changes align with the braking and stabilizing phases of reach movements, encode hand position and velocity above other kinematic variables, and strongly encode error signals relating the current hand position to the final reach target position. These findings support a hypothesis that the VIM contributes to the control of accurate stopping and stabilization of the hand, dysfunction of which aligns with models of action tremor generation.
Collapse
Affiliation(s)
- Rex Tien
- University of Colorado Anschutz Medical Campus
| | | | | | - Drew Kern
- University of Colorado Anschutz Medical Campus
| | | | | | | |
Collapse
|
2
|
Herreras O, Torres D, Makarov VA, Makarova J. Theoretical considerations and supporting evidence for the primary role of source geometry on field potential amplitude and spatial extent. Front Cell Neurosci 2023; 17:1129097. [PMID: 37066073 PMCID: PMC10097999 DOI: 10.3389/fncel.2023.1129097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
Field potential (FP) recording is an accessible means to capture the shifts in the activity of neuron populations. However, the spatial and composite nature of these signals has largely been ignored, at least until it became technically possible to separate activities from co-activated sources in different structures or those that overlap in a volume. The pathway-specificity of mesoscopic sources has provided an anatomical reference that facilitates transcending from theoretical analysis to the exploration of real brain structures. We review computational and experimental findings that indicate how prioritizing the spatial geometry and density of sources, as opposed to the distance to the recording site, better defines the amplitudes and spatial reach of FPs. The role of geometry is enhanced by considering that zones of the active populations that act as sources or sinks of current may arrange differently with respect to each other, and have different geometry and densities. Thus, observations that seem counterintuitive in the scheme of distance-based logic alone can now be explained. For example, geometric factors explain why some structures produce FPs and others do not, why different FP motifs generated in the same structure extend far while others remain local, why factors like the size of an active population or the strong synchronicity of its neurons may fail to affect FPs, or why the rate of FP decay varies in different directions. These considerations are exemplified in large structures like the cortex and hippocampus, in which the role of geometrical elements and regional activation in shaping well-known FP oscillations generally go unnoticed. Discovering the geometry of the sources in play will decrease the risk of population or pathway misassignments based solely on the FP amplitude or temporal pattern.
Collapse
Affiliation(s)
- Oscar Herreras
- Laboratory of Experimental and Computational Neurophysiology, Department of Translational Neuroscience, Cajal Institute, Spanish National Research Council, Madrid, Spain
- *Correspondence: Oscar Herreras,
| | - Daniel Torres
- Laboratory of Experimental and Computational Neurophysiology, Department of Translational Neuroscience, Cajal Institute, Spanish National Research Council, Madrid, Spain
| | - Valeriy A. Makarov
- Institute for Interdisciplinary Mathematics, School of Mathematics, Universidad Complutense de Madrid, Madrid, Spain
| | - Julia Makarova
- Laboratory of Experimental and Computational Neurophysiology, Department of Translational Neuroscience, Cajal Institute, Spanish National Research Council, Madrid, Spain
- Julia Makarova,
| |
Collapse
|
3
|
Hu YY, Yang G, Liang XS, Ding XS, Xu DE, Li Z, Ma QH, Chen R, Sun YY. Transcranial low-intensity ultrasound stimulation for treating central nervous system disorders: A promising therapeutic application. Front Neurol 2023; 14:1117188. [PMID: 36970512 PMCID: PMC10030814 DOI: 10.3389/fneur.2023.1117188] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/10/2023] [Indexed: 03/29/2023] Open
Abstract
Transcranial ultrasound stimulation is a neurostimulation technique that has gradually attracted the attention of researchers, especially as a potential therapy for neurological disorders, because of its high spatial resolution, its good penetration depth, and its non-invasiveness. Ultrasound can be categorized as high-intensity and low-intensity based on the intensity of its acoustic wave. High-intensity ultrasound can be used for thermal ablation by taking advantage of its high-energy characteristics. Low-intensity ultrasound, which produces low energy, can be used as a means to regulate the nervous system. The present review describes the current status of research on low-intensity transcranial ultrasound stimulation (LITUS) in the treatment of neurological disorders, such as epilepsy, essential tremor, depression, Parkinson's disease (PD), and Alzheimer's disease (AD). This review summarizes preclinical and clinical studies using LITUS to treat the aforementioned neurological disorders and discusses their underlying mechanisms.
Collapse
Affiliation(s)
- Yun-Yun Hu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Gang Yang
- Lab Center, Medical College of Soochow University, Suzhou, China
| | - Xue-Song Liang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
- Second Clinical College, Dalian Medical University, Dalian, Liaoning, China
| | - Xuan-Si Ding
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - De-En Xu
- Wuxi No. 2 People's Hospital, Wuxi, Jiangsu, China
| | - Zhe Li
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Sleep Medicine Center, Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Quan-Hong Ma
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
- Quan-Hong Ma
| | - Rui Chen
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Rui Chen
| | - Yan-Yun Sun
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
- Yan-Yun Sun
| |
Collapse
|
4
|
Legarda SB, Michas-Martin PA, McDermott D. Managing Intractable Symptoms of Parkinson's Disease: A Nonsurgical Approach Employing Infralow Frequency Neuromodulation. Front Hum Neurosci 2022; 16:894781. [PMID: 35880105 PMCID: PMC9308006 DOI: 10.3389/fnhum.2022.894781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
|
5
|
Lang EJ, Handforth A. Is the inferior olive central to essential tremor? Yes. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 163:133-165. [PMID: 35750361 PMCID: PMC11956747 DOI: 10.1016/bs.irn.2022.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We consider the question whether the inferior olive (IO) is required for essential tremor (ET). Much evidence shows that the olivocerebellar system is the main system capable of generating the widespread synchronous oscillatory Purkinje cell (PC) complex spike (CS) activity across the cerebellar cortex that would be capable of generating the type of bursting cerebellar output from the deep cerebellar nuclei (DCN) that could underlie tremor. Normally, synchronous CS activity primarily reflects the effective electrical coupling of IO neurons by gap junctions, and traditionally, ET research has focused on the hypothesis of increased coupling of IO neurons as the cause of hypersynchronous CS activity underlying tremor. However, recent pathology studies of brains from humans with ET and evidence from mutant mice, particularly the hotfoot17 mouse, that largely replicate the pathology of ET, suggest that the abnormal innervation of multiple Purkinje cells (PCs) by climbing fibers (Cfs) is related to tremor. In addition, ET brains show partial PC loss and axon terminal sprouting by surviving PCs. This may provide another mechanism for tremor. It is proposed that in ET, these three mechanisms may promote tremor. They all involve hypersynchronous DCN activity and an intact IO, but the level at which excessive synchronization occurs may be at the IO level (from abnormal afferent activity to this nucleus), the PC level (via aberrant Cfs), or the DCN level (via terminal PC collateral innervation).
Collapse
Affiliation(s)
- Eric J Lang
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, NY, United States.
| | - Adrian Handforth
- Neurology Service (W127), Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| |
Collapse
|
6
|
Handforth A, Lang EJ. Increased Purkinje Cell Complex Spike and Deep Cerebellar Nucleus Synchrony as a Potential Basis for Syndromic Essential Tremor. A Review and Synthesis of the Literature. THE CEREBELLUM 2020; 20:266-281. [PMID: 33048308 DOI: 10.1007/s12311-020-01197-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 12/19/2022]
Abstract
We review advances in understanding Purkinje cell (PC) complex spike (CS) physiology that suggest increased CS synchrony underlies syndromic essential tremor (ET). We searched PubMed for papers describing factors that affect CS synchrony or cerebellar circuits potentially related to tremor. Inferior olivary (IO) neurons are electrically coupled, with the degree of coupling controlled by excitatory and GABAergic inputs. Clusters of coupled IO neurons synchronize CSs within parasagittal bands via climbing fibers (Cfs). When motor cortex is stimulated in rats at varying frequencies, whisker movement occurs at ~10 Hz, correlated with synchronous CSs, indicating that the IO/CS oscillatory rhythm gates movement frequency. Intra-IO injection of the GABAA receptor antagonist picrotoxin increases CS synchrony, increases whisker movement amplitude, and induces tremor. Harmaline and 5-HT2a receptor activation also increase IO coupling and CS synchrony and induce tremor. The hotfoot17 mouse displays features found in ET brains, including cerebellar GluRδ2 deficiency and abnormal PC Cf innervation, with IO- and PC-dependent cerebellar oscillations and tremor likely due to enhanced CS synchrony. Heightened coupling within the IO oscillator leads, through its dynamic control of CS synchrony, to increased movement amplitude and, when sufficiently intense, action tremor. Increased CS synchrony secondary to aberrant Cf innervation of multiple PCs likely also underlies hotfoot17 tremor. Deep cerebellar nucleus (DCN) hypersynchrony may occur secondary to increased CS synchrony but might also occur from PC axonal terminal sprouting during partial PC loss. Through these combined mechanisms, increased CS/DCN synchrony may plausibly underlie syndromic ET.
Collapse
Affiliation(s)
- Adrian Handforth
- Neurology Service, Veterans Affairs Greater Los Angeles Healthcare System, 11301 Wilshire Blvd., Los Angeles, CA, 90073, USA.
| | - Eric J Lang
- Department of Neuroscience and Physiology, New York University, School of Medicine, New York, NY, USA
| |
Collapse
|
7
|
Cortical Control of Subthalamic Neuronal Activity through the Hyperdirect and Indirect Pathways in Monkeys. J Neurosci 2020; 40:7451-7463. [PMID: 32847963 DOI: 10.1523/jneurosci.0772-20.2020] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/22/2022] Open
Abstract
The subthalamic nucleus (STN) plays a key role in the control of voluntary movements and basal ganglia disorders, such as Parkinson's disease and hemiballismus. The STN receives glutamatergic inputs directly from the cerebral cortex via the cortico-STN hyperdirect pathway and GABAergic inputs from the external segment of the globus pallidus (GPe) via the cortico-striato-GPe-STN indirect pathway. The STN then drives the internal segment of the globus pallidus, which is the output nucleus of the basal ganglia. Thus, clarifying how STN neuronal activity is controlled by the two inputs is crucial. Cortical stimulation evokes early excitation and late excitation in STN neurons, intervened by a short gap. Here, to examine the origin of each component of this biphasic response, we recorded neuronal activity in the STN, combined with electrical stimulation of the motor cortices and local drug application in two male monkeys (Macaca fuscata) in the awake state. Local application of glutamate receptor antagonists, a mixture of an AMPA/kainate receptor antagonist and an NMDA receptor antagonist, into the vicinity of recorded STN neurons specifically diminished early excitation. Blockade of the striatum (putamen) or GPe with local injection of a GABAA receptor agonist, muscimol, diminished late excitation in the STN. Blockade of striato-GPe transmission with local injection of a GABAA receptor antagonist, gabazine, into the GPe also abolished late excitation. These results indicate that cortically evoked early and late excitation in the STN is mediated by the cortico-STN glutamatergic hyperdirect and the cortico-striato-GPe-STN indirect pathways, respectively.SIGNIFICANCE STATEMENT Here we show that the subthalamic nucleus (STN), an input station of the basal ganglia, receives cortical inputs through the cortico-STN hyperdirect and cortico-striato-external pallido-STN indirect pathways. This knowledge is important for understanding not only the normal functions of the STN, but also the pathophysiology of STN-related disorders and therapy targeting the STN. Lesions or application of high-frequency stimulation in the STN ameliorates parkinsonian symptoms. These procedures could affect all components in the STN, such as afferent inputs through the hyperdirect and indirect pathways, and STN neuronal activity. If we can understand which component is most affected by such procedures, we may be able to identify more effective manipulation targets or methods to treat Parkinson's disease.
Collapse
|
8
|
Tankus A, Mirelman A, Giladi N, Fried I, Hausdorff JM. Pace of movement: the role of single neurons in the subthalamic nucleus. J Neurosurg 2019; 130:1835-1840. [PMID: 29932375 DOI: 10.3171/2018.1.jns171859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 01/04/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The ability to modulate the pace of movement is a critical factor in the smooth operation of the motor system. The authors recently described distinct and overlapping representations of movement kinematics in the subthalamic nucleus (STN), but it is still unclear how movement pace is modulated according to the demands of the task at the neuronal level in this area. The goal of this study was to clarify how different movement paces are being controlled by neurons in the STN. METHODS The authors performed direct recording of the electrical activity of single neurons in the STN of neurosurgical patients with Parkinson's disease undergoing implantation of a deep brain stimulator under local anesthesia while the patients performed repetitive foot and hand movements intraoperatively at multiple paces. RESULTS A change was observed in the neuronal population controlling the movement for each pace. The mechanism for switching between these controlling populations differs for hand and foot movements. CONCLUSIONS These findings suggest that disparate schemes are utilized in the STN for neuronal recruitment for motor control of the upper and lower extremities. The results indicate a distributed model of motor control within the STN, where the active neuronal population changes when modifying the task condition and pace.
Collapse
Affiliation(s)
- Ariel Tankus
- 1Functional Neurosurgery Unit
- 2Center for Study of Movement, Cognition, and Mobility
- 3Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, and
- 4Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Anat Mirelman
- 2Center for Study of Movement, Cognition, and Mobility
- 3Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, and
- 4Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Nir Giladi
- 3Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, and
- 4Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- 5Department of Neurology, Tel Aviv Sourasky Medical Center
| | - Itzhak Fried
- 1Functional Neurosurgery Unit
- 3Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, and
- 6Department of Neurosurgery, University of California, Los Angeles, California
| | - Jeffrey M Hausdorff
- 2Center for Study of Movement, Cognition, and Mobility
- 4Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- 7Department of Physical Therapy, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; and
- 8Rush Alzheimer's Disease Center and
- 9Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
9
|
Real-Time Neurofeedback to Modulate β-Band Power in the Subthalamic Nucleus in Parkinson's Disease Patients. eNeuro 2018; 5:eN-MNT-0246-18. [PMID: 30627648 PMCID: PMC6325552 DOI: 10.1523/eneuro.0246-18.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/21/2018] [Accepted: 11/28/2018] [Indexed: 11/21/2022] Open
Abstract
The β-band oscillation in the subthalamic nucleus (STN) is a therapeutic target for Parkinson’s disease. Previous studies demonstrated that l-DOPA decreases the β-band (13–30 Hz) oscillations with improvement of motor symptoms. However, it has not been elucidated whether patients with Parkinson’s disease are able to control the β-band oscillation voluntarily. Here, we hypothesized that neurofeedback training to control the β-band power in the STN induces plastic changes in the STN of individuals with Parkinson’s disease. We recorded the signals from STN deep-brain stimulation electrodes during operations to replace implantable pulse generators in eight human patients (3 male) with bilateral electrodes. Four patients were induced to decrease the β-band power during the feedback training (down-training condition), whereas the other patients were induced to increase (up-training condition). All patients were blinded to their assigned condition. Adjacent contacts that showed the highest β-band power were selected for the feedback. During the 10 min training, patients were shown a circle whose diameter was controlled by the β-band power of the selected contacts. Powers in the β-band during 5 min resting sessions recorded before and after the feedback were compared. In the down-training condition, the β-band power of the selected contacts decreased significantly after feedback in all four patients (p < 0.05). In contrast, the β-band power significantly increased after feedback in two of four patients in the up-training condition. Overall, the patients could voluntarily control the β-band power in STN in the instructed direction (p < 0.05) through neurofeedback.
Collapse
|
10
|
James ND, McMahon SB, Field-Fote EC, Bradbury EJ. Neuromodulation in the restoration of function after spinal cord injury. Lancet Neurol 2018; 17:905-917. [PMID: 30264729 DOI: 10.1016/s1474-4422(18)30287-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 07/12/2018] [Accepted: 07/19/2018] [Indexed: 12/13/2022]
Abstract
Neuromodulation, the use of electrical interfaces to alter neuronal activity, has been successful as a treatment approach in several neurological disorders, including deep brain stimulation for Parkinson's disease and epidural spinal stimulation for chronic pain. Neuromodulation can also be beneficial for spinal cord injury, from assisting basic functions such as respiratory pacing and bladder control, through to restoring volitional movements and skilled hand function. Approaches range from electrical stimulation of peripheral muscles, either directly or via brain-controlled bypass devices, to stimulation of the spinal cord and brain. Limitations to widespread clinical application include durability of neuromodulation devices, affordability and accessibility of some approaches, and poor understanding of the underlying mechanisms. Efforts to overcome these challenges through advances in technology, together with pragmatic knowledge gained from clinical trials and basic research, could lead to personalised neuromodulatory interventions to meet the specific needs of individuals with spinal cord injury.
Collapse
Affiliation(s)
- Nicholas D James
- Regeneration Group, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, Guy's Campus, King's College London, London, UK; Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Stephen B McMahon
- Regeneration Group, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, Guy's Campus, King's College London, London, UK
| | - Edelle C Field-Fote
- Shepherd Center, Crawford Research Institute, Atlanta, GA, USA; Division of Physical Therapy, Emory University School of Medicine, Atlanta, GA, USA; Georgia Institute of Technology, School of Biological Sciences, Program in Applied Physiology, Atlanta, GA, USA
| | - Elizabeth J Bradbury
- Regeneration Group, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, Guy's Campus, King's College London, London, UK.
| |
Collapse
|
11
|
Spatio-temporal dynamics of cortical drive to human subthalamic nucleus neurons in Parkinson's disease. Neurobiol Dis 2018; 112:49-62. [PMID: 29307661 PMCID: PMC5821899 DOI: 10.1016/j.nbd.2018.01.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/30/2017] [Accepted: 01/03/2018] [Indexed: 11/24/2022] Open
Abstract
Pathological synchronisation of beta frequency (12–35 Hz) oscillations between the subthalamic nucleus (STN) and cerebral cortex is thought to contribute to motor impairment in Parkinson's disease (PD). For this cortico-subthalamic oscillatory drive to be mechanistically important, it must influence the firing of STN neurons and, consequently, their downstream targets. Here, we examined the dynamics of synchronisation between STN LFPs and units with multiple cortical areas, measured using frontal ECoG, midline EEG and lateral EEG, during rest and movement. STN neurons lagged cortical signals recorded over midline (over premotor cortices) and frontal (over prefrontal cortices) with stable time delays, consistent with strong corticosubthalamic drive, and many neurons maintained these dynamics during movement. In contrast, most STN neurons desynchronised from lateral EEG signals (over primary motor cortices) during movement and those that did not had altered phase relations to the cortical signals. The strength of synchronisation between STN units and midline EEG in the high beta range (25–35 Hz) correlated positively with the severity of akinetic-rigid motor symptoms across patients. Together, these results suggest that sustained synchronisation of STN neurons to premotor-cortical beta oscillations play an important role in disrupting the normal coding of movement in PD. Multi-channel EEG with coincident STN single unit and local field potential recordings Variable time delays between beta oscillations in different cortical areas and STN neurons. Frontal/premotor cortical areas have most stable oscillatory synchronisation with STN neurons. Correlation between cortico-subthalamic beta-frequency synchronisation and clinical scores in PD.
Collapse
|
12
|
Pearson JM, Hickey PT, Lad SP, Platt ML, Turner DA. Local Fields in Human Subthalamic Nucleus Track the Lead-up to Impulsive Choices. Front Neurosci 2017; 11:646. [PMID: 29217994 PMCID: PMC5703842 DOI: 10.3389/fnins.2017.00646] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/07/2017] [Indexed: 11/30/2022] Open
Abstract
The ability to adaptively minimize not only motor but cognitive symptoms of neurological diseases, such as Parkinson's Disease (PD) and obsessive-compulsive disorder (OCD), is a primary goal of next-generation deep brain stimulation (DBS) devices. On the basis of studies demonstrating a link between beta-band synchronization and severity of motor symptoms in PD, the minimization of beta band activity has been proposed as a potential training target for closed-loop DBS. At present, no comparable signal is known for the impulsive side effects of PD, though multiple studies have implicated theta band activity within the subthalamic nucleus (STN), the site of DBS treatment, in processes of conflict monitoring and countermanding. Here, we address this challenge by recording from multiple independent channels within the STN in a self-paced decision task to test whether these signals carry information sufficient to predict stopping behavior on a trial-by-trial basis. As in previous studies, we found that local field potentials (LFPs) exhibited modulations preceding self-initiated movements, with power ramping across multiple frequencies during the deliberation period. In addition, signals showed phasic changes in power around the time of decision. However, a prospective model that attempted to use these signals to predict decision times showed effects of risk level did not improve with the addition of LFPs as regressors. These findings suggest information tracking the lead-up to impulsive choices is distributed across multiple frequency scales in STN, though current techniques may not possess sufficient signal-to-noise ratios to predict-and thus curb-impulsive behavior on a moment-to-moment basis.
Collapse
Affiliation(s)
- John M. Pearson
- Center for Cognitive Neuroscience and Duke Institute for Brain Sciences, Duke University, Durham, NC, United States
| | - Patrick T. Hickey
- Department of Neurology, School of Medicine, Duke University, Durham, NC, United States
| | - Shivanand P. Lad
- Department of Neurosurgery, School of Medicine, Duke University, Durham, NC, United States
| | - Michael L. Platt
- Center for Cognitive Neuroscience and Duke Institute for Brain Sciences, Duke University, Durham, NC, United States
- Department of Neurobiology, School of Medicine, Duke University, Durham, NC, United States
| | - Dennis A. Turner
- Department of Neurosurgery, School of Medicine, Duke University, Durham, NC, United States
- Department of Neurobiology, School of Medicine, Duke University, Durham, NC, United States
| |
Collapse
|
13
|
Swan BD, Gasperson LB, Krucoff MO, Grill WM, Turner DA. Sensory percepts induced by microwire array and DBS microstimulation in human sensory thalamus. Brain Stimul 2017; 11:416-422. [PMID: 29126946 DOI: 10.1016/j.brs.2017.10.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Microstimulation in human sensory thalamus (ventrocaudal, VC) results in focal sensory percepts in the hand and arm which may provide an alternative target site (to somatosensory cortex) for the input of prosthetic sensory information. Sensory feedback to facilitate motor function may require simultaneous or timed responses across separate digits to recreate perceptions of slip as well as encoding of intensity variations in pressure or touch. OBJECTIVES To determine the feasibility of evoking sensory percepts on separate digits with variable intensity through either a microwire array or deep brain stimulation (DBS) electrode, recreating "natural" and scalable percepts relating to the arm and hand. METHODS We compared microstimulation within ventrocaudal sensory thalamus through either a 16-channel microwire array (∼400 kΩ per channel) or a 4-channel DBS electrode (∼1.2 kΩ per contact) for percept location, size, intensity, and quality sensation, during thalamic DBS electrode placement in patients with essential tremor. RESULTS Percepts in small hand or finger regions were evoked by microstimulation through individual microwires and in 5/6 patients sensation on different digits could be perceived from stimulation through separate microwires. Microstimulation through DBS electrode contacts evoked sensations over larger areas in 5/5 patients, and the apparent intensity of the perceived response could be modulated with stimulation amplitude. The perceived naturalness of the sensation depended both on the pattern of stimulation as well as intensity of the stimulation. CONCLUSIONS Producing consistent evoked perceptions across separate digits within sensory thalamus is a feasible concept and a compact alternative to somatosensory cortex microstimulation for prosthetic sensory feedback. This approach will require a multi-element low impedance electrode with a sufficient stimulation range to evoke variable intensities of perception and a predictable spread of contacts to engage separate digits.
Collapse
Affiliation(s)
- Brandon D Swan
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, United States
| | - Lynne B Gasperson
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, United States
| | - Max O Krucoff
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, United States
| | - Warren M Grill
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, United States; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, United States; Department of Biomedical Engineering, Duke University, Durham, NC 27710, United States
| | - Dennis A Turner
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, United States; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, United States; Department of Biomedical Engineering, Duke University, Durham, NC 27710, United States.
| |
Collapse
|
14
|
Hoang KB, Cassar IR, Grill WM, Turner DA. Biomarkers and Stimulation Algorithms for Adaptive Brain Stimulation. Front Neurosci 2017; 11:564. [PMID: 29066947 PMCID: PMC5641319 DOI: 10.3389/fnins.2017.00564] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 09/25/2017] [Indexed: 11/29/2022] Open
Abstract
The goal of this review is to describe in what ways feedback or adaptive stimulation may be delivered and adjusted based on relevant biomarkers. Specific treatment mechanisms underlying therapeutic brain stimulation remain unclear, in spite of the demonstrated efficacy in a number of nervous system diseases. Brain stimulation appears to exert widespread influence over specific neural networks that are relevant to specific disease entities. In awake patients, activation or suppression of these neural networks can be assessed by either symptom alleviation (i.e., tremor, rigidity, seizures) or physiological criteria, which may be predictive of expected symptomatic treatment. Secondary verification of network activation through specific biomarkers that are linked to symptomatic disease improvement may be useful for several reasons. For example, these biomarkers could aid optimal intraoperative localization, possibly improve efficacy or efficiency (i.e., reduced power needs), and provide long-term adaptive automatic adjustment of stimulation parameters. Possible biomarkers for use in portable or implanted devices span from ongoing physiological brain activity, evoked local field potentials (LFPs), and intermittent pathological activity, to wearable devices, biochemical, blood flow, optical, or magnetic resonance imaging (MRI) changes, temperature changes, or optogenetic signals. First, however, potential biomarkers must be correlated directly with symptom or disease treatment and network activation. Although numerous biomarkers are under consideration for a variety of stimulation indications the feasibility of these approaches has yet to be fully determined. Particularly, there are critical questions whether the use of adaptive systems can improve efficacy over continuous stimulation, facilitate adjustment of stimulation interventions and improve our understanding of the role of abnormal network function in disease mechanisms.
Collapse
Affiliation(s)
- Kimberly B. Hoang
- Department of Neurosurgery, Duke University, Durham, NC, United States
| | - Isaac R. Cassar
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Warren M. Grill
- Department of Neurosurgery, Duke University, Durham, NC, United States
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
- Department of Neurobiology, Duke University Medical Center, Duke University, Durham, NC, United States
| | - Dennis A. Turner
- Department of Neurosurgery, Duke University, Durham, NC, United States
- Department of Neurobiology, Duke University Medical Center, Duke University, Durham, NC, United States
| |
Collapse
|
15
|
Pötter-Nerger M, Reese R, Steigerwald F, Heiden JA, Herzog J, Moll CKE, Hamel W, Ramirez-Pasos U, Falk D, Mehdorn M, Gerloff C, Deuschl G, Volkmann J. Movement-Related Activity of Human Subthalamic Neurons during a Reach-to-Grasp Task. Front Hum Neurosci 2017; 11:436. [PMID: 28936169 PMCID: PMC5594073 DOI: 10.3389/fnhum.2017.00436] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 08/15/2017] [Indexed: 12/31/2022] Open
Abstract
The aim of the study was to record movement-related single unit activity (SUA) in the human subthalamic nucleus (STN) during a standardized motor task of the upper limb. We performed microrecordings from the motor region of the human STN and registered kinematic data in 12 patients with Parkinson’s disease (PD) undergoing deep brain stimulation surgery (seven women, mean age 62.0 ± 4.7 years) while they intraoperatively performed visually cued reach-to-grasp movements using a grip device. SUA was analyzed offline in relation to different aspects of the movement (attention, start of the movement, movement velocity, button press) in terms of firing frequency, firing pattern, and oscillation. During the reach-to-grasp movement, 75/114 isolated subthalamic neurons exhibited movement-related activity changes. The largest proportion of single units showed modulation of firing frequency during several phases of the reach and grasp (polymodal neurons, 45/114), particularly an increase of firing rate during the reaching phase of the movement, which often correlated with movement velocity. The firing pattern (bursting, irregular, or tonic) remained unchanged during movement compared to rest. Oscillatory single unit firing activity (predominantly in the theta and beta frequency) decreased with movement onset, irrespective of oscillation frequency. This study shows for the first time specific, task-related, SUA changes during the reach-to-grasp movement in humans.
Collapse
Affiliation(s)
- Monika Pötter-Nerger
- Department of Neurology, Christian-Albrechts-UniversityKiel, Germany.,Department of Neurology, University Hamburg-EppendorfHamburg, Germany
| | - Rene Reese
- Department of Neurology, Christian-Albrechts-UniversityKiel, Germany.,Department of Neurology, University RostockRostock, Germany
| | - Frank Steigerwald
- Department of Neurology, Christian-Albrechts-UniversityKiel, Germany.,Department of Neurology, Julius-Maximilian UniversityWürzburg, Germany
| | - Jan Arne Heiden
- Department of Neurology, Christian-Albrechts-UniversityKiel, Germany
| | - Jan Herzog
- Department of Neurology, Christian-Albrechts-UniversityKiel, Germany
| | - Christian K E Moll
- Department of Neurophysiology, University Hamburg-EppendorfHamburg, Germany
| | - Wolfgang Hamel
- Department of Neurosurgery, University Hamburg-EppendorfHamburg, Germany
| | - Uri Ramirez-Pasos
- Department of Neurology, Julius-Maximilian UniversityWürzburg, Germany
| | - Daniela Falk
- Department of Neurosurgery, Christian-Albrechts-UniversityKiel, Germany
| | | | - Christian Gerloff
- Department of Neurology, University Hamburg-EppendorfHamburg, Germany
| | - Günther Deuschl
- Department of Neurology, Christian-Albrechts-UniversityKiel, Germany
| | - Jens Volkmann
- Department of Neurology, Christian-Albrechts-UniversityKiel, Germany.,Department of Neurology, Julius-Maximilian UniversityWürzburg, Germany
| |
Collapse
|
16
|
Fiechter M, Nowacki A, Oertel MF, Fichtner J, Debove I, Lachenmayer ML, Wiest R, Bassetti CL, Raabe A, Kaelin-Lang A, Schüpbach MW, Pollo C. Deep Brain Stimulation for Tremor: Is There a Common Structure? Stereotact Funct Neurosurg 2017; 95:243-250. [DOI: 10.1159/000478270] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 06/08/2017] [Indexed: 12/19/2022]
|
17
|
Lebedev MA, Nicolelis MAL. Brain-Machine Interfaces: From Basic Science to Neuroprostheses and Neurorehabilitation. Physiol Rev 2017; 97:767-837. [PMID: 28275048 DOI: 10.1152/physrev.00027.2016] [Citation(s) in RCA: 269] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Brain-machine interfaces (BMIs) combine methods, approaches, and concepts derived from neurophysiology, computer science, and engineering in an effort to establish real-time bidirectional links between living brains and artificial actuators. Although theoretical propositions and some proof of concept experiments on directly linking the brains with machines date back to the early 1960s, BMI research only took off in earnest at the end of the 1990s, when this approach became intimately linked to new neurophysiological methods for sampling large-scale brain activity. The classic goals of BMIs are 1) to unveil and utilize principles of operation and plastic properties of the distributed and dynamic circuits of the brain and 2) to create new therapies to restore mobility and sensations to severely disabled patients. Over the past decade, a wide range of BMI applications have emerged, which considerably expanded these original goals. BMI studies have shown neural control over the movements of robotic and virtual actuators that enact both upper and lower limb functions. Furthermore, BMIs have also incorporated ways to deliver sensory feedback, generated from external actuators, back to the brain. BMI research has been at the forefront of many neurophysiological discoveries, including the demonstration that, through continuous use, artificial tools can be assimilated by the primate brain's body schema. Work on BMIs has also led to the introduction of novel neurorehabilitation strategies. As a result of these efforts, long-term continuous BMI use has been recently implicated with the induction of partial neurological recovery in spinal cord injury patients.
Collapse
|
18
|
Tankus A, Strauss I, Gurevich T, Mirelman A, Giladi N, Fried I, Hausdorff JM. Subthalamic Neurons Encode Both Single- and Multi-Limb Movements in Parkinson's Disease Patients. Sci Rep 2017; 7:42467. [PMID: 28211850 PMCID: PMC5304178 DOI: 10.1038/srep42467] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 01/11/2017] [Indexed: 11/30/2022] Open
Abstract
The subthalamic nucleus (STN) is the main target for neurosurgical treatment of motor signs of Parkinson’s disease (PD). Despite the therapeutic effect on both upper and lower extremities, its role in motor control and coordination and its changes in Parkinson’s disease are not fully clear. We intraoperatively recorded single unit activity in ten patients with PD who performed repetitive feet or hand movements while undergoing implantation of a deep brain stimulator. We found both distinct and overlapping representations of upper and lower extremity movement kinematics in subthalamic units and observed evidence for re-routing to a multi-limb representation that participates in limb coordination. The well-known subthalamic somatotopy showed a large overlap of feet and hand representations in the PD patients. This overlap and excessive amounts of kinematics or coordination units may reflect pathophysiology or compensatory mechanisms. Our findings thus explain, at the single neuron level, the important subthalamic role in motor control and coordination and indicate the effect of PD on the neuronal representation of movement.
Collapse
Affiliation(s)
- Ariel Tankus
- Center for study of Movement, Cognition and Mobility, Department of Neurology, Tel Aviv Sourasky Medical Center, Tel-Aviv 6423906, Israel.,Functional Neurosurgery Unit, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel.,Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ido Strauss
- Functional Neurosurgery Unit, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Tanya Gurevich
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel.,Department of Neurology, Tel Aviv Sourasky Medical Center, Tel-Aviv 6423906, Israel
| | - Anat Mirelman
- Center for study of Movement, Cognition and Mobility, Department of Neurology, Tel Aviv Sourasky Medical Center, Tel-Aviv 6423906, Israel.,Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Nir Giladi
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel.,Department of Neurology, Tel Aviv Sourasky Medical Center, Tel-Aviv 6423906, Israel.,Sieratzki Chair in Neurology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Itzhak Fried
- Functional Neurosurgery Unit, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel.,Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.,Department of Neurosurgery, University of California, Los Angeles, CA 90095, USA
| | - Jeffrey M Hausdorff
- Center for study of Movement, Cognition and Mobility, Department of Neurology, Tel Aviv Sourasky Medical Center, Tel-Aviv 6423906, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel.,Department of Physical Therapy, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
19
|
Krucoff MO, Rahimpour S, Slutzky MW, Edgerton VR, Turner DA. Enhancing Nervous System Recovery through Neurobiologics, Neural Interface Training, and Neurorehabilitation. Front Neurosci 2016; 10:584. [PMID: 28082858 PMCID: PMC5186786 DOI: 10.3389/fnins.2016.00584] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 12/06/2016] [Indexed: 12/21/2022] Open
Abstract
After an initial period of recovery, human neurological injury has long been thought to be static. In order to improve quality of life for those suffering from stroke, spinal cord injury, or traumatic brain injury, researchers have been working to restore the nervous system and reduce neurological deficits through a number of mechanisms. For example, neurobiologists have been identifying and manipulating components of the intra- and extracellular milieu to alter the regenerative potential of neurons, neuro-engineers have been producing brain-machine and neural interfaces that circumvent lesions to restore functionality, and neurorehabilitation experts have been developing new ways to revitalize the nervous system even in chronic disease. While each of these areas holds promise, their individual paths to clinical relevance remain difficult. Nonetheless, these methods are now able to synergistically enhance recovery of native motor function to levels which were previously believed to be impossible. Furthermore, such recovery can even persist after training, and for the first time there is evidence of functional axonal regrowth and rewiring in the central nervous system of animal models. To attain this type of regeneration, rehabilitation paradigms that pair cortically-based intent with activation of affected circuits and positive neurofeedback appear to be required-a phenomenon which raises new and far reaching questions about the underlying relationship between conscious action and neural repair. For this reason, we argue that multi-modal therapy will be necessary to facilitate a truly robust recovery, and that the success of investigational microscopic techniques may depend on their integration into macroscopic frameworks that include task-based neurorehabilitation. We further identify critical components of future neural repair strategies and explore the most updated knowledge, progress, and challenges in the fields of cellular neuronal repair, neural interfacing, and neurorehabilitation, all with the goal of better understanding neurological injury and how to improve recovery.
Collapse
Affiliation(s)
- Max O Krucoff
- Department of Neurosurgery, Duke University Medical Center Durham, NC, USA
| | - Shervin Rahimpour
- Department of Neurosurgery, Duke University Medical Center Durham, NC, USA
| | - Marc W Slutzky
- Department of Physiology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA; Department of Neurology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
| | - V Reggie Edgerton
- Department of Integrative Biology and Physiology, University of California, Los Angeles Los Angeles, CA, USA
| | - Dennis A Turner
- Department of Neurosurgery, Duke University Medical CenterDurham, NC, USA; Department of Neurobiology, Duke University Medical CenterDurham, NC, USA; Research and Surgery Services, Durham Veterans Affairs Medical CenterDurham, NC, USA
| |
Collapse
|
20
|
Abstract
Like cardiovascular disease and cancer, neurological disorders present an increasing challenge for an ageing population. Whereas nonpharmacological procedures are routine for eliminating cancer tissue or opening a blocked artery, the focus in neurological disease remains on pharmacological interventions. Setbacks in clinical trials and the obstacle of access to the brain for drug delivery and surgery have highlighted the potential for therapeutic use of ultrasound in neurological diseases, and the technology has proved useful for inducing focused lesions, clearing protein aggregates, facilitating drug uptake, and modulating neuronal function. In this Review, we discuss milestones in the development of therapeutic ultrasound, from the first steps in the 1950s to recent improvements in technology. We provide an overview of the principles of diagnostic and therapeutic ultrasound, for surgery and transient opening of the blood-brain barrier, and its application in clinical trials of stroke, Parkinson disease and chronic pain. We discuss the promising outcomes of safety and feasibility studies in preclinical models, including rodents, pigs and macaques, and efficacy studies in models of Alzheimer disease. We also consider the challenges faced on the road to clinical translation.
Collapse
|
21
|
Subthalamic local field potentials in Parkinson's disease and isolated dystonia: An evaluation of potential biomarkers. Neurobiol Dis 2016; 89:213-22. [PMID: 26884091 DOI: 10.1016/j.nbd.2016.02.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/07/2016] [Accepted: 02/10/2016] [Indexed: 12/18/2022] Open
Abstract
Local field potentials (LFP) recorded from the subthalamic nucleus in patients with Parkinson's disease (PD) demonstrate prominent oscillations in the beta (13-30 Hz) frequency range, and reduction of beta band spectral power by levodopa and deep brain stimulation (DBS) is correlated with motor symptom improvement. Several features of beta activity have been theorized to be specific biomarkers of the parkinsonian state, though these have rarely been studied in non-parkinsonian conditions. To compare resting state LFP features in PD and isolated dystonia and evaluate disease-specific biomarkers, we recorded subthalamic LFPs from 28 akinetic-rigid PD and 12 isolated dystonia patients during awake DBS implantation. Spectral power and phase-amplitude coupling characteristics were analyzed. In 26/28 PD and 11/12 isolated dystonia patients, the LFP power spectrum had a peak in the beta frequency range, with similar amplitudes between groups. Resting state power did not differ between groups in the theta (5-8 Hz), alpha (8-12 Hz), beta (13-30 Hz), broadband gamma (50-200 Hz), or high frequency oscillation (HFO, 250-350 Hz) bands. Analysis of phase-amplitude coupling between low frequency phase and HFO amplitude revealed significant interactions in 19/28 PD and 6/12 dystonia recordings without significant differences in maximal coupling or preferred phase. Two features of subthalamic LFPs that have been proposed as specific parkinsonian biomarkers, beta power and coupling of beta phase to HFO amplitude, were also present in isolated dystonia, including focal dystonias. This casts doubt on the utility of these metrics as disease-specific diagnostic biomarkers.
Collapse
|
22
|
Lau B, Welter ML, Belaid H, Fernandez Vidal S, Bardinet E, Grabli D, Karachi C. The integrative role of the pedunculopontine nucleus in human gait. Brain 2015; 138:1284-96. [PMID: 25765327 DOI: 10.1093/brain/awv047] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 01/06/2015] [Indexed: 01/20/2023] Open
Abstract
The brainstem pedunculopontine nucleus has a likely, although unclear, role in gait control, and is a potential deep brain stimulation target for treating resistant gait disorders. These disorders are a major therapeutic challenge for the ageing population, especially in Parkinson's disease where gait and balance disorders can become resistant to both dopaminergic medication and subthalamic nucleus stimulation. Here, we present electrophysiological evidence that the pedunculopontine and subthalamic nuclei are involved in distinct aspects of gait using a locomotor imagery task in 14 patients with Parkinson's disease undergoing surgery for the implantation of pedunculopontine or subthalamic nuclei deep brain stimulation electrodes. We performed electrophysiological recordings in two phases, once during surgery, and again several days after surgery in a subset of patients. The majority of pedunculopontine nucleus neurons (57%) recorded intrasurgically exhibited changes in activity related to different task components, with 29% modulated during visual stimulation, 41% modulated during voluntary hand movement, and 49% modulated during imaginary gait. Pedunculopontine nucleus local field potentials recorded post-surgically were modulated in the beta and gamma bands during visual and motor events, and we observed alpha and beta band synchronization that was sustained for the duration of imaginary gait and spatially localized within the pedunculopontine nucleus. In contrast, significantly fewer subthalamic nucleus neurons (27%) recorded intrasurgically were modulated during the locomotor imagery, with most increasing or decreasing activity phasically during the hand movement that initiated or terminated imaginary gait. Our data support the hypothesis that the pedunculopontine nucleus influences gait control in manners extending beyond simply driving pattern generation. In contrast, the subthalamic nucleus seems to control movement execution that is not likely to be gait-specific. These data highlight the crucial role of these two nuclei in motor control and shed light on the complex functions of the lateral mesencephalus in humans.
Collapse
Affiliation(s)
- Brian Lau
- 1 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, F-75013, Paris, France
| | - Marie-Laure Welter
- 1 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, F-75013, Paris, France 2 Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, 47 boulevard de l'Hôpital, 75013 Paris, France
| | - Hayat Belaid
- 2 Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, 47 boulevard de l'Hôpital, 75013 Paris, France
| | - Sara Fernandez Vidal
- 1 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, F-75013, Paris, France 3 Centre de Neuroimagerie de Recherche, Institut du Cerveau et de la Moelle épinière, F-75013, Paris, France
| | - Eric Bardinet
- 1 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, F-75013, Paris, France 3 Centre de Neuroimagerie de Recherche, Institut du Cerveau et de la Moelle épinière, F-75013, Paris, France
| | - David Grabli
- 1 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, F-75013, Paris, France 2 Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, 47 boulevard de l'Hôpital, 75013 Paris, France
| | - Carine Karachi
- 1 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, F-75013, Paris, France 2 Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, 47 boulevard de l'Hôpital, 75013 Paris, France
| |
Collapse
|
23
|
Schwarz DA, Lebedev MA, Hanson TL, Dimitrov DF, Lehew G, Meloy J, Rajangam S, Subramanian V, Ifft PJ, Li Z, Ramakrishnan A, Tate A, Zhuang KZ, Nicolelis MAL. Chronic, wireless recordings of large-scale brain activity in freely moving rhesus monkeys. Nat Methods 2014; 11:670-6. [PMID: 24776634 PMCID: PMC4161037 DOI: 10.1038/nmeth.2936] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 03/12/2014] [Indexed: 11/23/2022]
Abstract
Advances in techniques for recording large-scale brain activity contribute to both the elucidation of neurophysiological principles and the development of brain-machine interfaces (BMIs). Here we describe a neurophysiological paradigm for performing tethered and wireless large-scale recordings based on movable volumetric three-dimensional (3D) multielectrode implants. This approach allowed us to isolate up to 1,800 units per animal and simultaneously record the extracellular activity of close to 500 cortical neurons, distributed across multiple cortical areas, in freely behaving rhesus monkeys. The method is expandable, in principle, to thousands of simultaneously recorded channels. It also allows increased recording longevity (5 consecutive years), and recording of a broad range of behaviors, e.g. social interactions, and BMI paradigms in freely moving primates. We propose that wireless large-scale recordings could have a profound impact on basic primate neurophysiology research, while providing a framework for the development and testing of clinically relevant neuroprostheses.
Collapse
Affiliation(s)
- David A Schwarz
- 1] Department of Neurobiology, Duke University, Durham, North Carolina, USA. [2] Center for Neuroengineering, Duke University, Durham, North Carolina, USA
| | - Mikhail A Lebedev
- 1] Department of Neurobiology, Duke University, Durham, North Carolina, USA. [2] Center for Neuroengineering, Duke University, Durham, North Carolina, USA
| | - Timothy L Hanson
- 1] Department of Neurobiology, Duke University, Durham, North Carolina, USA. [2] Center for Neuroengineering, Duke University, Durham, North Carolina, USA
| | | | - Gary Lehew
- 1] Department of Neurobiology, Duke University, Durham, North Carolina, USA. [2] Center for Neuroengineering, Duke University, Durham, North Carolina, USA
| | - Jim Meloy
- 1] Department of Neurobiology, Duke University, Durham, North Carolina, USA. [2] Center for Neuroengineering, Duke University, Durham, North Carolina, USA
| | - Sankaranarayani Rajangam
- 1] Department of Neurobiology, Duke University, Durham, North Carolina, USA. [2] Center for Neuroengineering, Duke University, Durham, North Carolina, USA
| | - Vivek Subramanian
- 1] Center for Neuroengineering, Duke University, Durham, North Carolina, USA. [2] Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Peter J Ifft
- 1] Center for Neuroengineering, Duke University, Durham, North Carolina, USA. [2] Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Zheng Li
- 1] Department of Neurobiology, Duke University, Durham, North Carolina, USA. [2] Center for Neuroengineering, Duke University, Durham, North Carolina, USA
| | - Arjun Ramakrishnan
- 1] Department of Neurobiology, Duke University, Durham, North Carolina, USA. [2] Center for Neuroengineering, Duke University, Durham, North Carolina, USA
| | - Andrew Tate
- 1] Department of Neurobiology, Duke University, Durham, North Carolina, USA. [2] Center for Neuroengineering, Duke University, Durham, North Carolina, USA
| | - Katie Z Zhuang
- 1] Center for Neuroengineering, Duke University, Durham, North Carolina, USA. [2] Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Miguel A L Nicolelis
- 1] Department of Neurobiology, Duke University, Durham, North Carolina, USA. [2] Center for Neuroengineering, Duke University, Durham, North Carolina, USA. [3] Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA. [4] Department of Psychology and Neuroscience, Duke University, Durham, North Carolina, USA. [5] Edmond and Lily Safra International Institute of Neuroscience of Natal, Natal, Brazil
| |
Collapse
|
24
|
Carron R, Chaillet A, Filipchuk A, Pasillas-Lépine W, Hammond C. Closing the loop of deep brain stimulation. Front Syst Neurosci 2013; 7:112. [PMID: 24391555 PMCID: PMC3868949 DOI: 10.3389/fnsys.2013.00112] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 11/28/2013] [Indexed: 01/20/2023] Open
Abstract
High-frequency deep brain stimulation is used to treat a wide range of brain disorders, like Parkinson's disease. The stimulated networks usually share common electrophysiological signatures, including hyperactivity and/or dysrhythmia. From a clinical perspective, HFS is expected to alleviate clinical signs without generating adverse effects. Here, we consider whether the classical open-loop HFS fulfills these criteria and outline current experimental or theoretical research on the different types of closed-loop DBS that could provide better clinical outcomes. In the first part of the review, the two routes followed by HFS-evoked axonal spikes are explored. In one direction, orthodromic spikes functionally de-afferent the stimulated nucleus from its downstream target networks. In the opposite direction, antidromic spikes prevent this nucleus from being influenced by its afferent networks. As a result, the pathological synchronized activity no longer propagates from the cortical networks to the stimulated nucleus. The overall result can be described as a reversible functional de-afferentation of the stimulated nucleus from its upstream and downstream nuclei. In the second part of the review, the latest advances in closed-loop DBS are considered. Some of the proposed approaches are based on mathematical models, which emphasize different aspects of the parkinsonian basal ganglia: excessive synchronization, abnormal firing-rate rhythms, and a deficient thalamo-cortical relay. The stimulation strategies are classified depending on the control-theory techniques on which they are based: adaptive and on-demand stimulation schemes, delayed and multi-site approaches, stimulations based on proportional and/or derivative control actions, optimal control strategies. Some of these strategies have been validated experimentally, but there is still a large reservoir of theoretical work that may point to ways of improving practical treatment.
Collapse
Affiliation(s)
- Romain Carron
- Aix Marseille Université UMR 901 Marseille, France ; Institut national de la Recherche Médicale et de la Santé Inserm, INMED UMR 901 Marseille, France ; APHM, Hopital de la Timone, Service de Neurochirurgie Fonctionnelle et Stereotaxique Marseille, France
| | - Antoine Chaillet
- Laboratoire des Signaux et Systèmes(L2S), CNRS UMR 8506 Gif-sur-Yvette, France ; Université Paris Sud 11, UMR 8506, Supélec Gif-sur-Yvette, France
| | - Anton Filipchuk
- Aix Marseille Université UMR 901 Marseille, France ; Institut national de la Recherche Médicale et de la Santé Inserm, INMED UMR 901 Marseille, France
| | - William Pasillas-Lépine
- Laboratoire des Signaux et Systèmes(L2S), CNRS UMR 8506 Gif-sur-Yvette, France ; Centre national de la recherche scientifique Paris, France
| | - Constance Hammond
- Aix Marseille Université UMR 901 Marseille, France ; Institut national de la Recherche Médicale et de la Santé Inserm, INMED UMR 901 Marseille, France
| |
Collapse
|
25
|
Moshel S, Shamir RR, Raz A, de Noriega FR, Eitan R, Bergman H, Israel Z. Subthalamic nucleus long-range synchronization-an independent hallmark of human Parkinson's disease. Front Syst Neurosci 2013; 7:79. [PMID: 24312018 PMCID: PMC3832794 DOI: 10.3389/fnsys.2013.00079] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 10/18/2013] [Indexed: 12/04/2022] Open
Abstract
Beta-band synchronous oscillations in the dorsolateral region of the subthalamic nucleus (STN) of human patients with Parkinson's disease (PD) have been frequently reported. However, the correlation between STN oscillations and synchronization has not been thoroughly explored. The simultaneous recordings of 2390 multi-unit pairs recorded by two parallel microelectrodes (separated by fixed distance of 2 mm, n = 72 trajectories with two electrode tracks >4 mm STN span) in 57 PD patients undergoing STN deep brain stimulation surgery were analyzed. Automatic procedures were utilized to divide the STN into dorsolateral oscillatory and ventromedial non-oscillatory regions, and to quantify the intensity of STN oscillations and synchronicity. Finally, the synchronicity of simultaneously vs. non-simultaneously recorded pairs were compared using a shuffling procedure. Synchronization was observed predominately in the beta range and only between multi-unit pairs in the dorsolateral oscillatory region (n = 615). In paired recordings between sites in the dorsolateral and ventromedial (n = 548) and ventromedial-ventromedial region pairs (n = 1227), no synchronization was observed. Oscillation and synchronicity intensity decline along the STN dorsolateral-ventromedial axis suggesting a fuzzy border between the STN regions. Synchronization strength was significantly correlated to the oscillation power, but synchronization was no longer observed following shuffling. We conclude that STN long-range beta oscillatory synchronization is due to increased neuronal coupling in the Parkinsonian brain and does not merely reflect the outcome of oscillations at similar frequency. The neural synchronization in the dorsolateral (probably the motor domain) STN probably augments the pathological changes in firing rate and patterns of subthalamic neurons in PD patients.
Collapse
Affiliation(s)
- Shay Moshel
- Department of Medical Neurobiology, IMRIC, The Hebrew University-Hadassah Medical School Jerusalem, Israel ; The Interdisciplinary Center for Neural Computation, The Hebrew University Jerusalem, Israel ; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University Jerusalem, Israel ; The Research Laboratory of Brain Imaging and Stimulation, The Jerusalem Mental Health Center, Kfar-Shaul Etanim, Hebrew University-Hadassah Medical School Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
26
|
Bosch-Bouju C, Hyland BI, Parr-Brownlie LC. Motor thalamus integration of cortical, cerebellar and basal ganglia information: implications for normal and parkinsonian conditions. Front Comput Neurosci 2013; 7:163. [PMID: 24273509 PMCID: PMC3822295 DOI: 10.3389/fncom.2013.00163] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/24/2013] [Indexed: 12/23/2022] Open
Abstract
Motor thalamus (Mthal) is implicated in the control of movement because it is strategically located between motor areas of the cerebral cortex and motor-related subcortical structures, such as the cerebellum and basal ganglia (BG). The role of BG and cerebellum in motor control has been extensively studied but how Mthal processes inputs from these two networks is unclear. Specifically, there is considerable debate about the role of BG inputs on Mthal activity. This review summarizes anatomical and physiological knowledge of the Mthal and its afferents and reviews current theories of Mthal function by discussing the impact of cortical, BG and cerebellar inputs on Mthal activity. One view is that Mthal activity in BG and cerebellar-receiving territories is primarily "driven" by glutamatergic inputs from the cortex or cerebellum, respectively, whereas BG inputs are modulatory and do not strongly determine Mthal activity. This theory is steeped in the assumption that the Mthal processes information in the same way as sensory thalamus, through interactions of modulatory inputs with a single driver input. Another view, from BG models, is that BG exert primary control on the BG-receiving Mthal so it effectively relays information from BG to cortex. We propose a new "super-integrator" theory where each Mthal territory processes multiple driver or driver-like inputs (cortex and BG, cortex and cerebellum), which are the result of considerable integrative processing. Thus, BG and cerebellar Mthal territories assimilate motivational and proprioceptive motor information previously integrated in cortico-BG and cortico-cerebellar networks, respectively, to develop sophisticated motor signals that are transmitted in parallel pathways to cortical areas for optimal generation of motor programmes. Finally, we briefly review the pathophysiological changes that occur in the BG in parkinsonism and generate testable hypotheses about how these may affect processing of inputs in the Mthal.
Collapse
Affiliation(s)
- Clémentine Bosch-Bouju
- 1Department of Anatomy, Otago School of Medical Science, University of Otago Dunedin, New Zealand ; 2Brain Health Research Centre, Otago School of Medical Science, University of Otago Dunedin, New Zealand
| | | | | |
Collapse
|
27
|
Swan BD, Grill WM, Turner DA. Investigation of deep brain stimulation mechanisms during implantable pulse generator replacement surgery. Neuromodulation 2013; 17:419-24; discussion 424. [PMID: 24118257 DOI: 10.1111/ner.12123] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/11/2013] [Accepted: 08/27/2013] [Indexed: 01/11/2023]
Abstract
BACKGROUND Direct testing of deep brain stimulation (DBS) mechanisms in humans is needed to assess therapy and to understand stimulation effects. OBJECTIVE We developed an innovative paradigm for investigation of DBS on human movement disorders. Temporary connection to the DBS electrode during implantable pulse generator (IPG) replacement permitted analysis of novel patterns of stimulation on motor symptoms, which could enhance efficacy and improve battery life. MATERIALS AND METHODS Patients enrolled in this prospective, Institutional Review Board-approved study underwent IPG replacement using local (monitored) anesthesia. Following device explant, the DBS electrode was connected to an external, isolated electrical stimulator using a sterile adapter cable. Different temporal patterns of stimulation were delivered while quantifying upper-extremity tremor (tri-axial accelerometry) or bradykinesia (finger-tapping). Upon experiment completion, the new IPG was implanted. RESULTS Among 159 IPG replacements from 2005 to 2011, 56 patients agreed to the research study (16 essential tremor [ET], 31 Parkinson's disease [PD], 5 mixed ET/PD tremor, 3 multiple sclerosis, 1 tremor/myoclonus). Surgical procedures were extended by 42 ± 8.2 min in 37 patients completing the study. Motor symptoms varied with stimulation pattern, with some patterns showing improved tremor or bradykinesia control. No postoperative infections or complications were observed in the 159 patients. CONCLUSION IPG replacement occurs when the DBS/brain interface is stable and patients demonstrate symptom reduction with known stimulation parameters. Conducting research at this time point avoids DBS implant issues, including temporary microlesion effects, fluctuating electrode impedances, and technical limitations of contemporary IPGs, providing advantageous conditions to conduct translational DBS research with minimal additional risk to research subjects.
Collapse
Affiliation(s)
- Brandon D Swan
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | | |
Collapse
|
28
|
Courtemanche R, Robinson JC, Aponte DI. Linking oscillations in cerebellar circuits. Front Neural Circuits 2013; 7:125. [PMID: 23908606 PMCID: PMC3725427 DOI: 10.3389/fncir.2013.00125] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 07/11/2013] [Indexed: 11/13/2022] Open
Abstract
In many neuroscience fields, the study of local and global rhythmicity has been receiving increasing attention. These network influences could directly impact on how neuronal groups interact together, organizing for different contexts. The cerebellar cortex harbors a variety of such local circuit rhythms, from the rhythms in the cerebellar cortex per se, or those dictated from important afferents. We present here certain cerebellar oscillatory phenomena that have been recorded in rodents and primates. Those take place in a range of frequencies: from the more known oscillations in the 4-25 Hz band, such as the olivocerebellar oscillatory activity and the granule cell layer oscillations, to the more recently reported slow (<1 Hz oscillations), and the fast (>150 Hz) activity in the Purkinje cell layer. Many of these oscillations appear spontaneously in the circuits, and are modulated by behavioral imperatives. We review here how those oscillations are recorded, some of their modulatory mechanisms, and also identify some of the cerebellar nodes where they could interact. A particular emphasis has been placed on how these oscillations could be modulated by movement and certain neuropathological manifestations. Many of those oscillations could have a definite impact on the way information is processed in the cerebellum and how it interacts with other structures in a variety of contexts.
Collapse
Affiliation(s)
- Richard Courtemanche
- Department of Exercise Science, Groupe de Recherche en Neurobiologie Comportementale/Center for Studies in Behavioral Neurobiology, Concordia UniversityMontréal, QC, Canada
| | | | | |
Collapse
|
29
|
Subthalamic nucleus neurons are synchronized to primary motor cortex local field potentials in Parkinson's disease. J Neurosci 2013; 33:7220-33. [PMID: 23616531 DOI: 10.1523/jneurosci.4676-12.2013] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In Parkinson's disease (PD), striatal dopamine denervation results in a cascade of abnormalities in the single-unit activity of downstream basal ganglia nuclei that include increased firing rate, altered firing patterns, and increased oscillatory activity. However, the effects of these abnormalities on cortical function are poorly understood. Here, in humans undergoing deep brain stimulator implantation surgery, we use the novel technique of subdural electrocorticography in combination with subthalamic nucleus (STN) single-unit recording to study basal ganglia-cortex interactions at the millisecond time scale. We show that in patients with PD, STN spiking is synchronized with primary motor cortex (M1) local field potentials in two distinct patterns: first, STN spikes are phase-synchronized with M1 rhythms in the theta, alpha, or beta (4-30 Hz) bands. Second, STN spikes are synchronized with M1 gamma activity over a broad spectral range (50-200 Hz). The amplitude of STN spike-synchronized gamma activity in M1 is itself rhythmically modulated by the phase of a lower-frequency rhythm (phase-amplitude coupling), such that "waves" of phase-synchronized gamma activity precede the occurrence of STN spikes. We show the disease specificity of these phenomena in PD, by comparison with STN-M1 paired recordings performed in a group of patients with a different disorder, primary craniocervical dystonia. Our findings support a model of the basal ganglia-thalamocortical loop in PD in which gamma activity in primary motor cortex, modulated by the phase of low-frequency rhythms, drives STN unit discharge.
Collapse
|
30
|
The distributed somatotopy of tremor: a window into the motor system. Exp Neurol 2013; 241:156-8. [PMID: 23298522 DOI: 10.1016/j.expneurol.2012.12.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 12/26/2012] [Indexed: 01/11/2023]
Abstract
The posterior ventrolateral thalamus (VLp) plays a crucial role in Parkinson's tremor and in essential tremor: deep brain stimulation (DBS) of the VLp effectively diminishes both tremor types. Previous research has shown tremor oscillations in the VLp, but the spatial extent and somatotopy of these oscillations remained unclear. In this issue of Experimental Neurology, Pedrosa and colleagues measured neuro-muscular coherence at multiple sites in the VLp of patients with essential tremor and Parkinson's disease using implanted DBS electrodes (Pedrosa et al., 2012). They found multiple tremor clusters within the VLp, with spatially distinct tremor clusters for antagonistic muscles, and in many patients also multiple distinct tremor clusters for a single muscle. Interestingly, this group previously showed similar effects for the STN in tremulous Parkinson's disease (Reck et al., 2009, 2010). Together, these studies suggest that the distribution of tremor clusters is a general organizational principle of tremor, being present in two different tremor pathologies, and in two different nodes of the motor system. The presence of multiple tremor clusters also fits with the distributed somatotopy of the healthy motor system. Therefore, a further conclusion of this study could be that tremor is caused by aberrant synchronization within an otherwise healthy network, brought about by different pathophysiological neural triggers.
Collapse
|
31
|
Turner DA. Re-engineering the subthalamus. World Neurosurg 2012; 80:476-8. [PMID: 22634466 DOI: 10.1016/j.wneu.2012.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 05/21/2012] [Indexed: 11/25/2022]
Affiliation(s)
- Dennis A Turner
- Department of Neurosurgery and Neurobiology, Duke University Medical Center, Durham, North Carolina, USA.
| |
Collapse
|