1
|
Fairchild GT, Holler DE, Fabbri S, Gomez MA, Walsh-Snow JC. Naturalistic Object Representations Depend on Distance and Size Cues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.16.585308. [PMID: 38559105 PMCID: PMC10980039 DOI: 10.1101/2024.03.16.585308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Egocentric distance and real-world size are important cues for object perception and action. Nevertheless, most studies of human vision rely on two-dimensional pictorial stimuli that convey ambiguous distance and size information. Here, we use fMRI to test whether pictures are represented differently in the human brain from real, tangible objects that convey unambiguous distance and size cues. Participants directly viewed stimuli in two display formats (real objects and matched printed pictures of those objects) presented at different egocentric distances (near and far). We measured the effects of format and distance on fMRI response amplitudes and response patterns. We found that fMRI response amplitudes in the lateral occipital and posterior parietal cortices were stronger overall for real objects than for pictures. In these areas and many others, including regions involved in action guidance, responses to real objects were stronger for near vs. far stimuli, whereas distance had little effect on responses to pictures-suggesting that distance determines relevance to action for real objects, but not for pictures. Although stimulus distance especially influenced response patterns in dorsal areas that operate in the service of visually guided action, distance also modulated representations in ventral cortex, where object responses are thought to remain invariant across contextual changes. We observed object size representations for both stimulus formats in ventral cortex but predominantly only for real objects in dorsal cortex. Together, these results demonstrate that whether brain responses reflect physical object characteristics depends on whether the experimental stimuli convey unambiguous information about those characteristics. Significance Statement Classic frameworks of vision attribute perception of inherent object characteristics, such as size, to the ventral visual pathway, and processing of spatial characteristics relevant to action, such as distance, to the dorsal visual pathway. However, these frameworks are based on studies that used projected images of objects whose actual size and distance from the observer were ambiguous. Here, we find that when object size and distance information in the stimulus is less ambiguous, these characteristics are widely represented in both visual pathways. Our results provide valuable new insights into the brain representations of objects and their various physical attributes in the context of naturalistic vision.
Collapse
|
2
|
Roth ZN, Merriam EP. Representations in human primary visual cortex drift over time. Nat Commun 2023; 14:4422. [PMID: 37479723 PMCID: PMC10361968 DOI: 10.1038/s41467-023-40144-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 07/13/2023] [Indexed: 07/23/2023] Open
Abstract
Primary sensory regions are believed to instantiate stable neural representations, yet a number of recent rodent studies suggest instead that representations drift over time. To test whether sensory representations are stable in human visual cortex, we analyzed a large longitudinal dataset of fMRI responses to images of natural scenes. We fit the fMRI responses using an image-computable encoding model and tested how well the model generalized across sessions. We found systematic changes in model fits that exhibited cumulative drift over many months. Convergent analyses pinpoint changes in neural responsivity as the source of the drift, while population-level representational dissimilarities between visual stimuli were unchanged. These observations suggest that downstream cortical areas may read-out a stable representation, even as representations within V1 exhibit drift.
Collapse
Affiliation(s)
- Zvi N Roth
- Laboratory of Brain and Cognition, National Institute of Mental Health, NIH, Bethesda, MD, USA.
| | - Elisha P Merriam
- Laboratory of Brain and Cognition, National Institute of Mental Health, NIH, Bethesda, MD, USA
| |
Collapse
|
3
|
Yargholi E, Hossein-Zadeh GA, Vaziri-Pashkam M. Two distinct networks containing position-tolerant representations of actions in the human brain. Cereb Cortex 2023; 33:1462-1475. [PMID: 35511702 PMCID: PMC10310977 DOI: 10.1093/cercor/bhac149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Humans can recognize others' actions in the social environment. This action recognition ability is rarely hindered by the movement of people in the environment. The neural basis of this position tolerance for observed actions is not fully understood. Here, we aimed to identify brain regions capable of generalizing representations of actions across different positions and investigate the representational content of these regions. In a functional magnetic resonance imaging experiment, participants viewed point-light displays of different human actions. Stimuli were presented in either the upper or the lower visual field. Multivariate pattern analysis and a surface-based searchlight approach were employed to identify brain regions that contain position-tolerant action representation: Classifiers were trained with patterns in response to stimuli presented in one position and were tested with stimuli presented in another position. Results showed above-chance classification in the left and right lateral occipitotemporal cortices, right intraparietal sulcus, and right postcentral gyrus. Further analyses exploring the representational content of these regions showed that responses in the lateral occipitotemporal regions were more related to subjective judgments, while those in the parietal regions were more related to objective measures. These results provide evidence for two networks that contain abstract representations of human actions with distinct representational content.
Collapse
Affiliation(s)
- Elahé Yargholi
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran 1956836484, Iran
- Laboratory of Biological Psychology, Department of Brain and Cognition, Leuven Brain Institute, Katholieke Universiteit Leuven, Leuven 3714, Belgium
| | - Gholam-Ali Hossein-Zadeh
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran 1956836484, Iran
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran 1439957131, Iran
| | - Maryam Vaziri-Pashkam
- Laboratory of Brain and Cognition, National Institute of Mental Health (NIMH), Bethesda, MD 20814, United States
| |
Collapse
|
4
|
Urgen BA, Orban GA. The unique role of parietal cortex in action observation: Functional organization for communicative and manipulative actions. Neuroimage 2021; 237:118220. [PMID: 34058335 PMCID: PMC8285591 DOI: 10.1016/j.neuroimage.2021.118220] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
Action observation is supported by a network of regions in occipito-temporal, parietal, and premotor cortex in primates. Recent research suggests that the parietal node has regions dedicated to different action classes including manipulation, interpersonal interactions, skin displacement, locomotion, and climbing. The goals of the current study consist of: 1) extending this work with new classes of actions that are communicative and specific to humans, 2) investigating how parietal cortex differs from the occipito-temporal and premotor cortex in representing action classes. Human subjects underwent fMRI scanning while observing three action classes: indirect communication, direct communication, and manipulation, plus two types of control stimuli, static controls which were static frames from the video clips, and dynamic controls consisting of temporally-scrambled optic flow information. Using univariate analysis, MVPA, and representational similarity analysis, our study presents several novel findings. First, we provide further evidence for the anatomical segregation in parietal cortex of different action classes: We have found a new site that is specific for representing human-specific indirect communicative actions in cytoarchitectonic parietal area PFt. Second, we found that the discriminability between action classes was higher in parietal cortex than the other two levels suggesting the coding of action identity information at this level. Finally, our results advocate the use of the control stimuli not just for univariate analysis of complex action videos but also when using multivariate techniques.
Collapse
Affiliation(s)
- Burcu A Urgen
- Department of Psychology, Bilkent University, 06800, Bilkent, Ankara, Turkey; Interdisciplinary Neuroscience Program, Bilkent University, 06800, Bilkent, Ankara, Turkey; National Magnetic Resonance Research Center (UMRAM) and Aysel Sabuncu Brain Research Center, Bilkent University, 06800, Bilkent, Ankara, Turkey.
| | - Guy A Orban
- Department of Medicine and Surgery, Neuroscience Unit, University of Parma, Italy.
| |
Collapse
|
5
|
de la Malla C, Brenner E, de Haan EHF, Smeets JBJ. A visual illusion that influences perception and action through the dorsal pathway. Commun Biol 2019; 2:38. [PMID: 30701203 PMCID: PMC6349884 DOI: 10.1038/s42003-019-0293-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 01/08/2019] [Indexed: 11/09/2022] Open
Abstract
There are two main anatomically and physiologically defined visual pathways connecting the primary visual cortex with higher visual areas: the ventral and the dorsal pathway. The influential two-visual-systems hypothesis postulates that visual attributes are analyzed differently for different functions: in the dorsal pathway visual information is analyzed to guide actions, whereas in the ventral pathway visual information is analyzed for perceptual judgments. We here show that a person who cannot identify objects due to an extensive bilateral ventral brain lesion is able to judge the velocity at which an object moves. Moreover, both his velocity judgements and his interceptive actions are as susceptible to a motion illusion as those of people without brain lesions. These findings speak in favor of the idea that dorsal structures process information about attributes such as velocity, irrespective of whether such information is used for perceptual judgments or to guide actions.
Collapse
Affiliation(s)
- Cristina de la Malla
- Vision and Control of Action (VISCA) Group, Department of Cognition, Development and Psychology of Education, Institut de Neurociències, Universitat de Barcelona, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Catalonia Spain
- Department of Human Movement Sciences, Institute for Brain and Behavior Amsterdam, Vrije Universiteit Amsterdam, Van der Boechorststraat 9, 1081BT Amsterdam, The Netherlands
| | - Eli Brenner
- Department of Human Movement Sciences, Institute for Brain and Behavior Amsterdam, Vrije Universiteit Amsterdam, Van der Boechorststraat 9, 1081BT Amsterdam, The Netherlands
| | - Edward H. F. de Haan
- Department of Psychology, Amsterdam Brain and Cognition, University of Amsterdam, Nieuwe Achtergracht 129, 1001NK Amsterdam, The Netherlands
| | - Jeroen B. J. Smeets
- Department of Human Movement Sciences, Institute for Brain and Behavior Amsterdam, Vrije Universiteit Amsterdam, Van der Boechorststraat 9, 1081BT Amsterdam, The Netherlands
| |
Collapse
|
6
|
Karimi-Rouzbahani H. Three-stage processing of category and variation information by entangled interactive mechanisms of peri-occipital and peri-frontal cortices. Sci Rep 2018; 8:12213. [PMID: 30111859 PMCID: PMC6093927 DOI: 10.1038/s41598-018-30601-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 08/02/2018] [Indexed: 11/30/2022] Open
Abstract
Object recognition has been a central question in human vision research. The general consensus is that the ventral and dorsal visual streams are the major processing pathways undertaking objects' category and variation processing. This overlooks mounting evidence supporting the role of peri-frontal areas in category processing. Yet, many aspects of visual processing in peri-frontal areas have remained unattended including whether these areas play role only during active recognition and whether they interact with lower visual areas or process information independently. To address these questions, subjects were presented with a set of variation-controlled object images while their EEG were recorded. Considerable amounts of category and variation information were decodable from occipital, parietal, temporal and prefrontal electrodes. Using information-selectivity indices, phase and Granger causality analyses, three processing stages were identified showing distinct directions of information transaction between peri-frontal and peri-occipital areas suggesting their parallel yet interactive role in visual processing. A brain-plausible model supported the possibility of interactive mechanisms in peri-occipital and peri-frontal areas. These findings, while promoting the role of prefrontal areas in object recognition, extend their contributions from active recognition, in which peri-frontal to peri-occipital pathways are activated by higher cognitive processes, to the general sensory-driven object and variation processing.
Collapse
Affiliation(s)
- Hamid Karimi-Rouzbahani
- Department of Electrical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran.
- Perception in Action Research Centre & Department of Cognitive Science, Faculty of Human Sciences, Macquarie University, Sydney, NSW 2109, Australia.
- ARC Centre of Excellence in Cognition and Its Disorders, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
7
|
Cross-talk connections underlying dorsal and ventral stream integration during hand actions. Cortex 2018; 103:224-239. [DOI: 10.1016/j.cortex.2018.02.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/15/2018] [Accepted: 02/21/2018] [Indexed: 11/21/2022]
|
8
|
Medendorp WP, de Brouwer AJ, Smeets JB. Dynamic representations of visual space for perception and action. Cortex 2018; 98:194-202. [DOI: 10.1016/j.cortex.2016.11.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/06/2016] [Accepted: 11/17/2016] [Indexed: 11/17/2022]
|
9
|
Retinotopic information interacts with category selectivity in human ventral cortex. Neuropsychologia 2016; 92:90-106. [DOI: 10.1016/j.neuropsychologia.2016.05.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 04/07/2016] [Accepted: 05/20/2016] [Indexed: 11/19/2022]
|
10
|
Freud E, Plaut DC, Behrmann M. 'What' Is Happening in the Dorsal Visual Pathway. Trends Cogn Sci 2016; 20:773-784. [PMID: 27615805 DOI: 10.1016/j.tics.2016.08.003] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 01/01/2023]
Abstract
The cortical visual system is almost universally thought to be segregated into two anatomically and functionally distinct pathways: a ventral occipitotemporal pathway that subserves object perception, and a dorsal occipitoparietal pathway that subserves object localization and visually guided action. Accumulating evidence from both human and non-human primate studies, however, challenges this binary distinction and suggests that regions in the dorsal pathway contain object representations that are independent of those in ventral cortex and that play a functional role in object perception. We review here the evidence implicating dorsal object representations, and we propose an account of the anatomical organization, functional contributions, and origins of these representations in the service of perception.
Collapse
Affiliation(s)
- Erez Freud
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, Carnegie Mellon University and the University of Pittsburgh, Pittsburgh, PA, USA.
| | - David C Plaut
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, Carnegie Mellon University and the University of Pittsburgh, Pittsburgh, PA, USA
| | - Marlene Behrmann
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, Carnegie Mellon University and the University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
11
|
Roth ZN. Functional MRI Representational Similarity Analysis Reveals a Dissociation between Discriminative and Relative Location Information in the Human Visual System. Front Integr Neurosci 2016; 10:16. [PMID: 27242455 PMCID: PMC4876365 DOI: 10.3389/fnint.2016.00016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/14/2016] [Indexed: 11/13/2022] Open
Abstract
Neural responses in visual cortex are governed by a topographic mapping from retinal locations to cortical responses. Moreover, at the voxel population level early visual cortex (EVC) activity enables accurate decoding of stimuli locations. However, in many cases information enabling one to discriminate between locations (i.e., discriminative information) may be less relevant than information regarding the relative location of two objects (i.e., relative information). For example, when planning to grab a cup, determining whether the cup is located at the same retinal location as the hand is hardly relevant, whereas the location of the cup relative to the hand is crucial for performing the action. We have previously used multivariate pattern analysis techniques to measure discriminative location information, and found the highest levels in EVC, in line with other studies. Here we show, using representational similarity analysis, that availability of discriminative information in fMRI activation patterns does not entail availability of relative information. Specifically, we find that relative location information can be reliably extracted from activity patterns in posterior intraparietal sulcus (pIPS), but not from EVC, where we find the spatial representation to be warped. We further show that this variability in relative information levels between regions can be explained by a computational model based on an array of receptive fields. Moreover, when the model's receptive fields are extended to include inhibitory surround regions, the model can account for the spatial warping in EVC. These results demonstrate how size and shape properties of receptive fields in human visual cortex contribute to the transformation of discriminative spatial representations into relative spatial representations along the visual stream.
Collapse
Affiliation(s)
- Zvi N Roth
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew UniversityJerusalem, Israel; Department of Neurobiology, The Hebrew UniversityJerusalem, Israel
| |
Collapse
|