1
|
Srinath R, Czarnik MM, Cohen MR. Coordinated Response Modulations Enable Flexible Use of Visual Information. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602774. [PMID: 39071390 PMCID: PMC11275750 DOI: 10.1101/2024.07.10.602774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
We use sensory information in remarkably flexible ways. We can generalize by ignoring task-irrelevant features, report different features of a stimulus, and use different actions to report a perceptual judgment. These forms of flexible behavior are associated with small modulations of the responses of sensory neurons. While the existence of these response modulations is indisputable, efforts to understand their function have been largely relegated to theory, where they have been posited to change information coding or enable downstream neurons to read out different visual and cognitive information using flexible weights. Here, we tested these ideas using a rich, flexible behavioral paradigm, multi-neuron, multi-area recordings in primary visual cortex (V1) and mid-level visual area V4. We discovered that those response modulations in V4 (but not V1) contain the ingredients necessary to enable flexible behavior, but not via those previously hypothesized mechanisms. Instead, we demonstrated that these response modulations are precisely coordinated across the population such that downstream neurons have ready access to the correct information to flexibly guide behavior without making changes to information coding or synapses. Our results suggest a novel computational role for task-dependent response modulations: they enable flexible behavior by changing the information that gets out of a sensory area, not by changing information coding within it.
Collapse
Affiliation(s)
- Ramanujan Srinath
- Department of Neurobiology and Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Martyna M. Czarnik
- Department of Neurobiology and Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA
- Current affiliation: Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Marlene R. Cohen
- Department of Neurobiology and Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
2
|
Coop SH, Yates JL, Mitchell JF. Pre-saccadic Neural Enhancements in Marmoset Area MT. J Neurosci 2024; 44:e2034222023. [PMID: 38050176 PMCID: PMC10860570 DOI: 10.1523/jneurosci.2034-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 09/15/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023] Open
Abstract
Each time we make an eye movement, attention moves before the eyes, resulting in a perceptual enhancement at the target. Recent psychophysical studies suggest that this pre-saccadic attention enhances the visual features at the saccade target, whereas covert attention causes only spatially selective enhancements. While previous nonhuman primate studies have found that pre-saccadic attention does enhance neural responses spatially, no studies have tested whether changes in neural tuning reflect an automatic feature enhancement. Here we examined pre-saccadic attention using a saccade foraging task developed for marmoset monkeys (one male and one female). We recorded from neurons in the middle temporal area with peripheral receptive fields that contained a motion stimulus, which would either be the target of a saccade or a distracter as a saccade was made to another location. We established that marmosets, like macaques, show enhanced pre-saccadic neural responses for saccades toward the receptive field, including increases in firing rate and motion information. We then examined if the specific changes in neural tuning might support feature enhancements for the target. Neurons exhibited diverse changes in tuning but predominantly showed additive and multiplicative increases that were uniformly applied across motion directions. These findings confirm that marmoset monkeys, like macaques, exhibit pre-saccadic neural enhancements during saccade foraging tasks with minimal training requirements. However, at the level of individual neurons, the lack of feature-tuned enhancements is similar to neural effects reported during covert spatial attention.
Collapse
Affiliation(s)
- Shanna H Coop
- Brain and Cognitive Sciences, University of Rochester, Rochester 14627-0268, New York
- Center for Visual Science, University of Rochester, Rochester 14627-0268, New York
| | - Jacob L Yates
- Brain and Cognitive Sciences, University of Rochester, Rochester 14627-0268, New York
- Center for Visual Science, University of Rochester, Rochester 14627-0268, New York
- Department of Biology, University of Maryland College Park, College Park, Maryland, 20742-5025
| | - Jude F Mitchell
- Brain and Cognitive Sciences, University of Rochester, Rochester 14627-0268, New York
- Center for Visual Science, University of Rochester, Rochester 14627-0268, New York
| |
Collapse
|
3
|
Ghosh S, Maunsell JHR. Single trial neuronal activity dynamics of attentional intensity in monkey visual area V4. Nat Commun 2021; 12:2003. [PMID: 33790282 PMCID: PMC8012644 DOI: 10.1038/s41467-021-22281-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 03/08/2021] [Indexed: 02/01/2023] Open
Abstract
Understanding how activity of visual neurons represents distinct components of attention and their dynamics that account for improved visual performance remains elusive because single-unit experiments have not isolated the intensive aspect of attention from attentional selectivity. We isolated attentional intensity and its single trial dynamics as determined by spatially non-selective attentional performance in an orientation discrimination task while recording from neurons in monkey visual area V4. We found that attentional intensity is a distinct cognitive signal that can be distinguished from spatial selectivity, reward expectations and motor actions. V4 spiking on single trials encodes a combination of sensory and cognitive signals on different time scales. Attentional intensity and the detection of behaviorally relevant sensory signals are well represented, but immediate reward expectation and behavioral choices are poorly represented in V4 spiking. These results provide a detailed representation of perceptual and cognitive signals in V4 that are crucial for attentional performance.
Collapse
Affiliation(s)
- Supriya Ghosh
- Department of Neurobiology and Neuroscience Institute, The University of Chicago, Chicago, IL, USA.
| | - John H R Maunsell
- Department of Neurobiology and Neuroscience Institute, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
4
|
Garcia-Lazaro HG, Bartsch MV, Boehler CN, Krebs RM, Donohue SE, Harris JA, Schoenfeld MA, Hopf JM. Dissociating Reward- and Attention-driven Biasing of Global Feature-based Selection in Human Visual Cortex. J Cogn Neurosci 2018; 31:469-481. [PMID: 30457917 DOI: 10.1162/jocn_a_01356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Objects that promise rewards are prioritized for visual selection. The way this prioritization shapes sensory processing in visual cortex, however, is debated. It has been suggested that rewards motivate stronger attentional focusing, resulting in a modulation of sensory selection in early visual cortex. An open question is whether those reward-driven modulations would be independent of similar modulations indexing the selection of attended features that are not associated with reward. Here, we use magnetoencephalography in human observers to investigate whether the modulations indexing global color-based selection in visual cortex are separable for target- and (monetary) reward-defining colors. To assess the underlying global color-based activity modulation, we compare the event-related magnetic field response elicited by a color probe in the unattended hemifield drawn either in the target color, the reward color, both colors, or a neutral task-irrelevant color. To test whether target and reward relevance trigger separable modulations, we manipulate attention demands on target selection while keeping reward-defining experimental parameters constant. Replicating previous observations, we find that reward and target relevance produce almost indistinguishable gain modulations in ventral extratriate cortex contralateral to the unattended color probe. Importantly, increasing attention demands on target discrimination increases the response to the target-defining color, whereas the response to the rewarded color remains largely unchanged. These observations indicate that, although task relevance and reward influence the very same feature-selective area in extrastriate visual cortex, the associated modulations are largely independent.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jens-Max Hopf
- Otto-von-Guericke University Magdeburg.,Leibniz Institute for Neurobiology, Magdeburg
| |
Collapse
|
5
|
Abstract
Selective visual attention describes the tendency of visual processing to be confined largely to stimuli that are relevant to behavior. It is among the most fundamental of cognitive functions, particularly in humans and other primates for whom vision is the dominant sense. We review recent progress in identifying the neural mechanisms of selective visual attention. We discuss evidence from studies of different varieties of selective attention and examine how these varieties alter the processing of stimuli by neurons within the visual system, current knowledge of their causal basis, and methods for assessing attentional dysfunctions. In addition, we identify some key questions that remain in identifying the neural mechanisms that give rise to the selective processing of visual information.
Collapse
Affiliation(s)
- Tirin Moore
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94305; , .,Howard Hughes Medical Institute, Stanford, California 94305
| | - Marc Zirnsak
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94305; , .,Howard Hughes Medical Institute, Stanford, California 94305
| |
Collapse
|
6
|
Dunkley BT, Baltaretu B, Crawford JD. Trans-saccadic interactions in human parietal and occipital cortex during the retention and comparison of object orientation. Cortex 2016; 82:263-276. [PMID: 27424061 DOI: 10.1016/j.cortex.2016.06.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 05/21/2016] [Accepted: 06/15/2016] [Indexed: 02/03/2023]
Abstract
The cortical sites for the trans-saccadic storage and integration of visual object features are unknown. Here, we used a variant of fMRI-Adaptation where subjects fixated to the left or right of a briefly presented visual grating, maintained fixation or saccaded to the opposite side, then judged whether a re-presented grating had the same or different orientation. fMRI analysis revealed trans-saccadic interactions (different > same orientation) in a visual field-insensitive cluster within right supramarginal gyrus. This cluster was located at the anterolateral pole of the parietal eye field (identified in a localizer task). We also observed gaze centered, field-specific interactions (same > different orientation) in an extrastriate cluster overlapping with putative 'V4'. Based on these data and our literature review, we conclude that these supramarginal and extrastriate areas are involved in the retention, spatial updating, and evaluation of object orientation information across saccades.
Collapse
Affiliation(s)
- Benjamin T Dunkley
- York Centre for Vision Research and Canadian Action and Perception Network, York University, Toronto, Ontario, Canada
| | - Bianca Baltaretu
- York Centre for Vision Research and Canadian Action and Perception Network, York University, Toronto, Ontario, Canada; Department of Biology, Neuroscience Graduate Diploma Program and NSERC Brain in Action CREATE Program, York University, Toronto, Ontario, Canada
| | - J Douglas Crawford
- York Centre for Vision Research and Canadian Action and Perception Network, York University, Toronto, Ontario, Canada; Department of Biology, Neuroscience Graduate Diploma Program and NSERC Brain in Action CREATE Program, York University, Toronto, Ontario, Canada; Departments of Psychology, and Kinesiology and Health Sciences, York University, Toronto, Ontario, Canada.
| |
Collapse
|