1
|
Marin-Llobet A, Manasanch A, Dalla Porta L, Torao-Angosto M, Sanchez-Vives MV. Neural models for detection and classification of brain states and transitions. Commun Biol 2025; 8:599. [PMID: 40211025 PMCID: PMC11986132 DOI: 10.1038/s42003-025-07991-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 03/24/2025] [Indexed: 04/12/2025] Open
Abstract
Exploring natural or pharmacologically induced brain dynamics, such as sleep, wakefulness, or anesthesia, provides rich functional models for studying brain states. These models allow detailed examination of unique spatiotemporal neural activity patterns that reveal brain function. However, assessing transitions between brain states remains computationally challenging. Here we introduce a pipeline to detect brain states and their transitions in the cerebral cortex using a dual-model Convolutional Neural Network (CNN) and a self-supervised autoencoder-based multimodal clustering algorithm. This approach distinguishes brain states such as slow oscillations, microarousals, and wakefulness with high confidence. Using chronic local field potential recordings from rats, our method achieved a global accuracy of 91%, with up to 96% accuracy for certain states. For the transitions, we report an average accuracy of 74%. Our models were trained using a leave-one-out methodology, allowing for broad applicability across subjects and pre-trained models for deployments. It also features a confidence parameter, ensuring that only highly certain cases are automatically classified, leaving ambiguous cases for the multimodal unsupervised classifier or further expert review. Our approach presents a reliable and efficient tool for brain state labeling and analysis, with applications in basic and clinical neuroscience.
Collapse
Affiliation(s)
- Arnau Marin-Llobet
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Roselló 149-153, 08036, Barcelona, Spain
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02138, USA
| | - Arnau Manasanch
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Roselló 149-153, 08036, Barcelona, Spain
- Faculty of Medicine and Health Sciences, University of Barcelona, 08036, Barcelona, Spain
| | - Leonardo Dalla Porta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Roselló 149-153, 08036, Barcelona, Spain
| | - Melody Torao-Angosto
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Roselló 149-153, 08036, Barcelona, Spain
| | - Maria V Sanchez-Vives
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Roselló 149-153, 08036, Barcelona, Spain.
- ICREA, Passeig Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
2
|
Dalla Porta L, Barbero-Castillo A, Sanchez-Sanchez JM, Cancino N, Sanchez-Vives MV. H-current modulation of cortical Up and Down states. J Physiol 2025; 603:2409-2424. [PMID: 40153850 DOI: 10.1113/jp287616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 02/11/2025] [Indexed: 04/01/2025] Open
Abstract
Understanding the link between cellular processes and brain function remains a key challenge in neuroscience. One crucial aspect is the interplay between specific ion channels and network dynamics. This work reveals a role for h-current, a hyperpolarization-activated cationic current, in shaping cortical slow oscillations. Cortical slow oscillations are generated not only during slow wave sleep and deep anaesthesia, but also in association with disorders of consciousness and brain lesions. Cortical slow oscillations exhibit rhythmic periods of activity (Up states) alternating with silent periods (Down states). By progressively reducing h-current in both cortical slices and in a computational model, we observed Up states transformed into prolonged plateaus of sustained firing, while Down states were also significantly extended. This transformation led to a fivefold reduction in oscillation frequency. In a biophysical recurrent network model, we identified the cellular mechanisms underlying this transformation of network dynamics: an increased neuronal input resistance and membrane time constant, increasing neuronal responsiveness to even weak inputs. A partial block of h-current therefore resulted in a change in brain state. HCN (hyperpolarization-activated cyclic nucleotide-gated) channels, which generate h-current, are known targets for neuromodulation, suggesting potential pathways for dynamic control of brain rhythms. KEY POINTS: We investigated the role of h-current in shaping emergent cortical slow oscillation dynamics, specifically Up and Down states, in cortical slices. Blocking h-current transformed Up states into prolonged plateaus of sustained firing, lasting up to 4 s. Down states were also significantly elongated and the oscillatory frequency decreased. A biophysical model of the cortical network replicated these findings and allowed us to explore the underlying mechanisms. An increase in cellular input resistance and time constant led to a rise in network excitability, synaptic responsiveness and firing rates. Our results highlight the significant role of h-current in controlling cortical slow rhythmic patterns, making it a relevant target for neuromodulators regulating brain states.
Collapse
Affiliation(s)
- Leonardo Dalla Porta
- Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Roselló, Barcelona, Spain
| | | | | | - Nathalia Cancino
- Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Roselló, Barcelona, Spain
| | - Maria V Sanchez-Vives
- Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Roselló, Barcelona, Spain
- ICREA, Passeig Lluís Companys 23, Barcelona, Spain
| |
Collapse
|
3
|
Sanchez-Sanchez JM, Riefolo F, Barbero-Castillo A, Sortino R, Agnetta L, Manasanch A, Matera C, Bosch M, Forcella M, Decker M, Gorostiza P, Sanchez-Vives MV. Control of cortical slow oscillations and epileptiform discharges with photoswitchable type 1 muscarinic ligands. PNAS NEXUS 2025; 4:pgaf009. [PMID: 40007579 PMCID: PMC11851066 DOI: 10.1093/pnasnexus/pgaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/02/2025] [Indexed: 02/27/2025]
Abstract
Acetylcholine and the cholinergic system are crucial to brain function, including functions such as consciousness and cognition. Dysregulation of this system is implicated in the pathophysiology of neurological conditions such as Alzheimer's disease. For this reason, cholinergic neuromodulation is relevant in both basic neuroscience and clinical neurology. In this study, we used photopharmacology to modulate neuronal activity using the novel selective type-1 muscarinic (M1) photoswitchable drugs: the agonist benzyl quinolone carboxylic acid-azo-iperoxo (BAI) and the antagonist cryptozepine-2. Our aim was to investigate the control over these cholinergic receptors using light and to investigate the effects of these drugs on physiological spontaneous slow waves and on epileptic activity in the cerebral cortex. First, we used transfected HEK cell cultures and demonstrated BAI's preferential activation of M1 muscarinic acetylcholine receptors (mAChRs) compared with M2 mAChRs. Next, we found that white-light illumination of BAI increased the frequency of spontaneous slow-wave activity in brain cortical networks of both active slices and anesthetized mice, through M1-mAChRs activation. Illumination of cryptozepine-2 with UV light effectively suppressed not only the muscarinic-induced increase in slow-wave frequency, but also muscarinic-induced epileptiform discharges. These findings not only shed light on the role of M1 acetylcholine receptors in the cortical network dynamics but also lay the groundwork for developing advanced light-based pharmacological therapies. Photopharmacology offers the potential for high-precision spatiotemporal control of brain networks with high pharmacological specificity in both healthy and pathological conditions.
Collapse
Affiliation(s)
- Jose M Sanchez-Sanchez
- Systems Neuroscience, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
| | - Fabio Riefolo
- Teamit Institute, Partnerships, Barcelona Health Hub, Barcelona 08025, Spain
| | - Almudena Barbero-Castillo
- Systems Neuroscience, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
| | - Rosalba Sortino
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology. Barcelona 08028, Spain
| | - Luca Agnetta
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg 97074, Germany
| | - Arnau Manasanch
- Systems Neuroscience, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
- Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona 08036, Spain
| | - Carlo Matera
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology. Barcelona 08028, Spain
- Department of Pharmaceutical Sciences, University of Milan, Milan 20133, Italy
| | - Miquel Bosch
- Systems Neuroscience, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology. Barcelona 08028, Spain
| | - Marta Forcella
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology. Barcelona 08028, Spain
| | - Michael Decker
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg 97074, Germany
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology. Barcelona 08028, Spain
- CIBER-BBN, Madrid 28029, Spain
- ICREA, Barcelona 08010, Spain
| | - Maria V Sanchez-Vives
- Systems Neuroscience, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
- ICREA, Barcelona 08010, Spain
| |
Collapse
|
4
|
Camassa A, Torao-Angosto M, Manasanch A, Kringelbach ML, Deco G, Sanchez-Vives MV. The temporal asymmetry of cortical dynamics as a signature of brain states. Sci Rep 2024; 14:24271. [PMID: 39414871 PMCID: PMC11484927 DOI: 10.1038/s41598-024-74649-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/27/2024] [Indexed: 10/18/2024] Open
Abstract
The brain is a complex non-equilibrium system capable of expressing many different dynamics as well as the transitions between them. We hypothesized that the level of non-equilibrium can serve as a signature of a given brain state, which was quantified using the arrow of time (the level of irreversibility). Using this thermodynamic framework, the irreversibility of emergent cortical activity was quantified from local field potential recordings in male Lister-hooded rats at different anesthesia levels and during the sleep-wake cycle. This measure was carried out on five distinct brain states: slow-wave sleep, awake, deep anesthesia-slow waves, light anesthesia-slow waves, and microarousals. Low levels of irreversibility were associated with synchronous activity found both in deep anesthesia and slow-wave sleep states, suggesting that slow waves were the state closest to the thermodynamic equilibrium (maximum symmetry), thus requiring minimum energy. Higher levels of irreversibility were found when brain dynamics became more asynchronous, for example, in wakefulness. These changes were also reflected in the hierarchy of cortical dynamics across different cortical areas. The neural dynamics associated with different brain states were characterized by different degrees of irreversibility and hierarchy, also acting as markers of brain state transitions. This could open new routes to monitoring, controlling, and even changing brain states in health and disease.
Collapse
Affiliation(s)
- Alessandra Camassa
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain
| | - Melody Torao-Angosto
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain
| | - Arnau Manasanch
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain
| | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, OX3 9BX, UK
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
- Center for Music in the Brain, Aarhus University, Aarhus, 8000, Denmark
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, 08018, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, 08010, Spain
| | - Maria V Sanchez-Vives
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain.
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, 08010, Spain.
| |
Collapse
|
5
|
Idesis S, Patow G, Allegra M, Vohryzek J, Sanz Perl Y, Sanchez-Vives MV, Massimini M, Corbetta M, Deco G. Whole-brain model replicates sleep-like slow-wave dynamics generated by stroke lesions. Neurobiol Dis 2024; 200:106613. [PMID: 39079580 DOI: 10.1016/j.nbd.2024.106613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/17/2024] [Accepted: 07/22/2024] [Indexed: 09/02/2024] Open
Abstract
Focal brain injuries, such as stroke, cause local structural damage as well as alteration of neuronal activity in distant brain regions. Experimental evidence suggests that one of these changes is the appearance of sleep-like slow waves in the otherwise awake individual. This pattern is prominent in areas surrounding the damaged region and can extend to connected brain regions in a way consistent with the individual's specific long-range connectivity patterns. In this paper we present a generative whole-brain model based on (f)MRI data that, in combination with the disconnection mask associated with a given patient, explains the effects of the sleep-like slow waves originated in the vicinity of the lesion area on the distant brain activity. Our model reveals new aspects of their interaction, being able to reproduce functional connectivity patterns of stroke patients and offering a detailed, causal understanding of how stroke-related effects, in particular slow waves, spread throughout the brain. The presented findings demonstrate that the model effectively captures the links between stroke occurrences, sleep-like slow waves, and their subsequent spread across the human brain.
Collapse
Affiliation(s)
- Sebastian Idesis
- Center for Brain and Cognition (CBC), Department of Information Technologies and Communications (DTIC), Pompeu Fabra University, Edifici Mercè Rodoreda, Carrer Trias i Fargas 25-27, 08005 Barcelona, Catalonia, Spain.
| | - Gustavo Patow
- Center for Brain and Cognition (CBC), Department of Information Technologies and Communications (DTIC), Pompeu Fabra University, Edifici Mercè Rodoreda, Carrer Trias i Fargas 25-27, 08005 Barcelona, Catalonia, Spain; ViRVIG, University of Girona, Girona, Spain
| | - Michele Allegra
- Padova Neuroscience Center (PNC), University of Padova, via Orus 2/B, 35129 Padova, Italy; Department of Physics and Astronomy "G. Galilei", University of Padova, via Marzolo 8, 35131 Padova, Italy
| | - Jakub Vohryzek
- Center for Brain and Cognition (CBC), Department of Information Technologies and Communications (DTIC), Pompeu Fabra University, Edifici Mercè Rodoreda, Carrer Trias i Fargas 25-27, 08005 Barcelona, Catalonia, Spain; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, UK
| | - Yonatan Sanz Perl
- Center for Brain and Cognition (CBC), Department of Information Technologies and Communications (DTIC), Pompeu Fabra University, Edifici Mercè Rodoreda, Carrer Trias i Fargas 25-27, 08005 Barcelona, Catalonia, Spain; Universidad de San Andrés, Buenos Aires, Argentina; National Scientific and Technical Research Council, Buenos Aires, Argentina; Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Maria V Sanchez-Vives
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosellón, 149, 08036 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys, 23, 08010 Barcelona, Spain
| | - Marcello Massimini
- Department of Biomedical and Clinical Sciences, University of Milan, Milan 20157, Italy; IRCCS, Fondazione Don Carlo Gnocchi Onlus, Milan 20148, Italy
| | - Maurizio Corbetta
- Padova Neuroscience Center (PNC), University of Padova, via Orus 2/B, 35129 Padova, Italy; Department of Neuroscience University of Padova, via Giustiniani 5, 35128 Padova, Italy; Venetian Institute of Molecular Medicine (VIMM), via Orus 2/B, 35129 Padova, Italy
| | - Gustavo Deco
- Center for Brain and Cognition (CBC), Department of Information Technologies and Communications (DTIC), Pompeu Fabra University, Edifici Mercè Rodoreda, Carrer Trias i Fargas 25-27, 08005 Barcelona, Catalonia, Spain
| |
Collapse
|
6
|
Yaghoubi M, Orlandi JG, Colicos MA, Davidsen J. Criticality and universality in neuronal cultures during "up" and "down" states. Front Neural Circuits 2024; 18:1456558. [PMID: 39323503 PMCID: PMC11423291 DOI: 10.3389/fncir.2024.1456558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/19/2024] [Indexed: 09/27/2024] Open
Abstract
The brain can be seen as a self-organized dynamical system that optimizes information processing and storage capabilities. This is supported by studies across scales, from small neuronal assemblies to the whole brain, where neuronal activity exhibits features typically associated with phase transitions in statistical physics. Such a critical state is characterized by the emergence of scale-free statistics as captured, for example, by the sizes and durations of activity avalanches corresponding to a cascading process of information flow. Another phenomenon observed during sleep, under anesthesia, and in in vitro cultures, is that cortical and hippocampal neuronal networks alternate between "up" and "down" states characterized by very distinct firing rates. Previous theoretical work has been able to relate these two concepts and proposed that only up states are critical whereas down states are subcritical, also indicating that the brain spontaneously transitions between the two. Using high-speed high-resolution calcium imaging recordings of neuronal cultures, we test this hypothesis here by analyzing the neuronal avalanche statistics in populations of thousands of neurons during "up" and "down" states separately. We find that both "up" and "down" states can exhibit scale-free behavior when taking into account their intrinsic time scales. In particular, the statistical signature of "down" states is indistinguishable from those observed previously in cultures without "up" states. We show that such behavior can not be explained by network models of non-conservative leaky integrate-and-fire neurons with short-term synaptic depression, even when realistic noise levels, spatial network embeddings, and heterogeneous populations are taken into account, which instead exhibits behavior consistent with previous theoretical models. Similar differences were also observed when taking into consideration finite-size scaling effects, suggesting that the intrinsic dynamics and self-organization mechanisms of these cultures might be more complex than previously thought. In particular, our findings point to the existence of different mechanisms of neuronal communication, with different time scales, acting during either high-activity or low-activity states, potentially requiring different plasticity mechanisms.
Collapse
Affiliation(s)
- Mohammad Yaghoubi
- Complexity Science Group, Department of Physics and Astronomy, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Javier G. Orlandi
- Complexity Science Group, Department of Physics and Astronomy, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Michael A. Colicos
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jörn Davidsen
- Complexity Science Group, Department of Physics and Astronomy, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
7
|
Massimini M, Corbetta M, Sanchez-Vives MV, Andrillon T, Deco G, Rosanova M, Sarasso S. Sleep-like cortical dynamics during wakefulness and their network effects following brain injury. Nat Commun 2024; 15:7207. [PMID: 39174560 PMCID: PMC11341729 DOI: 10.1038/s41467-024-51586-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 08/07/2024] [Indexed: 08/24/2024] Open
Abstract
By connecting old and recent notions, different spatial scales, and research domains, we introduce a novel framework on the consequences of brain injury focusing on a key role of slow waves. We argue that the long-standing finding of EEG slow waves after brain injury reflects the intrusion of sleep-like cortical dynamics during wakefulness; we illustrate how these dynamics are generated and how they can lead to functional network disruption and behavioral impairment. Finally, we outline a scenario whereby post-injury slow waves can be modulated to reawaken parts of the brain that have fallen asleep to optimize rehabilitation strategies and promote recovery.
Collapse
Grants
- The authors thank Dr Ezequiel Mikulan, Dr Silvia Casarotto, Dr Andrea Pigorini, Dr Simone Russo, and Dr Pilleriin Sikka for their help and comments on the manuscript draft and illustrations. This work was financially supported by the following entities: ERC-2022-SYG Grant number 101071900 Neurological Mechanisms of Injury and Sleep-like Cellular Dynamics (NEMESIS); Italian National Recovery and Resilience Plan (NRRP), M4C2, funded by the European Union - NextGenerationEU (Project IR0000011, CUP B51E22000150006, “EBRAINS-Italy”); European Union’s Horizon 2020 Framework Program for Research and Innovation under the Specific Grant Agreement No.945539 (Human Brain Project SGA3); Tiny Blue Dot Foundation; Canadian Institute for Advanced Research (CIFAR), Canada; Italian Ministry for Universities and Research (PRIN 2022); Fondazione Regionale per la Ricerca Biomedica (Regione Lombardia), Project ERAPERMED2019–101, GA 779282; CORTICOMOD PID2020-112947RB-I00 financed by MCIN/ AEI /10.13039/501100011033; Fondazione Cassa di Risparmio di Padova e Rovigo (CARIPARO) Grant Agreement number 55403; Ministry of Health, Italy (RF-2008 -12366899) Brain connectivity measured with high-density electroencephalography: a novel neurodiagnostic tool for stroke- NEUROCONN; BIAL foundation grant (Grant Agreement number 361/18); H2020 European School of Network Neuroscience (euSNN); H2020 Visionary Nature Based Actions For Heath, Wellbeing & Resilience in Cities (VARCITIES); Ministry of Health Italy (RF-2019-12369300): Eye-movement dynamics during free viewing as biomarker for assessment of visuospatial functions and for closed-loop rehabilitation in stroke (EYEMOVINSTROKE).
Collapse
Affiliation(s)
- Marcello Massimini
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy.
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy.
| | - Maurizio Corbetta
- Department of Neuroscience and Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Maria V Sanchez-Vives
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Thomas Andrillon
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Mov'it team, Inserm, CNRS, Paris, France
- Monash Centre for Consciousness and Contemplative Studies, Faculty of Arts, Monash University, Melbourne, VIC, Australia
| | - Gustavo Deco
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Center for Brain and Cognition, Computational Neuroscience Group, Barcelona, Spain
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Simone Sarasso
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
8
|
Tauber JM, Brincat SL, Stephen EP, Donoghue JA, Kozachkov L, Brown EN, Miller EK. Propofol-mediated Unconsciousness Disrupts Progression of Sensory Signals through the Cortical Hierarchy. J Cogn Neurosci 2024; 36:394-413. [PMID: 37902596 PMCID: PMC11161138 DOI: 10.1162/jocn_a_02081] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
A critical component of anesthesia is the loss of sensory perception. Propofol is the most widely used drug for general anesthesia, but the neural mechanisms of how and when it disrupts sensory processing are not fully understood. We analyzed local field potential and spiking recorded from Utah arrays in auditory cortex, associative cortex, and cognitive cortex of nonhuman primates before and during propofol-mediated unconsciousness. Sensory stimuli elicited robust and decodable stimulus responses and triggered periods of stimulus-related synchronization between brain areas in the local field potential of Awake animals. By contrast, propofol-mediated unconsciousness eliminated stimulus-related synchrony and drastically weakened stimulus responses and information in all brain areas except for auditory cortex, where responses and information persisted. However, we found stimuli occurring during spiking Up states triggered weaker spiking responses than in Awake animals in auditory cortex, and little or no spiking responses in higher order areas. These results suggest that propofol's effect on sensory processing is not just because of asynchronous Down states. Rather, both Down states and Up states reflect disrupted dynamics.
Collapse
Affiliation(s)
- John M Tauber
- Massachusetts Institute of Technology, Cambridge, MA
| | | | | | | | - Leo Kozachkov
- Massachusetts Institute of Technology, Cambridge, MA
| | - Emery N Brown
- Massachusetts Institute of Technology, Cambridge, MA
- Massachusetts General Hospital, Boston
- Harvard University, Cambridge, MA
| | - Earl K Miller
- Massachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
9
|
Gutzen R, De Bonis G, De Luca C, Pastorelli E, Capone C, Allegra Mascaro AL, Resta F, Manasanch A, Pavone FS, Sanchez-Vives MV, Mattia M, Grün S, Paolucci PS, Denker M. A modular and adaptable analysis pipeline to compare slow cerebral rhythms across heterogeneous datasets. CELL REPORTS METHODS 2024; 4:100681. [PMID: 38183979 PMCID: PMC10831958 DOI: 10.1016/j.crmeth.2023.100681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/11/2023] [Accepted: 12/11/2023] [Indexed: 01/08/2024]
Abstract
Neuroscience is moving toward a more integrative discipline where understanding brain function requires consolidating the accumulated evidence seen across experiments, species, and measurement techniques. A remaining challenge on that path is integrating such heterogeneous data into analysis workflows such that consistent and comparable conclusions can be distilled as an experimental basis for models and theories. Here, we propose a solution in the context of slow-wave activity (<1 Hz), which occurs during unconscious brain states like sleep and general anesthesia and is observed across diverse experimental approaches. We address the issue of integrating and comparing heterogeneous data by conceptualizing a general pipeline design that is adaptable to a variety of inputs and applications. Furthermore, we present the Collaborative Brain Wave Analysis Pipeline (Cobrawap) as a concrete, reusable software implementation to perform broad, detailed, and rigorous comparisons of slow-wave characteristics across multiple, openly available electrocorticography (ECoG) and calcium imaging datasets.
Collapse
Affiliation(s)
- Robin Gutzen
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany; Theoretical Systems Neurobiology, RWTH Aachen University, Aachen, Germany.
| | - Giulia De Bonis
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma, Rome, Italy
| | - Chiara De Luca
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma, Rome, Italy; Institute of Neuroinformatics, University of Zürich and ETH Zürich, Zürich, Switzerland
| | - Elena Pastorelli
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma, Rome, Italy
| | - Cristiano Capone
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma, Rome, Italy
| | - Anna Letizia Allegra Mascaro
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Florence, Italy; Neuroscience Institute, National Research Council, Pisa, Italy
| | - Francesco Resta
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Florence, Italy; Department of Physics and Astronomy, University of Florence, Florence, Italy
| | - Arnau Manasanch
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Francesco Saverio Pavone
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Florence, Italy; Department of Physics and Astronomy, University of Florence, Florence, Italy; National Institute of Optics, National Research Council, Sesto Fiorentino, Italy
| | - Maria V Sanchez-Vives
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Maurizio Mattia
- National Center for Radiation Protection and Computational Physics, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Sonja Grün
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany; Theoretical Systems Neurobiology, RWTH Aachen University, Aachen, Germany
| | | | - Michael Denker
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
| |
Collapse
|