1
|
Storm JF, Klink PC, Aru J, Senn W, Goebel R, Pigorini A, Avanzini P, Vanduffel W, Roelfsema PR, Massimini M, Larkum ME, Pennartz CMA. An integrative, multiscale view on neural theories of consciousness. Neuron 2024; 112:1531-1552. [PMID: 38447578 DOI: 10.1016/j.neuron.2024.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/20/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024]
Abstract
How is conscious experience related to material brain processes? A variety of theories aiming to answer this age-old question have emerged from the recent surge in consciousness research, and some are now hotly debated. Although most researchers have so far focused on the development and validation of their preferred theory in relative isolation, this article, written by a group of scientists representing different theories, takes an alternative approach. Noting that various theories often try to explain different aspects or mechanistic levels of consciousness, we argue that the theories do not necessarily contradict each other. Instead, several of them may converge on fundamental neuronal mechanisms and be partly compatible and complementary, so that multiple theories can simultaneously contribute to our understanding. Here, we consider unifying, integration-oriented approaches that have so far been largely neglected, seeking to combine valuable elements from various theories.
Collapse
Affiliation(s)
- Johan F Storm
- The Brain Signaling Group, Division of Physiology, IMB, Faculty of Medicine, University of Oslo, Domus Medica, Sognsvannsveien 9, Blindern, 0317 Oslo, Norway.
| | - P Christiaan Klink
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands; Experimental Psychology, Helmholtz Institute, Utrecht University, 3584 CS Utrecht, the Netherlands; Laboratory of Visual Brain Therapy, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris 75012, France
| | - Jaan Aru
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Walter Senn
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Rainer Goebel
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 EV Maastricht, The Netherlands
| | - Andrea Pigorini
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan 20122, Italy
| | - Pietro Avanzini
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, 43125 Parma, Italy
| | - Wim Vanduffel
- Department of Neurosciences, Laboratory of Neuro and Psychophysiology, KU Leuven Medical School, 3000 Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, Boston, MA 02144, USA
| | - Pieter R Roelfsema
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands; Laboratory of Visual Brain Therapy, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris 75012, France; Department of Integrative Neurophysiology, VU University, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands; Department of Neurosurgery, Academisch Medisch Centrum, Postbus 22660, 1100 DD Amsterdam, the Netherlands
| | - Marcello Massimini
- Department of Biomedical and Clinical Sciences "L. Sacco", Università degli Studi di Milano, Milan 20157, Italy; Istituto di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan 20122, Italy; Azrieli Program in Brain, Mind and Consciousness, Canadian Institute for Advanced Research (CIFAR), Toronto, ON M5G 1M1, Canada
| | - Matthew E Larkum
- Institute of Biology, Humboldt University Berlin, Berlin, Germany; Neurocure Center for Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Cyriel M A Pennartz
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Faculty of Science, University of Amsterdam, Sciencepark 904, Amsterdam 1098 XH, the Netherlands; Research Priority Program Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Forti B. The hidden structure of consciousness. Front Psychol 2024; 15:1344033. [PMID: 38650907 PMCID: PMC11033517 DOI: 10.3389/fpsyg.2024.1344033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
According to Loorits, if we want consciousness to be explained in terms of natural sciences, we should be able to analyze its seemingly non-structural aspects, like qualia, in structural terms. However, the studies conducted over the last three decades do not seem to be able to bridge the explanatory gap between physical phenomena and phenomenal experience. One possible way to bridge the explanatory gap is to seek the structure of consciousness within consciousness itself, through a phenomenal analysis of the qualitative aspects of experience. First, this analysis leads us to identify the explanandum concerning the simplest forms of experience not in qualia but in the unitary set of qualities found in early vision. Second, it leads us to hypothesize that consciousness is also made up of non-apparent parts, and that there exists a hidden structure of consciousness. This structure, corresponding to a simple early visual experience, is constituted by a Hierarchy of Spatial Belongings nested within each other. Each individual Spatial Belonging is formed by a primary content and a primary space. The primary content can be traced in the perceptibility of the contents we can distinguish in the phenomenal field. The primary space is responsible for the perceptibility of the content and is not perceptible in itself. However, the phenomenon I refer to as subtraction of visibility allows us to characterize it as phenomenally negative. The hierarchical relationships between Spatial Belongings can ensure the qualitative nature of components of perceptual organization, such as object, background, and detail. The hidden structure of consciousness presents aspects that are decidedly counterintuitive compared to our idea of phenomenal experience. However, on the one hand, the Hierarchy of Spatial Belongings can explain the qualities of early vision and their appearance as a unitary whole, while on the other hand, it might be more easily explicable in terms of brain organization. In other words, the hidden structure of consciousness can be considered a bridge structure which, placing itself at an intermediate level between experience and physical properties, can contribute to bridging the explanatory gap.
Collapse
Affiliation(s)
- Bruno Forti
- Department of Mental Health, Azienda ULSS 1 Dolomiti, Belluno, Italy
| |
Collapse
|
3
|
Forti B. Approaching the nature of consciousness through a phenomenal analysis of early vision. What is the explanandum? Front Psychol 2024; 15:1329259. [PMID: 38562232 PMCID: PMC10982490 DOI: 10.3389/fpsyg.2024.1329259] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
Loorits (2014) identifies the solution to the hard problem of consciousness in the possibility of fully analyzing seemingly non-structural aspects of consciousness in structural terms. However, research on consciousness conducted in recent decades has failed to bridge the explanatory gap between the brain and conscious mind. One reason why the explanatory gap cannot be filled, and consequently the problem remains hard, is that experience and neural structure are too different or "distant" to be directly compatible. Conversely, structural aspects of consciousness can be found in phenomenal experience. One possible alternative, therefore, is to seek the structure of seemingly non-structural aspects of consciousness not in the neural substrate, but within consciousness itself, through a phenomenal analysis of the qualitative aspects of experience, starting from its simplest forms. An essential premise is to reformulate the explanandum of consciousness, which is usually attributed to qualia and what it is like to be in a certain state. However, these properties do not allow us to identify the fundamental aspects of phenomenal experience. Sensations such as the redness of red or the painfulness of pain are inseparable from the context of the experience to which they belong, making qualia appear as phenomenal artifacts. Furthermore, the simplest qualitative aspects can be found in early vision. They are involved in perceptual organization and necessarily have relational significance. The unitary set of qualities found in early vision-such as those related to being an object, background or detail-constitutes the explanandum of the simplest forms of consciousness and seems to imply a justifying structure. Although early vision is characterized by interdependent qualitative components that form a unitary whole, we cannot find in it the structure of seemingly non-structural aspects of consciousness. Phenomenal appearance alone does not seem sufficient to identify a unitary structure of consciousness. However, the closeness of these characteristics to a unitary structure prompts us to delve into less explored territory, using the components of experience also as possible explanans.
Collapse
Affiliation(s)
- Bruno Forti
- Department of Mental Health, Azienda ULSS 1 Dolomiti, Belluno, Italy
| |
Collapse
|
4
|
Montupil J, Cardone P, Staquet C, Bonhomme A, Defresne A, Martial C, Alnagger NL, Gosseries O, Bonhomme V. The nature of consciousness in anaesthesia. BJA OPEN 2023; 8:100224. [PMID: 37780201 PMCID: PMC10539891 DOI: 10.1016/j.bjao.2023.100224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023]
Abstract
Neuroscientists agree on the value of locating the source of consciousness within the brain. Anaesthesiologists are no exception, and have their own operational definition of consciousness based on phenomenological observations during anaesthesia. The full functional correlates of consciousness are yet to be precisely identified, however rapidly evolving progress in this scientific domain has yielded several theories that attempt to model the generation of consciousness. They have received variable support from experimental observations, including those involving anaesthesia and its ability to reversibly modulate different aspects of consciousness. Aside from the interest in a better understanding of the mechanisms of consciousness, exploring the functional tenets of the phenomenological consciousness states of general anaesthesia has the potential to ultimately improve patient management. It could facilitate the design of specific monitoring devices and approaches, aiming at reliably detecting each of the possible states of consciousness during an anaesthetic procedure, including total absence of mental content (unconsciousness), and internal awareness (sensation of self and internal thoughts) with or without conscious perception of the environment (connected or disconnected consciousness, respectively). Indeed, it must be noted that unresponsiveness is not sufficient to infer absence of connectedness or even absence of consciousness. This narrative review presents the current knowledge in this field from a system-level, underlining the contribution of anaesthesia studies in supporting theories of consciousness, and proposing directions for future research.
Collapse
Affiliation(s)
- Javier Montupil
- Anesthesia and Perioperative Neuroscience Laboratory, Liege, Belgium
- Department of Anesthesia and Intensive Care Medicine, Liege, Belgium
- University Department of Anesthesia and Intensive Care Medicine, Citadelle Regional Hospital, Liege, Belgium
| | - Paolo Cardone
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liege University, Liege, Belgium
- Centre du Cerveau, Liege University Hospital, Liege, Belgium
| | - Cécile Staquet
- Anesthesia and Perioperative Neuroscience Laboratory, Liege, Belgium
- Department of Anesthesia and Intensive Care Medicine, Liege, Belgium
| | - Arthur Bonhomme
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liege University, Liege, Belgium
| | - Aline Defresne
- Anesthesia and Perioperative Neuroscience Laboratory, Liege, Belgium
- Department of Anesthesia and Intensive Care Medicine, Liege, Belgium
- University Department of Anesthesia and Intensive Care Medicine, Citadelle Regional Hospital, Liege, Belgium
| | - Charlotte Martial
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liege University, Liege, Belgium
- Centre du Cerveau, Liege University Hospital, Liege, Belgium
| | - Naji L.N. Alnagger
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liege University, Liege, Belgium
- Centre du Cerveau, Liege University Hospital, Liege, Belgium
| | - Olivia Gosseries
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liege University, Liege, Belgium
- Centre du Cerveau, Liege University Hospital, Liege, Belgium
| | - Vincent Bonhomme
- Anesthesia and Perioperative Neuroscience Laboratory, Liege, Belgium
- Department of Anesthesia and Intensive Care Medicine, Liege, Belgium
| |
Collapse
|
5
|
Owen M, Huang Z, Duclos C, Lavazza A, Grasso M, Hudetz AG. Theoretical Neurobiology of Consciousness Applied to Human Cerebral Organoids. Camb Q Healthc Ethics 2023:1-21. [PMID: 37850471 DOI: 10.1017/s0963180123000543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Organoids and specifically human cerebral organoids (HCOs) are one of the most relevant novelties in the field of biomedical research. Grown either from embryonic or induced pluripotent stem cells, HCOs can be used as in vitro three-dimensional models, mimicking the developmental process and organization of the developing human brain. Based on that, and despite their current limitations, it cannot be assumed that they will never at any stage of development manifest some rudimentary form of consciousness. In the absence of behavioral indicators of consciousness, the theoretical neurobiology of consciousness being applied to unresponsive brain-injured patients can be considered with respect to HCOs. In clinical neurology, it is difficult to discern a capacity for consciousness in unresponsive brain-injured patients who provide no behavioral indicators of consciousness. In such scenarios, a validated neurobiological theory of consciousness, which tells us what the neural mechanisms of consciousness are, could be used to identify a capacity for consciousness. Like the unresponsive patients that provide a diagnostic difficulty for neurologists, HCOs provide no behavioral indicators of consciousness. Therefore, this article discusses how three prominent neurobiological theories of consciousness apply to human cerebral organoids. From the perspective of the Temporal Circuit Hypothesis, the Global Neuronal Workspace Theory, and the Integrated Information Theory, we discuss what neuronal structures and functions might indicate that cerebral organoids have a neurobiological capacity to be conscious.
Collapse
Affiliation(s)
- Matthew Owen
- Philosophy Department, Yakima Valley College, Yakima, WA, USA
- Center for Consciousness Science, University of Michigan, Ann Arbor, MI, USA
| | - Zirui Huang
- Center for Consciousness Science, University of Michigan, Ann Arbor, MI, USA
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - Catherine Duclos
- Department of Anesthesiology and Pain Medicine, Université de Montréal, Montréal, QC, Canada
- Department of Neuroscience, Université de Montréal, Montréal, QC, Canada
- Centre for Advanced Research in Sleep Medicine, Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Nord-de-l'île-de-Montréal, Montréal, QC, Canada
- CIFAR Azrieli Global Scholars Program, Toronto, ON, Canada
| | - Andrea Lavazza
- Centro Universitario Internazionale, Arezzo, Italy
- University of Pavia, Pavia, Italy
| | - Matteo Grasso
- Center for Sleep and Consciousness, University of Wisconsin-Madison, Madison, WI, USA
| | - Anthony G Hudetz
- Center for Consciousness Science, University of Michigan, Ann Arbor, MI, USA
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
6
|
Dwarakanath A, Kapoor V, Werner J, Safavi S, Fedorov LA, Logothetis NK, Panagiotaropoulos TI. Bistability of prefrontal states gates access to consciousness. Neuron 2023; 111:1666-1683.e4. [PMID: 36921603 DOI: 10.1016/j.neuron.2023.02.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/24/2022] [Accepted: 02/16/2023] [Indexed: 03/15/2023]
Abstract
Access of sensory information to consciousness has been linked to the ignition of content-specific representations in association cortices. How does ignition interact with intrinsic cortical state fluctuations to give rise to conscious perception? We addressed this question in the prefrontal cortex (PFC) by combining multi-electrode recordings with a binocular rivalry (BR) paradigm inducing spontaneously driven changes in the content of consciousness, inferred from the reflexive optokinetic nystagmus (OKN) pattern. We find that fluctuations between low-frequency (LF, 1-9 Hz) and beta (∼20-40 Hz) local field potentials (LFPs) reflect competition between spontaneous updates and stability of conscious contents, respectively. Both LF and beta events were locally modulated. The phase of the former locked differentially to the competing populations just before a spontaneous transition while the latter synchronized the neuronal ensemble coding the consciously perceived content. These results suggest that prefrontal state fluctuations gate conscious perception by mediating internal states that facilitate perceptual update and stability.
Collapse
Affiliation(s)
- Abhilash Dwarakanath
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen 72076, Germany; Cognitive Neuroimaging Unit, Institut National de la Santé et de la Recherche Médicale, Commissariat à l'Energie Atomique et aux énergies alternatives, Université Paris-Saclay, NeuroSpin Center, 91191 Gif-sur-Yvette, France.
| | - Vishal Kapoor
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen 72076, Germany; International Center for Primate Brain Research, Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences, Shanghai, China
| | - Joachim Werner
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen 72076, Germany
| | - Shervin Safavi
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen 72076, Germany; International Max Planck Research School, Tübingen 72076, Germany
| | - Leonid A Fedorov
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen 72076, Germany
| | - Nikos K Logothetis
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen 72076, Germany; Division of Imaging Science and Biomedical Engineering, University of Manchester, Manchester M13 9PT, UK; International Center for Primate Brain Research, Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences, Shanghai, China
| | - Theofanis I Panagiotaropoulos
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen 72076, Germany; Cognitive Neuroimaging Unit, Institut National de la Santé et de la Recherche Médicale, Commissariat à l'Energie Atomique et aux énergies alternatives, Université Paris-Saclay, NeuroSpin Center, 91191 Gif-sur-Yvette, France.
| |
Collapse
|
7
|
Escaping from the IIT Munchausen method: Re-establishing the scientific method in the study of consciousness. Behav Brain Sci 2022; 45:e63. [PMID: 35319419 DOI: 10.1017/s0140525x21002028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Integrated information theory (IIT) is an example of "ironic science" and obstructs the scientific study of consciousness. By confusing the ontological status of a method to quantify network complexity with that of a theory of consciousness, IIT has to square the circle and spirals toward its panpsychism conclusion. I analyze the consequences of this fallacy and suggest how the study of consciousness can be brought back into the realm of rational, empirical science.
Collapse
|
8
|
Signorelli CM, Szczotka J, Prentner R. Explanatory profiles of models of consciousness - towards a systematic classification. Neurosci Conscious 2021; 2021:niab021. [PMID: 34457353 PMCID: PMC8396118 DOI: 10.1093/nc/niab021] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/27/2021] [Accepted: 08/18/2021] [Indexed: 11/14/2022] Open
Abstract
Models of consciousness aim to inspire new experimental protocols and aid interpretation of empirical evidence to reveal the structure of conscious experience. Nevertheless, no current model is univocally accepted on either theoretical or empirical grounds. Moreover, a straightforward comparison is difficult for conceptual reasons. In particular, we argue that different models explicitly or implicitly subscribe to different notions of what constitutes a satisfactory explanation, use different tools in their explanatory endeavours and even aim to explain very different phenomena. We thus present a framework to compare existing models in the field with respect to what we call their 'explanatory profiles'. We focus on the following minimal dimensions: mode of explanation, mechanisms of explanation and target of explanation. We also discuss the empirical consequences of the discussed discrepancies among models. This approach may eventually lead to identifying driving assumptions, theoretical commitments, experimental predictions and a better design of future testing experiments. Finally, our conclusion points to more integrative theoretical research, where axiomatic models may play a critical role in solving current theoretical and experimental contradictions.
Collapse
Affiliation(s)
- Camilo Miguel Signorelli
- Cognitive Neuroimaging Unit, INSERM U992, NeuroSpin, CEA, Gif sur Yvette F-91191, France
- Department of Computer Science, University of Oxford, 15 Parks Rd, Oxford OX1 3QD, UK
- Center for Brain and Cognition, Universitat Pompeu Fabra, Edifici Merce Rodereda, Carrer de Ramon Trias Fargas, 25, Barcelona 08018, Spain
| | - Joanna Szczotka
- Center for Sleep and Consciousness, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison WI 53719, USA
- Consciousness Lab, Institute of Psychology, Jagiellonian University, 6 Ingardena, Kraków 30-060, Poland
| | - Robert Prentner
- Department of Cognitive Sciences, University of California, 3151 Social Science Plaza, Irvine CA 92697-5100, USA
- Center for the Future Mind, Florida Atlantic University, 777 Glades Road - SO 283, Boca Raton FL 33431-0991, USA
| |
Collapse
|
9
|
Bifurcation in brain dynamics reveals a signature of conscious processing independent of report. Nat Commun 2021; 12:1149. [PMID: 33608533 PMCID: PMC7895979 DOI: 10.1038/s41467-021-21393-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/21/2021] [Indexed: 12/05/2022] Open
Abstract
An outstanding challenge for consciousness research is to characterize the neural signature of conscious access independently of any decisional processes. Here we present a model-based approach that uses inter-trial variability to identify the brain dynamics associated with stimulus processing. We demonstrate that, even in the absence of any task or behavior, the electroencephalographic response to auditory stimuli shows bifurcation dynamics around 250–300 milliseconds post-stimulus. Namely, the same stimulus gives rise to late sustained activity on some trials, and not on others. This late neural activity is predictive of task-related reports, and also of reports of conscious contents that are randomly sampled during task-free listening. Source localization further suggests that task-free conscious access recruits the same neural networks as those associated with explicit report, except for frontal executive components. Studying brain dynamics through variability could thus play a key role for identifying the core signatures of conscious access, independent of report. Current knowledge on the neural basis of consciousness mostly relies on situations where people report their perception. Here, the authors provide evidence for the idea that bifurcation in brain dynamics reflects conscious perception independent of report.
Collapse
|
10
|
Ballesteros JJ, Briscoe JB, Ishizawa Y. Neural signatures of α2-Adrenergic agonist-induced unconsciousness and awakening by antagonist. eLife 2020; 9:57670. [PMID: 32857037 PMCID: PMC7455241 DOI: 10.7554/elife.57670] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/09/2020] [Indexed: 12/29/2022] Open
Abstract
How the brain dynamics change during anesthetic-induced altered states of consciousness is not completely understood. The α2-adrenergic agonists are unique. They generate unconsciousness selectively through α2-adrenergic receptors and related circuits. We studied intracortical neuronal dynamics during transitions of loss of consciousness (LOC) with the α2-adrenergic agonist dexmedetomidine and return of consciousness (ROC) in a functionally interconnecting somatosensory and ventral premotor network in non-human primates. LOC, ROC and full task performance recovery were all associated with distinct neural changes. The early recovery demonstrated characteristic intermediate dynamics distinguished by sustained high spindle activities. Awakening by the α2-adrenergic antagonist completely eliminated this intermediate state and instantaneously restored awake dynamics and the top task performance while the anesthetic was still being infused. The results suggest that instantaneous functional recovery is possible following anesthetic-induced unconsciousness and the intermediate recovery state is not a necessary path for the brain recovery.
Collapse
Affiliation(s)
- Jesus Javier Ballesteros
- Department of Anesthesia, Critical Care & Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - Jessica Blair Briscoe
- Department of Anesthesia, Critical Care & Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - Yumiko Ishizawa
- Department of Anesthesia, Critical Care & Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| |
Collapse
|
11
|
Reconciling Current Theories of Consciousness. J Neurosci 2020; 40:1994-1996. [PMID: 32132221 DOI: 10.1523/jneurosci.2740-19.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/07/2020] [Accepted: 01/16/2020] [Indexed: 11/21/2022] Open
|
12
|
Zumer JM, White TP, Noppeney U. The neural mechanisms of audiotactile binding depend on asynchrony. Eur J Neurosci 2020; 52:4709-4731. [PMID: 32725895 DOI: 10.1111/ejn.14928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 07/06/2020] [Accepted: 07/24/2020] [Indexed: 11/30/2022]
Abstract
Asynchrony is a critical cue informing the brain whether sensory signals are caused by a common source and should be integrated or segregated. This psychophysics-electroencephalography (EEG) study investigated the influence of asynchrony on how the brain binds audiotactile (AT) signals to enable faster responses in a redundant target paradigm. Human participants actively responded (psychophysics) or passively attended (EEG) to noise bursts, "taps-to-the-face" and their AT combinations at seven AT asynchronies: 0, ±20, ±70 and ±500 ms. Behaviourally, observers were faster at detecting AT than unisensory stimuli within a temporal integration window: the redundant target effect was maximal for synchronous stimuli and declined within a ≤70 ms AT asynchrony. EEG revealed a cascade of AT interactions that relied on different neural mechanisms depending on AT asynchrony. At small (≤20 ms) asynchronies, AT interactions arose for evoked response potentials (ERPs) at 110 ms and ~400 ms post-stimulus. Selectively at ±70 ms asynchronies, AT interactions were observed for the P200 ERP, theta-band inter-trial coherence (ITC) and power at ~200 ms post-stimulus. In conclusion, AT binding was mediated by distinct neural mechanisms depending on the asynchrony of the AT signals. Early AT interactions in ERPs and theta-band ITC and power were critical for the behavioural response facilitation within a ≤±70 ms temporal integration window.
Collapse
Affiliation(s)
- Johanna M Zumer
- School of Psychology, University of Birmingham, Birmingham, UK.,Centre for Computational Neuroscience and Cognitive Robotics, University of Birmingham, Birmingham, UK.,Centre for Human Brain Health, University of Birmingham, Birmingham, UK.,School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Thomas P White
- School of Psychology, University of Birmingham, Birmingham, UK.,Centre for Computational Neuroscience and Cognitive Robotics, University of Birmingham, Birmingham, UK
| | - Uta Noppeney
- School of Psychology, University of Birmingham, Birmingham, UK.,Centre for Computational Neuroscience and Cognitive Robotics, University of Birmingham, Birmingham, UK.,Centre for Human Brain Health, University of Birmingham, Birmingham, UK.,Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, The Netherlands
| |
Collapse
|
13
|
Mashour GA, Roelfsema P, Changeux JP, Dehaene S. Conscious Processing and the Global Neuronal Workspace Hypothesis. Neuron 2020; 105:776-798. [PMID: 32135090 PMCID: PMC8770991 DOI: 10.1016/j.neuron.2020.01.026] [Citation(s) in RCA: 465] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/31/2019] [Accepted: 01/22/2020] [Indexed: 10/24/2022]
Abstract
We review the central tenets and neuroanatomical basis of the global neuronal workspace (GNW) hypothesis, which attempts to account for the main scientific observations regarding the elementary mechanisms of conscious processing in the human brain. The GNW hypothesis proposes that, in the conscious state, a non-linear network ignition associated with recurrent processing amplifies and sustains a neural representation, allowing the corresponding information to be globally accessed by local processors. We examine this hypothesis in light of recent data that contrast brain activity evoked by either conscious or non-conscious contents, as well as during conscious or non-conscious states, particularly general anesthesia. We also discuss the relationship between the intertwined concepts of conscious processing, attention, and working memory.
Collapse
Affiliation(s)
- George A Mashour
- Center for Consciousness Science, Neuroscience Graduate Program, and Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - Pieter Roelfsema
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, the Netherlands; Department of Psychiatry, Academic Medical Center, Amsterdam, the Netherlands
| | - Jean-Pierre Changeux
- CNRS UMR 3571, Institut Pasteur, 75724 Paris, France; Collège de France, 11 Place Marcelin Berthelot, 75005 Paris, France; Kavli Institute for Brain & Mind, University of California, San Diego, La Jolla, CA, USA.
| | - Stanislas Dehaene
- Collège de France, 11 Place Marcelin Berthelot, 75005 Paris, France; Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin Center, 91191 Gif/Yvette, France.
| |
Collapse
|
14
|
Noel JP, Chatelle C, Perdikis S, Jöhr J, Lopes Da Silva M, Ryvlin P, De Lucia M, Millán JDR, Diserens K, Serino A. Peri-personal space encoding in patients with disorders of consciousness and cognitive-motor dissociation. NEUROIMAGE-CLINICAL 2019; 24:101940. [PMID: 31357147 PMCID: PMC6664240 DOI: 10.1016/j.nicl.2019.101940] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/13/2019] [Accepted: 07/17/2019] [Indexed: 01/06/2023]
Abstract
Behavioral assessments of consciousness based on overt command following cannot differentiate patients with disorders of consciousness (DOC) from those who demonstrate a dissociation between intent/awareness and motor capacity: cognitive motor dissociation (CMD). We argue that delineation of peri-personal space (PPS) – the multisensory-motor space immediately surrounding the body – may differentiate these patients due to its central role in mediating human-environment interactions, and putatively in scaffolding a minimal form of selfhood. In Experiment 1, we determined a normative physiological index of PPS by recording electrophysiological (EEG) responses to tactile, auditory, or audio-tactile stimulation at different distances (5 vs. 75 cm) in healthy volunteers (N = 19). Contrasts between paired (AT) and summed (A + T) responses demonstrated multisensory supra-additivity when AT stimuli were presented near, i.e., within the PPS, and highlighted somatosensory-motor sensors as electrodes of interest. In Experiment 2, we recorded EEG in patients behaviorally diagnosed as DOC or putative CMD (N = 17, 30 sessions). The PPS-measure developed in Experiment 1 was analyzed in relation with both standard clinical diagnosis (i.e., Coma Recovery Scale; CRS-R) and a measure of neural complexity associated with consciousness. Results demonstrated a significant correlation between the PPS measure and neural complexity, but not with the CRS-R, highlighting the added value of the physiological recordings. Further, multisensory processing in PPS was preserved in putative CMD but not in DOC patients. Together, the findings suggest that indexing PPS allows differentiating between groups of patients whom both show overt motor impairments (DOC and CMD) but putatively distinct levels of awareness or motor intent. Behavioral assessments confound consciousness and motor output. We suggest that multisensory coding of actionable space may dissociate these two. We develop an electrophysiological marker of peri-personal space. Then use this marker to distinguish impairments in consciousness and motor output.
Collapse
Affiliation(s)
- Jean-Paul Noel
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Camille Chatelle
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Coma Science Group, GIGA Consciousness, University and University Hospital of Liège, Liège, Belgium
| | - Serafeim Perdikis
- Center for Neuroprosthetics, School of Engineering, Ecole Polytechnique Federale de Lausanne (EPFL), Geneva, Switzerland; Brain-Computer Interfaces and Neural Engineering Laboratory, School of Computer Science and Electronic Engineering, University of Essex, UK
| | - Jane Jöhr
- Acute Neurorehabilitation Unit, Neurology, Department of and Clinical Neurosciences, University Hospital of Lausanne, Lausanne, Switzerland
| | - Marina Lopes Da Silva
- Acute Neurorehabilitation Unit, Neurology, Department of and Clinical Neurosciences, University Hospital of Lausanne, Lausanne, Switzerland
| | - Philippe Ryvlin
- Acute Neurorehabilitation Unit, Neurology, Department of and Clinical Neurosciences, University Hospital of Lausanne, Lausanne, Switzerland
| | - Marzia De Lucia
- Laboratoire de Recherche en Neuroimagerie, Department of Clinical Neurosciences, University Hospital of Lausanne, University of Lausanne, Lausanne, Switzerland
| | - José Del R Millán
- Center for Neuroprosthetics, School of Engineering, Ecole Polytechnique Federale de Lausanne (EPFL), Geneva, Switzerland
| | - Karin Diserens
- Acute Neurorehabilitation Unit, Neurology, Department of and Clinical Neurosciences, University Hospital of Lausanne, Lausanne, Switzerland.
| | - Andrea Serino
- MySpace Lab, Department of Clinical Neurosciences, University Hospital of Lausanne, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|