1
|
Maceira-Elvira P, Popa T, Schmid AC, Cadic-Melchior A, Müller H, Schaer R, Cohen LG, Hummel FC. Native learning ability and not age determines the effects of brain stimulation. NPJ SCIENCE OF LEARNING 2024; 9:69. [PMID: 39604463 PMCID: PMC11603171 DOI: 10.1038/s41539-024-00278-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024]
Abstract
Healthy aging often entails a decline in cognitive and motor functions, affecting independence and quality of life in older adults. Brain stimulation shows potential to enhance these functions, but studies show variable effects. Previous studies have tried to identify responders and non-responders through correlations between behavioral change and baseline parameters, but results lack generalization to independent cohorts. We propose a method to predict an individual's likelihood of benefiting from stimulation, based on baseline performance of a sequential motor task. Our results show that individuals with less efficient learning mechanisms benefit from stimulation, while those with optimal learning strategies experience none or even detrimental effects. This differential effect, first identified in a public dataset and replicated here in an independent cohort, was linked to one's ability to integrate task-relevant information and not age. This study constitutes a further step towards personalized clinical-translational interventions based on brain stimulation.
Collapse
Affiliation(s)
- Pablo Maceira-Elvira
- Defitech Chair for Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair for Clinical Neuroengineering, Neuro-X Institute (INX), EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
- Wyss Center for Bio- and Neuroengineering, Geneva, Switzerland
| | - Traian Popa
- Defitech Chair for Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair for Clinical Neuroengineering, Neuro-X Institute (INX), EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
| | - Anne-Christine Schmid
- Defitech Chair for Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair for Clinical Neuroengineering, Neuro-X Institute (INX), EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
| | - Andéol Cadic-Melchior
- Defitech Chair for Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair for Clinical Neuroengineering, Neuro-X Institute (INX), EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
| | - Henning Müller
- University of Applied Sciences Western Switzerland (HES-SO), Valais-Wallis, Switzerland
| | - Roger Schaer
- University of Applied Sciences Western Switzerland (HES-SO), Valais-Wallis, Switzerland
| | - Leonardo G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA
| | - Friedhelm C Hummel
- Defitech Chair for Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland.
- Defitech Chair for Clinical Neuroengineering, Neuro-X Institute (INX), EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland.
- Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland.
| |
Collapse
|
2
|
Ebrahimi S, van der Voort B, Ostry DJ. The Consolidation of Newly Learned Movements Depends upon the Somatosensory Cortex in Humans. J Neurosci 2024; 44:e0629242024. [PMID: 38871461 PMCID: PMC11308319 DOI: 10.1523/jneurosci.0629-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024] Open
Abstract
Studies using magnetic brain stimulation indicate the involvement of somatosensory regions in the acquisition and retention of newly learned movements. Recent work found an impairment in motor memory when retention was tested shortly after the application of continuous theta-burst stimulation (cTBS) to the primary somatosensory cortex, compared with stimulation of the primary motor cortex or a control zone. This finding that the somatosensory cortex is involved in motor memory retention whereas the motor cortex is not, if confirmed, could alter our understanding of human motor learning. It would indicate that plasticity in sensory systems underlies newly learned movements, which is different than the commonly held view that adaptation learning involves updates to a motor controller. Here we test this idea. Participants were trained in a visuomotor adaptation task, with visual feedback gradually shifted. Following adaptation, cTBS was applied either to M1, S1, or an occipital cortex control area. Participants were tested for retention 24 h later. It was observed that S1 stimulation led to reduced retention of prior learning, compared with stimulation of M1 or the control area (with no significant difference between M1 and control). In a further control, cTBS was applied to S1 following training with unrotated feedback, in which no learning occurred. This had no effect on movement in the retention test indicating the effects of S1 stimulation on movement are learning specific. The findings are consistent with the S1 participation in the encoding of learning-related changes to movements and in the retention of human motor memory.
Collapse
Affiliation(s)
- Shahryar Ebrahimi
- Department of Psychology, McGill University, Montreal, Quebec H3A1G1, Canada
| | - Bram van der Voort
- Department of Psychology and Educational Sciences, KU Leuven, Leuven, Flemish Brabant 3000, Belgium
| | - David J Ostry
- Department of Psychology, McGill University, Montreal, Quebec H3A1G1, Canada
- Yale Child Study Center, Yale School of Medicine, New Haven, Connecticut 06511
| |
Collapse
|
3
|
Lee HS, Kim S, Kim H, Baik SM, Kim DH, Chang WH. No Additional Effects of Sequential Facilitatory Cerebral and Cerebellar rTMS in Subacute Stroke Patients. J Pers Med 2024; 14:687. [PMID: 39063941 PMCID: PMC11278256 DOI: 10.3390/jpm14070687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
The aim of this study was to investigate the additional effects of cerebellar rTMS on the motor recovery of facilitatory rTMS over affected primary motor cortex (M1) in subacute stroke patients. Twenty-eight subacute stroke patients were recruited in this single-blind, randomized, controlled trial. The Cr-Cbll group received Cr-Cbll rTMS stimulation consisting of high-frequency rTMS over affected M1 (10 min), motor training (10 min), and high-frequency rTMS over contralesional Cbll (10 min). The Cr-sham group received sham rTMS instead of high-frequency rTMS over the cerebellum. Ten daily sessions were performed for 2 weeks. A Fugl-Meyer Assessment (FMA) was measured before (T0), immediately after (T1), and 2 months after the intervention (T2). A total of 20 participants (10 in the Cr-Cbll group and 10 in the Cr-sham group) completed the intervention. There was no significant difference in clinical characteristics between the two groups at T0. FMA was significantly improved after the intervention in both Cr-Cbll and Cr-sham groups (p < 0.05). However, there was no significant interaction in FMA between time and group. In conclusion, these results could not demonstrate that rTMS over the contralesional cerebellum has additional effects to facilitatory rTMS over the affected M1 for improving motor function in subacute stroke patients.
Collapse
Affiliation(s)
- Ho Seok Lee
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular and Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Sungwon Kim
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular and Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Heegoo Kim
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular and Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Seung-min Baik
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular and Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Dae Hyun Kim
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular and Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Won Hyuk Chang
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular and Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
- Department of Health Sciences and Technology, Department of Medical Device Management & Research, Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul 06355, Republic of Korea
| |
Collapse
|
4
|
Sloane KL, Hamilton RH. Transcranial Direct Current Stimulation to Ameliorate Post-Stroke Cognitive Impairment. Brain Sci 2024; 14:614. [PMID: 38928614 PMCID: PMC11202055 DOI: 10.3390/brainsci14060614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Post-stroke cognitive impairment is a common and disabling condition with few effective therapeutic options. After stroke, neural reorganization and other neuroplastic processes occur in response to ischemic injury, which can result in clinical improvement through spontaneous recovery. Neuromodulation through transcranial direct current stimulation (tDCS) is a promising intervention to augment underlying neuroplasticity in order to improve cognitive function. This form of neuromodulation leverages mechanisms of neuroplasticity post-stroke to optimize neural reorganization and improve function. In this review, we summarize the current state of cognitive neurorehabilitation post-stroke, the practical features of tDCS, its uses in stroke-related cognitive impairment across cognitive domains, and special considerations for the use of tDCS in the post-stroke patient population.
Collapse
Affiliation(s)
- Kelly L. Sloane
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physical Medicine and Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Roy H. Hamilton
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physical Medicine and Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Le Cong D, Sato D, Ikarashi K, Ochi G, Fujimoto T, Yamashiro K. No effect of whole-hand water flow stimulation on skill acquisition and retention during sensorimotor adaptation. Front Hum Neurosci 2024; 18:1398164. [PMID: 38911224 PMCID: PMC11190340 DOI: 10.3389/fnhum.2024.1398164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction Repetitive somatosensory stimulation (RSS) is a conventional approach to modulate the neural states of both the primary somatosensory cortex (S1) and the primary motor cortex (M1). However, the impact of RSS on skill acquisition and retention in sensorimotor adaptation remains debated. This study aimed to investigate whether whole-hand water flow (WF), a unique RSS-induced M1 disinhibition, influences sensorimotor adaptation by examining the hypothesis that whole-hand WF leads to M1 disinhibition; thereby, enhancing motor memory retention. Methods Sixty-eight young healthy participants were randomly allocated to three groups based on the preconditioning received before motor learning: control, whole-hand water immersion (WI), and whole-hand WF. The experimental protocol for all the participants spanned two consecutive days. On the initial day (day 1), baseline transcranial magnetic stimulation (TMS) assessments (T0) were executed before any preconditioning. Subsequently, each group underwent their respective 30 min preconditioning protocol. To ascertain the influence of each preconditioning on the excitability of the M1, subsequent TMS assessments were conducted (T1). Following this, all participants engaged in the motor learning (ML) of a visuomotor tracking task, wherein they were instructed to align a cursor with a target trajectory by modulating the pinch force. Upon completion of the ML session, final TMS assessments (T2) were conducted. All participants were required to perform the same motor learning 24 h later on day 2. Results The results revealed that whole-hand WF did not significantly influence skill acquisition during sensorimotor adaptation, although it did reduce intracortical inhibition. This phenomenon is consistent with the idea that S1, rather than M1, is involved in skill acquisition during the early stages of sensorimotor adaptation. Moreover, memory retention 24 h after skill acquisition did not differ significantly across the three groups, challenging our initial hypothesis that whole-hand WF enhances memory retention throughout sensorimotor adaptation. This could be due to the inability of whole-hand WF to alter sensorimotor connectivity and integration, as well as the nature of the plastic response elicited by the preconditioning. Discussion In conclusion, these findings suggest that although whole-hand WF attenuates intracortical inhibition, it does not modulate skill acquisition or motor memory retention during sensorimotor adaptation.
Collapse
Affiliation(s)
- Dat Le Cong
- Major in Health and Welfare, Graduate School of Niigata University of Health and Welfare, Niigata, Japan
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Daisuke Sato
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Sports Physiology Laboratory, Department of Health and Sports, Niigata University of Health and Welfare, Niigata, Japan
| | - Koyuki Ikarashi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Sports Physiology Laboratory, Department of Health and Sports, Niigata University of Health and Welfare, Niigata, Japan
| | - Genta Ochi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Sports Physiology Laboratory, Department of Health and Sports, Niigata University of Health and Welfare, Niigata, Japan
| | - Tomomi Fujimoto
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Sports Physiology Laboratory, Department of Health and Sports, Niigata University of Health and Welfare, Niigata, Japan
| | - Koya Yamashiro
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Sports Physiology Laboratory, Department of Health and Sports, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
6
|
Galgiani JE, French MA, Morton SM. Acute pain impairs retention of locomotor learning. J Neurophysiol 2024; 131:678-688. [PMID: 38381551 PMCID: PMC11305642 DOI: 10.1152/jn.00343.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024] Open
Abstract
Despite abundant evidence that pain alters movement performance, considerably less is known about the potential effects of pain on motor learning. Some of the brain regions involved in pain processing are also responsible for specific aspects of motor learning, indicating that the two functions have the potential to interact, yet it is unclear if they do. In experiment 1, we compared the acquisition and retention of a novel locomotor pattern in young, healthy individuals randomized to either experience pain via capsaicin and heat applied to the lower leg during learning or no stimulus. On day 1, participants learned a new asymmetric walking pattern using distorted visual feedback, a paradigm known to involve mostly explicit re-aiming processes. Retention was tested 24 h later. Although there were no differences in day 1 acquisition between groups, individuals who experienced pain on day 1 demonstrated reduced retention on day 2. Furthermore, the degree of forgetting between days correlated with pain ratings during learning. In experiment 2, we examined the effects of a heat stimulus alone, which served as a control for (nonpainful) cutaneous stimulation, and found no effects on either acquisition or retention of learning. Thus, pain experienced during explicit, strategic locomotor learning interferes with motor memory consolidation processes and does so most likely through a pain mechanism and not an effect of distraction. These findings have important implications for understanding basic motor learning processes and for clinical rehabilitation, in which painful conditions are often treated through motor learning-based interventions.NEW & NOTEWORTHY Pain is a highly prevalent and burdensome experience that rehabilitation practitioners often treat using motor learning-based interventions. Here, we showed that experimental acute pain, but not a heat stimulus, during locomotor learning impaired 24-h retention of the newly learned walking pattern. The degree of retention loss was related to the perceived pain level during learning. These findings suggest important links between pain and motor learning that have significant implications for clinical rehabilitation.
Collapse
Affiliation(s)
- Jessica E Galgiani
- Department of Physical Therapy, University of Delaware, Newark, Delaware, United States
- Interdisciplinary Graduate Program in Biomechanics and Movement Science, University of Delaware, Newark, Delaware, United States
| | - Margaret A French
- Department of Physical Therapy, University of Delaware, Newark, Delaware, United States
- Interdisciplinary Graduate Program in Biomechanics and Movement Science, University of Delaware, Newark, Delaware, United States
| | - Susanne M Morton
- Department of Physical Therapy, University of Delaware, Newark, Delaware, United States
- Interdisciplinary Graduate Program in Biomechanics and Movement Science, University of Delaware, Newark, Delaware, United States
| |
Collapse
|
7
|
Huang Y, Zhang X, Li W. Involvement of primary somatosensory cortex in motor learning and task execution. Neurosci Lett 2024; 828:137753. [PMID: 38554843 DOI: 10.1016/j.neulet.2024.137753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/25/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
The primary somatosensory cortex (S1) is responsible for processing information related to tactile stimulation, motor learning and control. Despite its significance, the connection between S1 and the primary motor cortex (M1), as well as its role in motor learning, remains a topic of ongoing exploration. In the present study, we silenced S1 by the GABA receptor agonist muscimol to study the potential roles of S1 in motor learning and task execution. Our results show that the inhibition of S1 leads to an immediate impairment in performance during the training session and also a substantial reduction in performance improvement during post-test session on the subsequent day. To understand the underlying mechanism, we used intravital two-photon imaging to investigate the dynamics of dendritic spines of layer V pyramidal neurons and the calcium activities of pyramidal neurons in M1 after inhibition of S1. Notably, S1 inhibition reduces motor training-induced spine formation and facilitates the elimination of existing spines of layer V pyramidal neurons in M1. The calcium activities in M1 exhibit a significant decrease during both resting and running periods following S1 inhibition. Furthermore, inhibition of S1, but not M1, significantly impairs the execution of the acquired motor task in the well-trained animals. Together, these findings reveal that S1 plays important roles in motor learning and task execution.
Collapse
Affiliation(s)
- Yunxuan Huang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaoyu Zhang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Wei Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
8
|
Ebrahimi S, Ostry DJ. The human somatosensory cortex contributes to the encoding of newly learned movements. Proc Natl Acad Sci U S A 2024; 121:e2316294121. [PMID: 38285945 PMCID: PMC10861869 DOI: 10.1073/pnas.2316294121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/28/2023] [Indexed: 01/31/2024] Open
Abstract
Recent studies have indicated somatosensory cortex involvement in motor learning and retention. However, the nature of its contribution is unknown. One possibility is that the somatosensory cortex is transiently engaged during movement. Alternatively, there may be durable learning-related changes which would indicate sensory participation in the encoding of learned movements. These possibilities are dissociated by disrupting the somatosensory cortex following learning, thus targeting learning-related changes which may have occurred. If changes to the somatosensory cortex contribute to retention, which, in effect, means aspects of newly learned movements are encoded there, disruption of this area once learning is complete should lead to an impairment. Participants were trained to make movements while receiving rotated visual feedback. The primary motor cortex (M1) and the primary somatosensory cortex (S1) were targeted for continuous theta-burst stimulation, while stimulation over the occipital cortex served as a control. Retention was assessed using active movement reproduction, or recognition testing, which involved passive movements produced by a robot. Disruption of the somatosensory cortex resulted in impaired motor memory in both tests. Suppression of the motor cortex had no impact on retention as indicated by comparable retention levels in control and motor cortex conditions. The effects were learning specific. When stimulation was applied to S1 following training with unrotated feedback, movement direction, the main dependent variable, was unaltered. Thus, the somatosensory cortex is part of a circuit that contributes to retention, consistent with the idea that aspects of newly learned movements, possibly learning-updated sensory states (new sensory targets) which serve to guide movement, may be encoded there.
Collapse
Affiliation(s)
- Shahryar Ebrahimi
- Department of Psychology, McGill University, Montreal, QC H3A1G1, Canada
| | - David J Ostry
- Department of Psychology, McGill University, Montreal, QC H3A1G1, Canada
- Yale Child Study Center, Yale School of Medicine, New Haven, CT 06519
| |
Collapse
|
9
|
Wang Y, Huynh AT, Bao S, Buchanan JJ, Wright DL, Lei Y. Memory consolidation of sequence learning and dynamic adaptation during wakefulness. Cereb Cortex 2024; 34:bhad507. [PMID: 38185987 DOI: 10.1093/cercor/bhad507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/04/2023] [Accepted: 12/15/2023] [Indexed: 01/09/2024] Open
Abstract
Motor learning involves acquiring new movement sequences and adapting motor commands to novel conditions. Labile motor memories, acquired through sequence learning and dynamic adaptation, undergo a consolidation process during wakefulness after initial training. This process stabilizes the new memories, leading to long-term memory formation. However, it remains unclear if the consolidation processes underlying sequence learning and dynamic adaptation are independent and if distinct neural regions underpin memory consolidation associated with sequence learning and dynamic adaptation. Here, we first demonstrated that the initially labile memories formed during sequence learning and dynamic adaptation were stabilized against interference through time-dependent consolidation processes occurring during wakefulness. Furthermore, we found that sequence learning memory was not disrupted when immediately followed by dynamic adaptation and vice versa, indicating distinct mechanisms for sequence learning and dynamic adaptation consolidation. Finally, by applying patterned transcranial magnetic stimulation to selectively disrupt the activity in the primary motor (M1) or sensory (S1) cortices immediately after sequence learning or dynamic adaptation, we found that sequence learning consolidation depended on M1 but not S1, while dynamic adaptation consolidation relied on S1 but not M1. For the first time in a single experimental framework, this study revealed distinct neural underpinnings for sequence learning and dynamic adaptation consolidation during wakefulness, with significant implications for motor skill enhancement and rehabilitation.
Collapse
Affiliation(s)
- Yiyu Wang
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, TX 77843, United States
| | - Angelina T Huynh
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, TX 77843, United States
| | - Shancheng Bao
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, TX 77843, United States
| | - John J Buchanan
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, TX 77843, United States
| | - David L Wright
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, TX 77843, United States
| | - Yuming Lei
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, TX 77843, United States
| |
Collapse
|
10
|
Darainy M, Manning TF, Ostry DJ. Disruption of somatosensory cortex impairs motor learning and retention. J Neurophysiol 2023; 130:1521-1528. [PMID: 37964765 DOI: 10.1152/jn.00231.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023] Open
Abstract
This study tests for a function of the somatosensory cortex, that, in addition to its role in processing somatic afferent information, somatosensory cortex contributes both to motor learning and the stabilization of motor memory. Continuous theta-burst magnetic stimulation (cTBS) was applied, before force-field training to disrupt activity in either the primary somatosensory cortex, primary motor cortex, or a control zone over the occipital lobe. Tests for retention and relearning were conducted after a 24 h delay. Analysis of movement kinematic measures and force-channel trials found that cTBS to somatosensory cortex disrupted both learning and subsequent retention, whereas cTBS to motor cortex had little effect on learning but possibly impaired retention. Basic movement variables are unaffected by cTBS suggesting that the stimulation does not interfere with movement but instead disrupts changes in the cortex that are necessary for learning. In all experimental conditions, relearning in an abruptly introduced force field, which followed retention testing, showed extensive savings, which is consistent with previous work suggesting that more cognitive aspects of learning and retention are not dependent on either of the cortical zones under test. Taken together, the findings are consistent with the idea that motor learning is dependent on learning-related activity in the somatosensory cortex.NEW & NOTEWORTHY This study uses noninvasive transcranial magnetic stimulation to test the contribution of somatosensory and motor cortex to human motor learning and retention. Continuous theta-burst stimulation is applied before learning; participants return 24 h later to assess retention. Disruption of the somatosensory cortex is found to impair both learning and retention, whereas disruption of the motor cortex has no effect on learning. The findings are consistent with the idea that motor learning is dependent upon learning-related plasticity in somatosensory cortex.
Collapse
Affiliation(s)
- Mohammad Darainy
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | - Timothy F Manning
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | - David J Ostry
- Department of Psychology, McGill University, Montreal, Quebec, Canada
- Child Study Center, Yale School of Medicine, Yale University, New Haven, Connecticut, United States
| |
Collapse
|
11
|
Zhou W, Kruse EA, Brower R, North R, Joiner WM. Motion state-dependent motor learning based on explicit visual feedback is quickly recalled, but is less stable than adaptation to physical perturbations. J Neurophysiol 2022; 128:854-871. [PMID: 36043804 PMCID: PMC9529258 DOI: 10.1152/jn.00520.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent studies have shown that adaptation to visual feedback perturbations during arm reaching movements involves implicit and explicit learning components. Evidence also suggests that explicit, intentional learning mechanisms are largely responsible for savings—a faster recalibration compared with initial training. However, the extent explicit learning mechanisms facilitate learning and early savings (i.e., the rapid recall of previous performance) for motion state-dependent learning is generally unknown. To address this question, we compared the early savings/recall achieved by two groups of human subjects. One experienced physical perturbations (a velocity-dependent force-field, vFF) to promote adaptation that is thought to be a largely implicit process. The second was only given visual feedback of the required force-velocity relationship; subjects moved in force channels and we provided visual feedback of the lateral force exerted during the movement, as well as the required force pattern based on the movement velocity. Thus, subjects were shown explicit information on the extent the applied temporal pattern of force matched the required velocity-dependent force profile if the force-field perturbation had been applied. After training, both groups experienced a decay and washout period, which was followed by a reexposure block to assess early savings/recall. Although decay was faster for the explicit visual feedback group, the single-trial recall was similar to the physical perturbation group. Thus, compared with visual feedback perturbations, conscious modification of motor output based on motion state-dependent feedback demonstrates rapid recall, but this adjustment is less stable than adaptation based on experiencing the multisensory errors that accompany physical perturbations. NEW & NOTEWORTHY The extent explicit feedback facilitates motion state-dependent changes to motor output is largely unknown. Here, we examined motor adaptation for subjects that experienced physical perturbations and another that made adjustments based on explicit visual feedback information of the required force-velocity relationship. Our results suggest that adjustment of motor output can be based on explicit motion state-dependent information and demonstrates rapid recall, but this learning is less stable than adaptation based on physical perturbations to movement.
Collapse
Affiliation(s)
- Weiwei Zhou
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, United States
| | - Elizabeth A Kruse
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, United States
| | - Rylee Brower
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, United States
| | - Ryan North
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, United States
| | - Wilsaan M Joiner
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, United States.,NDepartment of Neurology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
12
|
Valle-Bautista R, Márquez-Valadez B, Herrera-López G, Griego E, Galván EJ, Díaz NF, Arias-Montaño JA, Molina-Hernández A. Long-Term Functional and Cytoarchitectonic Effects of the Systemic Administration of the Histamine H1 Receptor Antagonist/Inverse Agonist Chlorpheniramine During Gestation in the Rat Offspring Primary Motor Cortex. Front Neurosci 2022; 15:740282. [PMID: 35140581 PMCID: PMC8820484 DOI: 10.3389/fnins.2021.740282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/20/2021] [Indexed: 11/26/2022] Open
Abstract
The transient histaminergic system is among the first neurotransmitter systems to appear during brain development in the rat mesencephalon/rhombencephalon. Histamine increases FOXP2-positive deep-layer neuron differentiation of cortical neural stem cells through H1 receptor activation in vitro. The in utero or systemic administration of chlorpheniramine (H1 receptor antagonist/inverse agonist) during deep-layer cortical neurogenesis decreases FOXP2 neurons in the developing cortex, and H1R- or histidine decarboxylase-knockout mice show impairment in learning and memory, wakefulness and nociception, functions modulated by the cerebral cortex. Due to the role of H1R in cortical neural stem cell neurogenesis, the purpose of this study was to evaluate the postnatal impact of the systemic administration of chlorpheniramine during deep-layer cortical neuron differentiation (E12–14) in the primary motor cortex (M1) of neonates (P0) and 21-day-old pups (P21). Chlorpheniramine or vehicle were systemically administered (5 mg/kg, i.p.) to pregnant Wistar rats at gestational days 12–14, and the expression and distribution of deep- (FOXP2 and TBR1) and superficial-layer (SATB2) neuronal cortical markers were analyzed in neonates from both groups. The qRT-PCR analysis revealed a reduction in the expression of Satb2 and FoxP2. However, Western blot and immunofluorescence showed increased protein levels in the chlorpheniramine-treated group. In P21 pups, the three markers showed impaired distribution and increased immunofluorescence in the experimental group. The Sholl analysis evidenced altered dendritic arborization of deep-layer neurons, with lower excitability in response to histamine, as evaluated by whole-cell patch-clamp recording, as well as diminished depolarization-evoked [3H]-glutamate release from striatal slices. Overall, these results suggest long-lasting effects of blocking H1Rs during early neurogenesis that may impact the pathways involved in voluntary motor activity and cognition.
Collapse
Affiliation(s)
- Rocío Valle-Bautista
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
- Laboratorio de Investigación en Células Troncales y Biología del Desarrollo, Departamento de Fisiología y Desarrollo Celular, Subdirección de Investigación Biomédica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, Mexico
| | - Berenice Márquez-Valadez
- Laboratorio de Investigación en Células Troncales y Biología del Desarrollo, Departamento de Fisiología y Desarrollo Celular, Subdirección de Investigación Biomédica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, Mexico
| | - Gabriel Herrera-López
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Ernesto Griego
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Emilio J. Galván
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Néstor-Fabián Díaz
- Laboratorio de Investigación en Células Troncales y Biología del Desarrollo, Departamento de Fisiología y Desarrollo Celular, Subdirección de Investigación Biomédica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, Mexico
| | - José-Antonio Arias-Montaño
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Anayansi Molina-Hernández
- Laboratorio de Investigación en Células Troncales y Biología del Desarrollo, Departamento de Fisiología y Desarrollo Celular, Subdirección de Investigación Biomédica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, Mexico
- *Correspondence: Anayansi Molina-Hernández, ; orcid.org/0000-0002-4787-312X
| |
Collapse
|
13
|
Petitet P, Spitz G, Emir UE, Johansen-Berg H, O'Shea J. Age-related decline in cortical inhibitory tone strengthens motor memory. Neuroimage 2021; 245:118681. [PMID: 34728243 PMCID: PMC8752967 DOI: 10.1016/j.neuroimage.2021.118681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 11/02/2022] Open
Abstract
Ageing disrupts the finely tuned excitation/inhibition balance (E:I) across cortex via a natural decline in inhibitory tone (γ-amino butyric acid, GABA), causing functional decrements. However, in young adults, experimentally lowering GABA in sensorimotor cortex enhances a specific domain of sensorimotor function: adaptation memory. Here, we tested the hypothesis that as sensorimotor cortical GABA declines naturally with age, adaptation memory would increase, and the former would explain the latter. Results confirmed this prediction. To probe causality, we used brain stimulation to further lower sensorimotor cortical GABA during adaptation. Across individuals, how stimulation changed memory depended on sensorimotor cortical E:I. In those with low E:I, stimulation increased memory; in those with high E:I stimulation reduced memory. Thus, we identified a form of motor memory that is naturally strengthened by age, depends causally on sensorimotor cortex neurochemistry, and may be a potent target for motor skill preservation strategies in healthy ageing and neurorehabilitation.
Collapse
Affiliation(s)
- Pierre Petitet
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences (NDCN), John Radcliffe Hospital, Headington, Oxford, United Kingdom; Centre de Recherche en Neurosciences de Lyon, Equipe Trajectoires, Inserm UMR-S 1028, CNRS UMR 5292, Université Lyon 1, Bron, France.
| | - Gershon Spitz
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences (NDCN), John Radcliffe Hospital, Headington, Oxford, United Kingdom; Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia.
| | - Uzay E Emir
- School of Health Sciences, Purdue University, West Lafayette, Indiana, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA.
| | - Heidi Johansen-Berg
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences (NDCN), John Radcliffe Hospital, Headington, Oxford, United Kingdom.
| | - Jacinta O'Shea
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences (NDCN), John Radcliffe Hospital, Headington, Oxford, United Kingdom; Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Human Brain Activity (OHBA), University of Oxford Department of Psychiatry, Warneford Hospital, Warneford Lane, Oxford, United Kingdom.
| |
Collapse
|
14
|
Tang DL, McDaniel A, Watkins KE. Disruption of speech motor adaptation with repetitive transcranial magnetic stimulation of the articulatory representation in primary motor cortex. Cortex 2021; 145:115-130. [PMID: 34717269 PMCID: PMC8650828 DOI: 10.1016/j.cortex.2021.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 03/26/2021] [Accepted: 09/13/2021] [Indexed: 11/25/2022]
Abstract
When auditory feedback perturbation is introduced in a predictable way over a number of utterances, speakers learn to compensate by adjusting their own productions, a process known as sensorimotor adaptation. Despite multiple lines of evidence indicating the role of primary motor cortex (M1) in motor learning and memory, whether M1 causally contributes to sensorimotor adaptation in the speech domain remains unclear. Here, we aimed to assay whether temporary disruption of the articulatory representation in left M1 by repetitive transcranial magnetic stimulation (rTMS) impairs speech adaptation. To induce sensorimotor adaptation, the frequencies of first formants (F1) were shifted up and played back to participants when they produced “head”, “bed”, and “dead” repeatedly (the learning phase). A low-frequency rTMS train (.6 Hz, subthreshold, 12 min) over either the tongue or the hand representation of M1 (between-subjects design) was applied before participants experienced altered auditory feedback in the learning phase. We found that the group who received rTMS over the hand representation showed the expected compensatory response for the upwards shift in F1 by significantly reducing F1 and increasing the second formant (F2) frequencies in their productions. In contrast, these expected compensatory changes in both F1 and F2 did not occur in the group that received rTMS over the tongue representation. Critically, rTMS (subthreshold) over the tongue representation did not affect vowel production, which was unchanged from baseline. These results provide direct evidence that the articulatory representation in left M1 causally contributes to sensorimotor learning in speech. Furthermore, these results also suggest that M1 is critical to the network supporting a more global adaptation that aims to move the altered speech production closer to a learnt pattern of speech production used to produce another vowel.
Collapse
Affiliation(s)
- Ding-Lan Tang
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, UK.
| | - Alexander McDaniel
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, UK
| | - Kate E Watkins
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, UK
| |
Collapse
|
15
|
Leow LA, Tresilian JR, Uchida A, Koester D, Spingler T, Riek S, Marinovic W. Acoustic stimulation increases implicit adaptation in sensorimotor adaptation. Eur J Neurosci 2021; 54:5047-5062. [PMID: 34021941 DOI: 10.1111/ejn.15317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/07/2021] [Accepted: 05/14/2021] [Indexed: 11/29/2022]
Abstract
Sensorimotor adaptation is an important part of our ability to perform novel motor tasks (i.e., learning of motor skills). Efforts to improve adaptation in healthy and clinical patients using non-invasive brain stimulation methods have been hindered by inter-individual and intra-individual variability in brain susceptibility to stimulation. Here, we explore unpredictable loud acoustic stimulation as an alternative method of modulating brain excitability to improve sensorimotor adaptation. In two experiments, participants moved a cursor towards targets, and adapted to a 30º rotation of cursor feedback, either with or without unpredictable acoustic stimulation. Acoustic stimulation improved initial adaptation to sensory prediction errors in Study 1, and improved overnight retention of adaptation in Study 2. Unpredictable loud acoustic stimulation might thus be a potent method of modulating sensorimotor adaptation in healthy adults.
Collapse
Affiliation(s)
- Li-Ann Leow
- School of Psychology, The University of Queensland, Brisbane, QLD, Australia.,School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, Australia
| | | | - Aya Uchida
- School of Psychology, The University of Queensland, Brisbane, QLD, Australia
| | - Dirk Koester
- BSP Business School Berlin, Berlin, Germany.,Department of Sport Science, Bielefeld University, Bielefeld, Germany
| | - Tamara Spingler
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Stephan Riek
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, Australia.,Graduate Research School, University of Sunshine Coast, Sippy Downs, Australia
| | | |
Collapse
|
16
|
Computational reproductions of external force field adaption without assuming desired trajectories. Neural Netw 2021; 139:179-198. [PMID: 33740581 DOI: 10.1016/j.neunet.2021.01.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/18/2021] [Accepted: 01/29/2021] [Indexed: 11/23/2022]
Abstract
Optimal feedback control is an established framework that is used to characterize human movement. However, it is not fully understood how the brain computes optimal gains through interactions with the environment. In the past study, we proposed a model of motor learning that identifies a set of feedback and feedforward controllers and a state predictor of the arm musculoskeletal system to control free reaching movements. In this study, we applied the model to force field adaptation tasks where normal reaching movements are disturbed by an external force imposed on the hand. Without a priori knowledge about the arm and environment, the model was able to adapt to the force field by generating counteracting forces to overcome it in a manner similar to what is reported in the behavioral literature. The kinematics of the movements generated by our model share characteristic features of human movements observed before and after force field adaptation. In addition, we demonstrate that the structure and learning algorithm introduced in our model induced a shift in the end-point's equilibrium position and a static force modulation, accompanied by a fast and a slow learning process. Importantly, our model does not require desired trajectories, yields movements without specifying movement duration, and predicts force generation patterns by exploring the environment. Our model demonstrates a possible mechanism through which the central nervous system may control and adapt a point-to-point reaching movement without specifying a desired trajectory by continuously updating the body's musculoskeletal model.
Collapse
|
17
|
Liu Y, Block HJ. The effect of sequence learning on sensorimotor adaptation. Behav Brain Res 2020; 398:112979. [PMID: 33164864 DOI: 10.1016/j.bbr.2020.112979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 10/23/2022]
Abstract
Motor skill learning involves both sensorimotor adaptation (calibrating the response to task dynamics and kinematics), and sequence learning (executing task elements in the correct order at the necessary speed). These processes typically occur together in natural behavior and share much in common, such as working memory demands, development, and possibly neural substrates. However, sensorimotor and sequence learning are usually studied in isolation in research settings, for example as force field adaptation or serial reaction time tasks (SRTT), respectively. It is therefore unclear whether having predictive sequence information during sensorimotor adaptation would facilitate performance, perhaps by improving sensorimotor planning, or if it would impair performance, perhaps by occupying neural resources needed for sensorimotor adaptation. Here we evaluated adaptation to a position-dependent force field in two different SRTT contexts: In Experiment 1, 28 subjects reached between 4 targets in a sequenced or random order. In Experiment 2, 40 subjects reached to one target, but 3 force field directions were applied in a sequenced or random order. No consistent influence of target position sequence on force field adaptation was observed in Experiment 1. However, sequencing of force field directions facilitated sensorimotor adaptation and retention in Experiment 2. This is inconsistent with the idea that sensorimotor and sequence learning share neural resources in any mutually exclusive fashion. These findings indicate that under certain conditions, sequence learning interacts with sensorimotor adaptation in a facilitatory manner. Future research will be needed to determine what circumstances and features of sequence learning are facilitatory to sensorimotor adaptation.
Collapse
Affiliation(s)
- Yang Liu
- Indiana University Bloomington, Dept. of Kinesiology & Program in Neuroscience, United States
| | - Hannah J Block
- Indiana University Bloomington, Dept. of Kinesiology & Program in Neuroscience, United States.
| |
Collapse
|
18
|
Darch HT, Cerminara NL, Gilchrist ID, Apps R. Pre-movement changes in sensorimotor beta oscillations predict motor adaptation drive. Sci Rep 2020; 10:17946. [PMID: 33087847 PMCID: PMC7578788 DOI: 10.1038/s41598-020-74833-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 09/28/2020] [Indexed: 11/09/2022] Open
Abstract
Beta frequency oscillations in scalp electroencephalography (EEG) recordings over the primary motor cortex have been associated with the preparation and execution of voluntary movements. Here, we test whether changes in beta frequency are related to the preparation of adapted movements in human, and whether such effects generalise to other species (cat). Eleven healthy adult humans performed a joystick visuomotor adaptation task. Beta (15-25 Hz) scalp EEG signals recorded over the motor cortex during a pre-movement preparatory phase were, on average, significantly reduced in amplitude during early adaptation trials compared to baseline, late adaptation, or aftereffect trials. The changes in beta were not related to measurements of reaction time or reach duration. We also recorded local field potential (LFP) activity within the primary motor cortex of three cats during a prism visuomotor adaptation task. Analysis of these signals revealed similar reductions in motor cortical LFP beta frequencies during early adaptation. This effect was present when controlling for any influence of the reaction time and reach duration. Overall, the results are consistent with a reduction in pre-movement beta oscillations predicting an increase in adaptive drive in upcoming task performance when motor errors are largest in magnitude and the rate of adaptation is greatest.
Collapse
Affiliation(s)
- Henry T Darch
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Nadia L Cerminara
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Iain D Gilchrist
- School of Psychological Science, University of Bristol, Bristol, BS8 1TU, UK.
| | - Richard Apps
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
19
|
Cantarero G, Choynowski J, St Pierre M, Anaya M, Statton M, Stokes W, Capaldi V, Chib V, Celnik P. Repeated Concussions Impair Behavioral and Neurophysiological Changes in the Motor Learning System. Neurorehabil Neural Repair 2020; 34:804-813. [PMID: 32723160 PMCID: PMC7501144 DOI: 10.1177/1545968320943578] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background. Concussions affect nearly 3 million people a year and are the leading cause of traumatic brain injury-related emergency department visits among youth. Evidence shows neuromotor regions are sensitive to concussive events and that motor symptoms may be the earliest clinical manifestations of neurodegenerative traumatic brain injuries. However, little is known about the effects repeated concussions play on motor learning. Namely, how does concussion acuity (time since injury) affect different behavioral and neurophysiological components of motor learning? Methods. Using a 3-pronged approach, we assessed (1) behavioral measures of motor learning, (2) neurophysiological measures underlying retention of motor learning known as occlusion, and (3) quantitative survey data capturing affective symptoms of each participant. Collegiate student athletes were stratified across 3 groups depending on their concussion history: (1) NonCon, no history of concussion; (2) Chronic, chronic-state of concussion (>1 year postinjury), or (3) Acute, acute state of concussion (<2 weeks postinjury). Results. We found that athletes in both the acute and chronic state of injury following a concussion had impaired retention and aberrant occlusion in motor skill learning as compared with athletes with no history of concussion. Moreover, higher numbers of previous concussions (regardless of the time since injury) correlated with more severe behavioral and neurophysiological motor impairments by specifically hindering neurophysiological mechanisms of learning to affect behavior. Conclusions. These results indicate the presence of motor learning impairment that is evident within 2 weeks postinjury. Our findings have significant implications for the prognosis of concussion and emphasize the need for prevention, but can also direct more relevant rehabilitation treatment targets.
Collapse
Affiliation(s)
| | - Jake Choynowski
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Maria St Pierre
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | | | | | - Vincent Capaldi
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Vikram Chib
- Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
20
|
Mechanistic determinants of effector-independent motor memory encoding. Proc Natl Acad Sci U S A 2020; 117:17338-17347. [PMID: 32647057 DOI: 10.1073/pnas.2001179117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Coordinated, purposeful movements learned with one effector generalize to another effector, a finding that has important implications for tool use, sports, performing arts, and rehabilitation. This occurs because the motor memory acquired through learning comprises representations that are effector-independent. Despite knowing this for decades, the neural mechanisms and substrates that are causally associated with the encoding of effector-independent motor memories remain poorly understood. Here we exploit intereffector generalization, the behavioral signature of effector-independent representations, to address this crucial gap. We first show in healthy human participants that postlearning generalization across effectors is principally predicted by the level of an implicit mechanism that evolves gradually during learning to produce a temporally stable memory. We then demonstrate that interfering with left but not right posterior parietal cortex (PPC) using high-definition cathodal transcranial direct current stimulation impedes learning mediated by this mechanism, thus potentially preventing the encoding of effector-independent memory components. We confirm this in our final experiment in which we show that disrupting left PPC but not primary motor cortex after learning has been allowed to occur blocks intereffector generalization. Collectively, our results reveal the key mechanism that encodes an effector-independent memory trace and uncover a central role for the PPC in its representation. The encoding of such motor memory components outside primary sensorimotor regions likely underlies a parsimonious neural organization that enables more efficient movement planning in the brain, independent of the effector used to act.
Collapse
|
21
|
Song Y, Adams S, Legon W. Intermittent theta burst stimulation of the right dorsolateral prefrontal cortex accelerates visuomotor adaptation with delayed feedback. Cortex 2020; 129:376-389. [PMID: 32574841 DOI: 10.1016/j.cortex.2020.04.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/09/2020] [Accepted: 04/27/2020] [Indexed: 01/08/2023]
Abstract
Implicit adaptation to visual rotations during fast reaching is a well-recognized function of the cerebellum. However, there is still no well-established understanding of the neural underpinnings that support explicit processes during visuomotor adaptation. We tested the causative involvement of dorsolateral prefrontal cortex (DLPFC) in an adaptive reaching task by employing excitatory intermittent theta burst stimulation (iTBS) to left or right DLPFC during learning to adapt to a sudden large visual rotation with delayed terminal feedback. Spontaneous resting-state electroencephalography (EEG) signals were recorded before and immediately after the administration of iTBS. iTBS to right DLPFC, compared to left DLPFC or control, induced faster adaptation to the rotation and had a greater adjustment of aiming directions in early adaptation trials. Moreover, resting-state functional connectivity of EEG of the frontal cortex after iTBS predicted subsequent adaptation rate. These results suggest a critical role of right DLPFC in supporting explicit learning in the adaptive reaching task.
Collapse
Affiliation(s)
- Yanlong Song
- Department of Neurological Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States.
| | - Sarah Adams
- Department of Neurological Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Wynn Legon
- Department of Neurological Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
22
|
Beck MM, Grandjean MU, Hartmand S, Spedden ME, Christiansen L, Roig M, Lundbye-Jensen J. Acute Exercise Protects Newly Formed Motor Memories Against rTMS-induced Interference Targeting Primary Motor Cortex. Neuroscience 2020; 436:110-121. [PMID: 32311411 DOI: 10.1016/j.neuroscience.2020.04.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/04/2020] [Accepted: 04/12/2020] [Indexed: 01/08/2023]
Abstract
Acute cardiovascular exercise can promote motor memory consolidation following motor practice, and thus long-term retention, but the underlying mechanisms remain sparsely elucidated. Here we test the hypothesis that the positive behavioral effects of acute exercise involve the primary motor cortex and the corticospinal pathway by interfering with motor memory consolidation using non-invasive, low frequency, repetitive transcranial magnetic stimulation (rTMS). Forty-eight able-bodied, young adult male participants (mean age = 24.8 y/o) practiced a visuomotor accuracy task demanding precise and fast pinch force control. Following motor practice, participants either rested or exercised (20 min total: 3 × 3 min at 90% VO2peak) before receiving either sham rTMS or supra-threshold rTMS (115% RMT, 1 Hz) targeting the hand area of the contralateral primary motor cortex for 20 min. Retention was evaluated 24 h following motor practice, and motor memory consolidation was operationalized as overnight changes in motor performance. Low-frequency rTMS resulted in off-line decrements in motor performance compared to sham rTMS, but these were counteracted by a preceding bout of intense exercise. These findings demonstrate that a single session of exercise promotes early motor memory stabilization and protects the primary motor cortex and the corticospinal system against interference.
Collapse
Affiliation(s)
- Mikkel Malling Beck
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark.
| | - Marcus Udsen Grandjean
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - Sander Hartmand
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | | | - Lasse Christiansen
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark
| | - Marc Roig
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfield Research Centre, Jewish Rehabilitation Hospital, Montreal Centre for Interdisciplinary Research in Rehabilitation (CRIR), Laval, Canada; School of Physical and Occupational Therapy, McGill University, Montreal, Canada
| | - Jesper Lundbye-Jensen
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark; Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Bhattacharjee S, Kashyap R, Abualait T, Annabel Chen SH, Yoo WK, Bashir S. The Role of Primary Motor Cortex: More Than Movement Execution. J Mot Behav 2020; 53:258-274. [PMID: 32194004 DOI: 10.1080/00222895.2020.1738992] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The predominant role of the primary motor cortex (M1) in motor execution is well acknowledged. However, additional roles of M1 are getting evident in humans owing to advances in noninvasive brain stimulation (NIBS) techniques. This review collates such studies in humans and proposes that M1 also plays a key role in higher cognitive processes. The review commences with the studies that have investigated the nature of connectivity of M1 with other cortical regions in light of studies based on NIBS. The review then moves on to discuss the studies that have demonstrated the role of M1 in higher cognitive processes such as attention, motor learning, motor consolidation, movement inhibition, somatomotor response, and movement imagery. Overall, the purpose of the review is to highlight the additional role of M1 in motor cognition besides motor control, which remains unexplored.
Collapse
Affiliation(s)
| | - Rajan Kashyap
- Center for Research and Development in Learning (CRADLE), Nanyang Technological University, Singapore
| | - Turki Abualait
- Physical Therapy Department, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Shen-Hsing Annabel Chen
- Lee Kong Chian School of Medicine (LKC Medicine), Nanyang Technological University, Singapore.,Office of Educational Research, National Institute of Education, Nanyang Technological University, Singapore
| | - Woo-Kyoung Yoo
- Department of Physical Medicine and Rehabilitation, Hallym University Sacred Heart Hospital, Anyang, South Korea
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia.,Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
24
|
Lerner G, Albert S, Caffaro PA, Villalta JI, Jacobacci F, Shadmehr R, Della-Maggiore V. The Origins of Anterograde Interference in Visuomotor Adaptation. Cereb Cortex 2020; 30:4000-4010. [PMID: 32133494 DOI: 10.1093/cercor/bhaa016] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/12/2020] [Indexed: 01/08/2023] Open
Abstract
Anterograde interference refers to the negative impact of prior learning on the propensity for future learning. There is currently no consensus on whether this phenomenon is transient or long lasting, with studies pointing to an effect in the time scale of hours to days. These inconsistencies might be caused by the method employed to quantify performance, which often confounds changes in learning rate and retention. Here, we aimed to unveil the time course of anterograde interference by tracking its impact on visuomotor adaptation at different intervals throughout a 24-h period. Our empirical and model-based approaches allowed us to measure the capacity for new learning separately from the influence of a previous memory. In agreement with previous reports, we found that prior learning persistently impaired the initial level of performance upon revisiting the task. However, despite this strong initial bias, learning capacity was impaired only when conflicting information was learned up to 1 h apart, recovering thereafter with passage of time. These findings suggest that when adapting to conflicting perturbations, impairments in performance are driven by two distinct mechanisms: a long-lasting bias that acts as a prior and hinders initial performance and a short-lasting anterograde interference that originates from a reduction in error sensitivity.
Collapse
Affiliation(s)
- Gonzalo Lerner
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Instituto de Fisiología y Biofísica (IFIBIO) Houssay, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Scott Albert
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, USA
| | - Pedro A Caffaro
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Instituto de Fisiología y Biofísica (IFIBIO) Houssay, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Jorge I Villalta
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Instituto de Fisiología y Biofísica (IFIBIO) Houssay, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Florencia Jacobacci
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Instituto de Fisiología y Biofísica (IFIBIO) Houssay, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Reza Shadmehr
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, USA
| | - Valeria Della-Maggiore
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Instituto de Fisiología y Biofísica (IFIBIO) Houssay, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina
| |
Collapse
|
25
|
Mirdamadi JL, Block HJ. Somatosensory changes associated with motor skill learning. J Neurophysiol 2020; 123:1052-1062. [DOI: 10.1152/jn.00497.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Trial-and-error motor adaptation has been linked to somatosensory plasticity and shifts in proprioception (limb position sense). The role of sensory processing in motor skill learning is less understood. Unlike adaptation, skill learning involves the acquisition of new movement patterns in the absence of perturbation, with performance limited by the speed-accuracy trade-off. We investigated somatosensory changes during motor skill learning at the behavioral and neurophysiological levels. Twenty-eight healthy young adults practiced a maze-tracing task, guiding a robotic manipulandum through an irregular two-dimensional track featuring several abrupt turns. Practice occurred on days 1 and 2. Skill was assessed before practice on day 1 and again on day 3, with learning indicated by a shift in the speed-accuracy function between these assessments. Proprioceptive function was quantified with a passive two-alternative forced-choice task. In a subset of 15 participants, we measured short-latency afferent inhibition (SAI) to index somatosensory projections to motor cortex. We found that motor practice enhanced the speed-accuracy skill function ( F4,108 = 32.15, P < 0.001) and was associated with improved proprioceptive sensitivity at retention ( t22 = 24.75, P = 0.0031). Furthermore, SAI increased after training ( F1,14 = 5.41, P = 0.036). Interestingly, individuals with larger increases in SAI, reflecting enhanced somatosensory afference to motor cortex, demonstrated larger improvements in motor skill learning. These findings suggest that SAI may be an important functional mechanism for some aspect of motor skill learning. Further research is needed to test what parameters (task complexity, practice time, etc.) are specifically linked to somatosensory function. NEW & NOTEWORTHY Somatosensory processing has been implicated in motor adaptation, where performance recovers from a perturbation such as a force field. We investigated somatosensory function during motor skill learning, where a new motor pattern is acquired in the absence of perturbation. After skill practice, we found changes in proprioception and short-latency afferent inhibition (SAI), signifying somatosensory change at both the behavioral and neurophysiological levels. SAI may be an important functional mechanism by which individuals learn motor skills.
Collapse
Affiliation(s)
- Jasmine L. Mirdamadi
- Program in Neuroscience, Indiana University, Bloomington, Indiana
- Department of Kinesiology, Indiana University, Bloomington, Indiana
| | - Hannah J. Block
- Program in Neuroscience, Indiana University, Bloomington, Indiana
- Department of Kinesiology, Indiana University, Bloomington, Indiana
| |
Collapse
|
26
|
Single-Pulse TMS over the Parietal Cortex Does Not Impair Sensorimotor Perturbation-Induced Changes in Motor Commands. eNeuro 2020; 7:ENEURO.0209-19.2020. [PMID: 32108021 PMCID: PMC7101479 DOI: 10.1523/eneuro.0209-19.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 11/25/2022] Open
Abstract
Intermittent exposure to a sensorimotor perturbation, such as a visuomotor rotation, is known to cause a directional bias on the subsequent movement that opposes the previously experienced perturbation. To date, it is unclear whether the parietal cortex is causally involved in this postperturbation movement bias. In a recent electroencephalogram study, Savoie et al. (2018) observed increased parietal activity in response to an intermittent visuomotor perturbation, raising the possibility that the parietal cortex could subserve this change in motor behavior. The goal of the present study was to causally test this hypothesis. Human participants (N = 28) reached toward one of two visual targets located on either side of a fixation point, while being pseudorandomly submitted to a visuomotor rotation. On half of all rotation trials, single-pulse transcranial magnetic stimulation (TMS) was applied over the right (N = 14) or left (N = 14) parietal cortex 150 ms after visual feedback provision. To determine whether TMS influenced the postperturbation bias, reach direction was compared on trials that followed rotation with (RS + 1) and without (R + 1) TMS. It was hypothesized that interfering with parietal activity would reduce the movement bias following rotated trials. Results revealed a significant and robust postrotation directional bias compared with both rotation and null rotation trials. Contrary to our hypothesis, however, neither left nor right parietal stimulation significantly impacted the postrotation bias. These data suggest that the parietal areas targeted here may not be critical for perturbation-induced motor output changes to emerge.
Collapse
|
27
|
Hirano M, Funase K. Reorganization of finger covariation patterns represented in the corticospinal system by learning of a novel movement irrelevant to common daily movements. J Neurophysiol 2019; 122:2458-2467. [PMID: 31664876 DOI: 10.1152/jn.00514.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
How dexterous finger movements are acquired by the nervous system is a fundamental question in the neuroscience field. Previous studies have demonstrated that finger movements can be decomposed into finger covariation patterns, and these patterns are represented in the corticospinal system. However, it remains unclear how such covariation patterns represented in the corticospinal system develop during the acquisition of novel finger movements. In this study, each subject learned to perform a novel finger movement, which was mapped to a region outside the movement subspace spanned by common finger movements seen in daily life, through a custom task. After subjects practiced the task, we detected changes in the finger covariation patterns derived from artificially (transcranial magnetic stimulation) evoked finger joint movements. The artificially evoked movement-derived patterns seen after the training period were associated with both the novel and common finger movements. Regarding the patterns extracted from the artificially evoked movements, the number required to explain most of the variance in the data was unchanged after the training period. Our results indicate that novel finger movements are acquired through the reorganization of preexisting finger covariation patterns represented in the corticospinal system rather than the development of new patterns. These findings might have implications for the basic mechanism responsible for the development of movement repertories in the nervous system.NEW & NOTEWORTHY Various types of finger movements involve common finger covariation patterns, and these patterns are represented in the corticospinal system. Here we examined how a novel finger covariation pattern is acquired in that system through training of a novel finger movement that is irrelevant to common finger movements. Using transcranial magnetic stimulation, we found that the preexisting patterns that contribute to finer control of finger movements are rapidly reorganized to encode the novel pattern through the training.
Collapse
Affiliation(s)
- Masato Hirano
- Human Motor Control Laboratory, Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
| | - Kozo Funase
- Human Motor Control Laboratory, Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
28
|
Kumar N, Manning TF, Ostry DJ. Somatosensory cortex participates in the consolidation of human motor memory. PLoS Biol 2019; 17:e3000469. [PMID: 31613874 PMCID: PMC6793938 DOI: 10.1371/journal.pbio.3000469] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/12/2019] [Indexed: 11/19/2022] Open
Abstract
Newly learned motor skills are initially labile and then consolidated to permit retention. The circuits that enable the consolidation of motor memories remain uncertain. Most work to date has focused on primary motor cortex, and although there is ample evidence of learning-related plasticity in motor cortex, direct evidence for its involvement in memory consolidation is limited. Learning-related plasticity is also observed in somatosensory cortex, and accordingly, it may also be involved in memory consolidation. Here, by using transcranial magnetic stimulation (TMS) to block consolidation, we report the first direct evidence that plasticity in somatosensory cortex participates in the consolidation of motor memory. Participants made movements to targets while a robot applied forces to the hand to alter somatosensory feedback. Immediately following adaptation, continuous theta-burst transcranial magnetic stimulation (cTBS) was delivered to block retention; then, following a 24-hour delay, which would normally permit consolidation, we assessed whether there was an impairment. It was found that when mechanical loads were introduced gradually to engage implicit learning processes, suppression of somatosensory cortex following training almost entirely eliminated retention. In contrast, cTBS to motor cortex following learning had little effect on retention at all; retention following cTBS to motor cortex was not different than following sham TMS stimulation. We confirmed that cTBS to somatosensory cortex interfered with normal sensory function and that it blocked motor memory consolidation and not the ability to retrieve a consolidated motor memory. In conclusion, the findings are consistent with the hypothesis that in adaptation learning, somatosensory cortex rather than motor cortex is involved in the consolidation of motor memory.
Collapse
Affiliation(s)
- Neeraj Kumar
- McGill University, Montreal, Canada
- Indian Institute of Technology Gandhinagar, Gandhinagar, India
| | | | - David J. Ostry
- McGill University, Montreal, Canada
- Haskins Laboratories, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
29
|
Nguyen KP, Zhou W, McKenna E, Colucci-Chang K, Bray LCJ, Hosseini EA, Alhussein L, Rezazad M, Joiner WM. The 24-h savings of adaptation to novel movement dynamics initially reflects the recall of previous performance. J Neurophysiol 2019; 122:933-946. [PMID: 31291156 DOI: 10.1152/jn.00569.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Humans rapidly adapt reaching movements in response to perturbations (e.g., manipulations of movement dynamics or visual feedback). Following a break, when reexposed to the same perturbation, subjects demonstrate savings, a faster learning rate compared with the time course of initial training. Although this has been well studied, there are open questions on the extent early savings reflects the rapid recall of previous performance. To address this question, we examined how the properties of initial training (duration and final adaptive state) influence initial single-trial adaptation to force-field perturbations when training sessions were separated by 24 h. There were two main groups that were distinct based on the presence or absence of a washout period at the end of day 1 (with washout vs. without washout). We also varied the training duration on day 1 (15, 30, 90, or 160 training trials), resulting in 8 subgroups of subjects. We show that single-trial adaptation on day 2 scaled with training duration, even for similar asymptotic levels of learning on day 1 of training. Interestingly, the temporal force profile following the first perturbation on day 2 matched that at the end of day 1 for the longest training duration group that did not complete the washout. This correspondence persisted but was significantly lower for shorter training durations and the washout subject groups. Collectively, the results suggest that the adaptation observed very early in reexposure results from the rapid recall of the previously learned motor recalibration but is highly dependent on the initial training duration and final adaptive state.NEW & NOTEWORTHY The extent initial readaptation reflects the recall of previous motor performance is largely unknown. We examined early single-trial force-field adaptation on the second day of training and distinguished initial retention from recall. We found that the single-trial adaptation following the 24-h break matched that at the end of the first day, but this recall was modified by the training duration and final level of learning on the first day of training.
Collapse
Affiliation(s)
- Katrina P Nguyen
- Department of Bioengineering, George Mason University, Fairfax, Virginia
| | - Weiwei Zhou
- Department of Bioengineering, George Mason University, Fairfax, Virginia
| | - Erin McKenna
- Department of Neuroscience, George Mason University, Fairfax, Virginia
| | | | | | - Eghbal A Hosseini
- Department of Bioengineering, George Mason University, Fairfax, Virginia
| | - Laith Alhussein
- Department of Bioengineering, George Mason University, Fairfax, Virginia
| | - Meena Rezazad
- Department of Bioengineering, George Mason University, Fairfax, Virginia
| | - Wilsaan M Joiner
- Department of Bioengineering, George Mason University, Fairfax, Virginia.,Department of Neuroscience, George Mason University, Fairfax, Virginia.,Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
| |
Collapse
|
30
|
Lacroix A, Proulx-Bégin L, Hamel R, De Beaumont L, Bernier PM, Lepage JF. Static magnetic stimulation of the primary motor cortex impairs online but not offline motor sequence learning. Sci Rep 2019; 9:9886. [PMID: 31285526 PMCID: PMC6614538 DOI: 10.1038/s41598-019-46379-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/19/2019] [Indexed: 12/14/2022] Open
Abstract
Static magnetic fields (SMFs) are known to alter neural activity, but evidence of their ability to modify learning-related neuroplasticity is lacking. The present study tested the hypothesis that application of static magnetic stimulation (SMS), an SMF applied transcranially via a neodymium magnet, over the primary motor cortex (M1) would alter learning of a serial reaction time task (SRTT). Thirty-nine participants took part in two experimental sessions separated by 24 h where they had to learn the SRTT with their right hand. During the first session, two groups received SMS either over contralateral (i.e., left) or ipsilateral (i.e., right) M1 while a third group received sham stimulation. SMS was not applied during the second session. Results of the first session showed that application of SMS over contralateral M1 impaired online learning as compared to both ipsilateral and sham groups, which did not differ. Results further revealed that application of SMS did not impair offline learning or relearning. Overall, these results are in line with those obtained using other neuromodulatory techniques believed to reduce cortical excitability in the context of motor learning and suggest that the ability of SMS to alter learning-related neuroplasticity is temporally circumscribed to the duration of its application.
Collapse
Affiliation(s)
- Angélina Lacroix
- Department of Pediatrics, Sherbrooke University, 3001-12th Ave. North, Sherbrooke, Canada.,Sherbrooke University Research Center, 3001-12th Ave. North, Sherbrooke, Canada
| | - Léa Proulx-Bégin
- Department of Psychology, Montreal University, 90 Ave. Vincent d'Indy, Montréal, Canada
| | - Raphaël Hamel
- Department of Pediatrics, Sherbrooke University, 3001-12th Ave. North, Sherbrooke, Canada.,Sherbrooke University Research Center, 3001-12th Ave. North, Sherbrooke, Canada.,Faculty of Physical Activity Sciences, Sherbrooke University, 2500 de l'Université Blvd., Sherbrooke, Canada
| | - Louis De Beaumont
- Department of Surgery, Faculty of Medicine, Pavillon Roger-Gaudry C.P, 6128, Montréal, Canada
| | - Pierre-Michel Bernier
- Faculty of Physical Activity Sciences, Sherbrooke University, 2500 de l'Université Blvd., Sherbrooke, Canada
| | - Jean-François Lepage
- Department of Pediatrics, Sherbrooke University, 3001-12th Ave. North, Sherbrooke, Canada. .,Sherbrooke University Research Center, 3001-12th Ave. North, Sherbrooke, Canada.
| |
Collapse
|
31
|
Kolobe THA, Fagg AH. Robot Reinforcement and Error-Based Movement Learning in Infants With and Without Cerebral Palsy. Phys Ther 2019; 99:677-688. [PMID: 31155667 PMCID: PMC6545273 DOI: 10.1093/ptj/pzz043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 02/20/2019] [Indexed: 01/21/2023]
Abstract
BACKGROUND Prone mobility, central to development of diverse psychological and social processes that have lasting effects on life participation, is seldom attained by infants with cerebral palsy (CP) and has no tested interventions. Reinforcement learning (RL) and error-based movement learning (EBL) offer novel intervention possibilities. OBJECTIVE This study examined movement learning strategies in infants with or at risk for CP using RL and EBL during acquisition of prone locomotion. DESIGN The study was a randomized trial that used repeated measures. SETTING The study setting was a university physical therapy clinic in the United States. PATIENTS Thirty infants aged 4.5 to 6.5 months participated in the study: 24 had or were at risk for CP, and 6 were typically developing. INTERVENTION Infants with and at risk for CP were randomly assigned to a combination of RL and EBL (SIPPC-RE), or RL only (SIPPC-R) conditions. Infants with typical development comprised the RL-only reference group (SIPPC-TD). Infants trained in prone locomotion with the Self-Initiated Prone Progression Crawler (SIPPC) robotic system for three 5-minute trials, twice a week for 12 weeks in their homes or child care. All training sessions were videotaped for behavioral coding. MEASUREMENTS The SIPPC gathered robot and infant trunk/limb movement data. Randomized 2-way analysis of variance with repeated measures and Pearson r to analyze the data was used. RESULTS Results included the number of arm movements and trial-and-error activity distinguished between the SIPPC-RE and SIPPC-R groups. The mean change in arm movements from baseline for the SIPPC-RE and SIPPC-R groups was 4.8 m and -7.0 m, respectively. The mean differences in rotational amplitude (trial and error) from baseline to the end of the study were 278 degrees and 501 degrees, respectively. These changes were correlated with distance traveled and goal-directed movements. The latter increased over the 12 weeks for the SIPPC-RE and SIPPC-TD groups, but not the SIPPC-R group. LIMITATIONS The CP groups were unequal due to reassignment and did not include a typically developing comparison group of a combination of RL and EBL. CONCLUSION These findings suggest movement learning and retention in infants with CP is differentially affected by the use of RL and EBL, with a combination of both showing more promise than RL alone. The findings also implicate cognition, type of brain insult, emergence of reaching, and muscle force production, which must be explored in future studies.
Collapse
Affiliation(s)
| | - Andrew H Fagg
- Computer Science, University of Oklahoma, Norman, Oklahoma
| |
Collapse
|
32
|
Spampinato DA, Satar Z, Rothwell JC. Combining reward and M1 transcranial direct current stimulation enhances the retention of newly learnt sensorimotor mappings. Brain Stimul 2019; 12:1205-1212. [PMID: 31133478 PMCID: PMC6709642 DOI: 10.1016/j.brs.2019.05.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/27/2019] [Accepted: 05/16/2019] [Indexed: 12/17/2022] Open
Abstract
Background Reward-based feedback given during motor learning has been shown to improve the retention of the behaviour being acquired. Interestingly, applying transcranial direct current stimulation (tDCS) during learning over the primary motor cortex (M1), an area associated with motor retention, also results in enhanced retention of the newly formed motor memories. However, it remains unknown whether combining these distinct interventions result in an additive benefit of motor retention. Methods We investigated whether combining both interventions while participants learned to account for a visuomotor transformation results in enhanced motor retention (total n = 56; each group n = 14). To determine whether these interventions share common physiological mechanisms underpinning learning, we assessed motor cortical excitability and inhibition (i.e. SICI) on a hand muscle before and after all participants learned the visuomotor rotation using their entire arm and hand. Results We found that both the Reward-Stim (i.e. reward + tDCS) and Reward-Sham (i.e. reward-only) groups had increased retention at the beginning of the retention phase, indicating an immediate effect of reward on behaviour. However, each intervention on their own did not enhance retention when compared to sham, but rather, only the combination of both reward and tDCS demonstrated prolonged retention. We also found that only the Reward-Stim group had a significant reduction in SICI after exposure to the perturbation. Conclusions We show that combining both interventions are additive in providing stronger retention of motor adaptation. These results indicate that the reliability and validity of using tDCS within a clinical context may depend on the type of feedback individuals receive when learning a new motor pattern. Concurrently administering reward and M1 tDCS during learning results in enhanced motor retention. The combination of these interventions also leads to a reduction in M1 inhibitory mechanisms. No benefits of motor retention were found when reward or M1 tDCS were given alone.
Collapse
|
33
|
|
34
|
Branscheidt M, Kassavetis P, Anaya M, Rogers D, Huang HD, Lindquist MA, Celnik P. Fatigue induces long-lasting detrimental changes in motor-skill learning. eLife 2019; 8:40578. [PMID: 30832766 PMCID: PMC6443347 DOI: 10.7554/elife.40578] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 02/14/2019] [Indexed: 11/22/2022] Open
Abstract
Fatigue due to physical exertion is a ubiquitous phenomenon in everyday life and especially common in a range of neurological diseases. While the effect of fatigue on limiting skill execution are well known, its influence on learning new skills is unclear. This is of particular interest as it is common practice to train athletes, musicians or perform rehabilitation exercises up to and beyond a point of fatigue. In a series of experiments, we describe how muscle fatigue, defined as degradation of maximum force after exertion, impairs motor-skill learning beyond its effects on task execution. The negative effects on learning are evidenced by impaired task acquisition on subsequent practice days even in the absence of fatigue. Further, we found that this effect is in part mediated centrally and can be alleviated by altering motor cortex function. Thus, the common practice of training while, or beyond, fatigue levels should be carefully reconsidered, since this affects overall long-term skill learning. Mastering a new movement requires practice. Intensive and repetitive training is essential for musicians, athletes, or surgeons. It is also important for people undergoing rehabilitation to help them regain normal movements after an illness or injury. Although practice is said to make perfect, there comes the point when it also causes physical fatigue. Fatigue can impair how well a person performs a movement, but its effects on learning a task are less clear. Now, Branscheidt et al. show that being physically fatigued interferes with learning a new movement skill. In the experiments, volunteers were divided in two groups: the first group had to learn a new motor skill after their hand muscles were physically fatigued, the second group learned the same task without being worn out. The fatigued volunteers had a harder time learning a new motor task both on the day of the task and on the following days, even after they had recovered from the fatigue. The same experiment was repeated, but instead of learning a motor task, the volunteers were asked to learn a sequence of keystrokes. The volunteers in both groups learned this new thinking task easily. This suggests that learning new thinking tasks is not affected by physical fatigue. Branscheidt et al. also disrupted memory formation in part of the brain that controls movement after volunteers finished learning the motor task using a technique called repetitive transcranial magnetic stimulation. This eliminated the motor learning deficit in the fatigued group. This may suggest that memories formed after fatigue may impair later motor learning and that physical training or rehabilitation that pushes people to work past fatigue may be counterproductive. Further study of these processes may help to develop better training regimens and rehabilitation methods.
Collapse
Affiliation(s)
- Meret Branscheidt
- The Human Brain Physiology and Stimulation Laboratory, Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, Maryland.,Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
| | - Panagiotis Kassavetis
- The Human Brain Physiology and Stimulation Laboratory, Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, Maryland.,Sobell Department of Motor Neuroscience and Movement Disorders, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,Neurology Department, Boston University, Boston, Massachusetts
| | - Manuel Anaya
- The Human Brain Physiology and Stimulation Laboratory, Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, Maryland
| | - Davis Rogers
- The Human Brain Physiology and Stimulation Laboratory, Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, Maryland.,The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Han Debra Huang
- The Human Brain Physiology and Stimulation Laboratory, Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, Maryland
| | - Martin A Lindquist
- Department of Biostatistics, Johns Hopkins University, Baltimore, Maryland
| | - Pablo Celnik
- The Human Brain Physiology and Stimulation Laboratory, Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
35
|
Pharmacological Dopamine Manipulation Does Not Alter Reward-Based Improvements in Memory Retention during a Visuomotor Adaptation Task. eNeuro 2018; 5:eN-NRS-0453-17. [PMID: 30027109 PMCID: PMC6051592 DOI: 10.1523/eneuro.0453-17.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/14/2018] [Accepted: 05/10/2018] [Indexed: 11/30/2022] Open
Abstract
Motor adaptation tasks investigate our ability to adjust motor behaviors to an ever-changing and unpredictable world. Previous work has shown that punishment-based feedback delivered during a visuomotor adaptation task enhances error-reduction, whereas reward increases memory retention. While the neural underpinnings of the influence of punishment on the adaptation phase remain unclear, reward has been hypothesized to increase retention through dopaminergic mechanisms. We directly tested this hypothesis through pharmacological manipulation of the dopaminergic system. A total of 96 young healthy human participants were tested in a placebo-controlled double-blind between-subjects design in which they adapted to a 40° visuomotor rotation under reward or punishment conditions. We confirmed previous evidence that reward enhances retention, but the dopamine (DA) precursor levodopa (LD) or the DA antagonist haloperidol failed to influence performance. We reason that such a negative result could be due to experimental limitations or it may suggest that the effect of reward on motor memory retention is not driven by dopaminergic processes. This provides further insight regarding the role of motivational feedback in optimizing motor learning, and the basis for further decomposing the effect of reward on the subprocesses known to underlie motor adaptation paradigms.
Collapse
|
36
|
Consonni M, Contarino VE, Catricalà E, Dalla Bella E, Pensato V, Gellera C, Lauria G, Cappa SF. Cortical markers of cognitive syndromes in amyotrophic lateral sclerosis. NEUROIMAGE-CLINICAL 2018; 19:675-682. [PMID: 30023173 PMCID: PMC6046611 DOI: 10.1016/j.nicl.2018.05.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) can be associated with a spectrum of cognitive and behavioural symptoms, but the related patterns of focal cortical atrophy in non-demented ALS patients remain largely unknown. We enrolled 48 non-demented ALS patients and 26 healthy controls for a comprehensive neuropsychological assessment and a magnetic resonance exam. Behavioural and cognitive impairment was defined on the basis of a data-driven multi-domain approach in 21 ALS patients. Averaged cortical thickness of 74 bilateral brain regions was used as a measure of cortical atrophy. Cortical thinning in a fronto-parietal network, suggesting a disease-specific pattern of neurodegeneration, was present in all patients, independent of cognitive and behavioural status. Between-group and correlational analyses revealed that inferior frontal, temporal, cingular and insular thinning are markers for cognitive and behavioural deficits, with language impairment mainly related to left temporal pole and insular involvement. These specific correlates support the concept of a spectrum of deficits, with an overlap between the ALS cognitive phenotypes and the syndromes of frontotemporal dementia. Language, social cognition and executive dysfunctions are frequent symptoms in ALS. Fronto-parietal cortical thinning is present in non-demented ALS patients. Temporal, cingular and insular thinning are markers for cognitive impairment in ALS. Left temporal pole and insular thinning is linked to language impairment in ALS.
Collapse
Key Words
- ALS, amyotrophic lateral sclerosis
- ALSbi, ALS with mild behavioural impairment
- ALSci, ALS with mild cognitive impairment
- ALScn, cognitively-normal ALS
- ALSimp, ALS with cognitive and/or behavioural impairment
- Amyotrophic lateral sclerosis
- C9+ ALS, ALS harbouring C9orf72 repeat expansion
- C9– ALS, ALS without C9orf repeat expansion
- CT, cortical thickness
- Cognitive impairment
- Cognitive profiles
- Cortical thickness
- FTD, frontotemporal dementia
- GM, grey matter
- HC, healthy control
- MD, multi-domain
- Temporal lobe
Collapse
Affiliation(s)
- Monica Consonni
- 3rd Neurology Unit and Motor Neuron Diseases Centre, Department of Clinical Neurosciences, IRCCS Foundation "Carlo Besta" Neurological Institute, Via Celoria 11, 20133 Milan, Italy.
| | - Valeria E Contarino
- Neuroradiology Unit, IRCCS Foundation "Carlo Besta" Neurological Institute, Via Celoria 11, 20133 Milan, Italy
| | - Eleonora Catricalà
- Institute for Advanced Study-IUSS Pavia, Palazzo del Broletto e Piazza Vittoria 15, 27100 Pavia, Italy
| | - Eleonora Dalla Bella
- 3rd Neurology Unit and Motor Neuron Diseases Centre, Department of Clinical Neurosciences, IRCCS Foundation "Carlo Besta" Neurological Institute, Via Celoria 11, 20133 Milan, Italy
| | - Viviana Pensato
- Genetics of Neurodegenerative and Metabolic Diseases Unit and Motor Neuron Diseases Centre, Department of Clinical Neurosciences, IRCCS Foundation 'Carlo Besta' Neurological Institute, Via Celoria 11, 20133 Milan, Italy
| | - Cinzia Gellera
- Genetics of Neurodegenerative and Metabolic Diseases Unit and Motor Neuron Diseases Centre, Department of Clinical Neurosciences, IRCCS Foundation 'Carlo Besta' Neurological Institute, Via Celoria 11, 20133 Milan, Italy
| | - Giuseppe Lauria
- 3rd Neurology Unit and Motor Neuron Diseases Centre, Department of Clinical Neurosciences, IRCCS Foundation "Carlo Besta" Neurological Institute, Via Celoria 11, 20133 Milan, Italy; Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Italy
| | - Stefano F Cappa
- Institute for Advanced Study-IUSS Pavia, Palazzo del Broletto e Piazza Vittoria 15, 27100 Pavia, Italy; IRCCS S. Giovanni di Dio Fatebenefratelli, via Pilastroni 4, 25125 Brescia, Italy
| |
Collapse
|
37
|
Antonietti A, Casellato C, D'Angelo E, Pedrocchi A. Model-Driven Analysis of Eyeblink Classical Conditioning Reveals the Underlying Structure of Cerebellar Plasticity and Neuronal Activity. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2017; 28:2748-2762. [PMID: 27608482 DOI: 10.1109/tnnls.2016.2598190] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The cerebellum plays a critical role in sensorimotor control. However, how the specific circuits and plastic mechanisms of the cerebellum are engaged in closed-loop processing is still unclear. We developed an artificial sensorimotor control system embedding a detailed spiking cerebellar microcircuit with three bidirectional plasticity sites. This proved able to reproduce a cerebellar-driven associative paradigm, the eyeblink classical conditioning (EBCC), in which a precise time relationship between an unconditioned stimulus (US) and a conditioned stimulus (CS) is established. We challenged the spiking model to fit an experimental data set from human subjects. Two subsequent sessions of EBCC acquisition and extinction were recorded and transcranial magnetic stimulation (TMS) was applied on the cerebellum to alter circuit function and plasticity. Evolutionary algorithms were used to find the near-optimal model parameters to reproduce the behaviors of subjects in the different sessions of the protocol. The main finding is that the optimized cerebellar model was able to learn to anticipate (predict) conditioned responses with accurate timing and success rate, demonstrating fast acquisition, memory stabilization, rapid extinction, and faster reacquisition as in EBCC in humans. The firing of Purkinje cells (PCs) and deep cerebellar nuclei (DCN) changed during learning under the control of synaptic plasticity, which evolved at different rates, with a faster acquisition in the cerebellar cortex than in DCN synapses. Eventually, a reduced PC activity released DCN discharge just after the CS, precisely anticipating the US and causing the eyeblink. Moreover, a specific alteration in cortical plasticity explained the EBCC changes induced by cerebellar TMS in humans. In this paper, for the first time, it is shown how closed-loop simulations, using detailed cerebellar microcircuit models, can be successfully used to fit real experimental data sets. Thus, the changes of the model parameters in the different sessions of the protocol unveil how implicit microcircuit mechanisms can generate normal and altered associative behaviors.The cerebellum plays a critical role in sensorimotor control. However, how the specific circuits and plastic mechanisms of the cerebellum are engaged in closed-loop processing is still unclear. We developed an artificial sensorimotor control system embedding a detailed spiking cerebellar microcircuit with three bidirectional plasticity sites. This proved able to reproduce a cerebellar-driven associative paradigm, the eyeblink classical conditioning (EBCC), in which a precise time relationship between an unconditioned stimulus (US) and a conditioned stimulus (CS) is established. We challenged the spiking model to fit an experimental data set from human subjects. Two subsequent sessions of EBCC acquisition and extinction were recorded and transcranial magnetic stimulation (TMS) was applied on the cerebellum to alter circuit function and plasticity. Evolutionary algorithms were used to find the near-optimal model parameters to reproduce the behaviors of subjects in the different sessions of the protocol. The main finding is that the optimized cerebellar model was able to learn to anticipate (predict) conditioned responses with accurate timing and success rate, demonstrating fast acquisition, memory stabilization, rapid extinction, and faster reacquisition as in EBCC in humans. The firing of Purkinje cells (PCs) and deep cerebellar nuclei (DCN) changed during learning under the control of synaptic plasticity, which evolved at different rates, with a faster acquisition in the cerebellar cortex than in DCN synapses. Eventually, a reduced PC activity released DCN discharge just after the CS, precisely anticipating the US and causing the eyeblink. Moreover, a specific alteration in cortical plasticity explained the EBCC changes induced by cerebellar TMS in humans. In this paper, for the first time, it is shown how closed-loop simulations, using detailed cerebellar microcircuit models, can be successfully used to fit real experimental data sets. Thus, the changes of the model parameters in the different sessions of the protocol unveil how implicit microcircuit mechanisms can generate normal and altered associative behaviors.
Collapse
Affiliation(s)
- Alberto Antonietti
- Department of Electronics, Neuroengineering and Medical Robotics Laboratory, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Claudia Casellato
- Department of Electronics, Neuroengineering and Medical Robotics Laboratory, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, Brain Connectivity Center, Istituto di Ricovero e Cura a Carattere Scientifico and the Istituto Neurologico Nazionale C. Mondino, University of Pavia, Pavia, Italy
| | - Alessandra Pedrocchi
- Department of Electronics, Neuroengineering and Medical Robotics Laboratory, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|
38
|
Lei Y, Bao S, Perez MA, Wang J. Enhancing Generalization of Visuomotor Adaptation by Inducing Use-dependent Learning. Neuroscience 2017; 366:184-195. [PMID: 29031601 DOI: 10.1016/j.neuroscience.2017.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 09/29/2017] [Accepted: 10/04/2017] [Indexed: 11/26/2022]
Abstract
Learning a motor task in one condition typically generalizes to another, although it is unclear why it generalizes substantially in certain situations, but only partially in other situations (e.g., across movement directions and motor effectors). Here, we demonstrate that generalization of motor learning across directions and effectors can be enhanced substantially by inducing use-dependent learning, that is, by having subjects experience motor actions associated with a desired trajectory repeatedly during reaching movements. In Experiments 1 and 2, healthy human adults adapted to a visuomotor rotation while concurrently experiencing repetitive passive movements guided by a robot. This manipulation increased the extent of generalization across movement directions (Expt. 1) and across the arms (Expt. 2) by up to 50% and 42%, respectively, indicating crucial contribution of use-dependent learning to motor generalization. In Experiment 3, we applied repetitive transcranial magnetic stimulation (rTMS) to the left primary motor cortex (M1) of the human subjects prior to passive training with the right arm to increase cortical excitability. This intervention resulted in increased motor-evoked potentials (MEPs) and decreased short-interval intracortical inhibition (SICI) in the rTMS group, but not in the sham group. These changes observed in the rTMS group were accompanied by enhanced generalization of visuomotor adaptation across the arms, which was not the case in the sham group. Collectively, these findings confirm the involvement of M1 in use-dependent learning, and suggest that use-dependent learning can contribute not only to motor learning, but also to motor generalization.
Collapse
Affiliation(s)
- Yuming Lei
- University of Miami, Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miami, FL 33136, United States; University of Wisconsin - Milwaukee, Department of Kinesiology, Milwaukee, WI 53201, United States.
| | - Shancheng Bao
- University of Wisconsin - Milwaukee, Department of Kinesiology, Milwaukee, WI 53201, United States
| | - Monica A Perez
- University of Miami, Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miami, FL 33136, United States
| | - Jinsung Wang
- University of Wisconsin - Milwaukee, Department of Kinesiology, Milwaukee, WI 53201, United States
| |
Collapse
|
39
|
O'Shea J, Revol P, Cousijn H, Near J, Petitet P, Jacquin-Courtois S, Johansen-Berg H, Rode G, Rossetti Y. Induced sensorimotor cortex plasticity remediates chronic treatment-resistant visual neglect. eLife 2017; 6. [PMID: 28893377 PMCID: PMC5595432 DOI: 10.7554/elife.26602] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 08/04/2017] [Indexed: 11/15/2022] Open
Abstract
Right brain injury causes visual neglect - lost awareness of left space. During prism adaptation therapy, patients adapt to a rightward optical shift by recalibrating right arm movements leftward. This can improve left neglect, but the benefit of a single session is transient (~1 day). Here we show that tonic disinhibition of left motor cortex during prism adaptation enhances consolidation, stabilizing both sensorimotor and cognitive prism after-effects. In three longitudinal patient case series, just 20 min of combined stimulation/adaptation caused persistent cognitive after-effects (neglect improvement) that lasted throughout follow-up (18–46 days). Moreover, adaptation without stimulation was ineffective. Thus stimulation reversed treatment resistance in chronic visual neglect. These findings challenge consensus that because the left hemisphere in neglect is pathologically over-excited it ought to be suppressed. Excitation of left sensorimotor circuits, during an adaptive cognitive state, can unmask latent plastic potential that durably improves resistant visual attention deficits after brain injury.
Collapse
Affiliation(s)
- Jacinta O'Shea
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Lyon Neuroscience Research Center, ImpAct (Integrative, Multisensory, Perception, Action & Cognition) team INSERM U1028, CNRS UMR5292, University Lyon 1, Bron, France.,Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands
| | - Patrice Revol
- Lyon Neuroscience Research Center, ImpAct (Integrative, Multisensory, Perception, Action & Cognition) team INSERM U1028, CNRS UMR5292, University Lyon 1, Bron, France.,Hospices Civils de Lyon, Mouvement et Handicap, Hôpital Henry Gabrielle, Saint Genis-Laval, France
| | - Helena Cousijn
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Jamie Near
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Pierre Petitet
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Sophie Jacquin-Courtois
- Lyon Neuroscience Research Center, ImpAct (Integrative, Multisensory, Perception, Action & Cognition) team INSERM U1028, CNRS UMR5292, University Lyon 1, Bron, France.,Hospices Civils de Lyon, Service de Rééducation Neurologique, Hôpital Henry Gabrielle, Saint Genis-Laval, France
| | - Heidi Johansen-Berg
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Gilles Rode
- Lyon Neuroscience Research Center, ImpAct (Integrative, Multisensory, Perception, Action & Cognition) team INSERM U1028, CNRS UMR5292, University Lyon 1, Bron, France.,Hospices Civils de Lyon, Service de Rééducation Neurologique, Hôpital Henry Gabrielle, Saint Genis-Laval, France
| | - Yves Rossetti
- Lyon Neuroscience Research Center, ImpAct (Integrative, Multisensory, Perception, Action & Cognition) team INSERM U1028, CNRS UMR5292, University Lyon 1, Bron, France.,Hospices Civils de Lyon, Mouvement et Handicap, Hôpital Henry Gabrielle, Saint Genis-Laval, France
| |
Collapse
|
40
|
Perich MG, Miller LE. Altered tuning in primary motor cortex does not account for behavioral adaptation during force field learning. Exp Brain Res 2017; 235:2689-2704. [PMID: 28589233 PMCID: PMC5709199 DOI: 10.1007/s00221-017-4997-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 05/23/2017] [Indexed: 01/11/2023]
Abstract
Although primary motor cortex (M1) is intimately involved in the dynamics of limb movement, its inputs may be more closely related to higher-order aspects of movement and multi-modal sensory feedback. Motor learning is thought to result from the adaption of internal models that compute transformations between these representations. While the psychophysics of motor learning has been studied in many experiments, the particular role of M1 in the process remains the subject of debate. Studies of learning-related changes in the spatial tuning of M1 neurons have yielded conflicting results. To resolve the discrepancies, we recorded from M1 during curl field adaptation in a reaching task. Our results suggest that aside from the addition of the load itself, the relation of M1 to movement dynamics remains unchanged as monkeys adapt behaviorally. Accordingly, we implemented a musculoskeletal model to generate synthetic neural activity having a fixed dynamical relation to movement and showed that these simulated neurons reproduced the observed behavior of the recorded M1 neurons. The stable representation of movement dynamics in M1 suggests that behavioral changes are mediated through progressively altered recruitment of M1 neurons, while the output effect of those neurons remained largely unchanged.
Collapse
Affiliation(s)
- Matthew G Perich
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Lee E Miller
- Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago, IL, 60611, USA.
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
41
|
Disruption of M1 Activity during Performance Plateau Impairs Consolidation of Motor Memories. J Neurosci 2017; 37:9197-9206. [PMID: 28821677 DOI: 10.1523/jneurosci.3916-16.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 07/27/2017] [Accepted: 08/10/2017] [Indexed: 11/21/2022] Open
Abstract
Upon exposure to a new sensorimotor relationship, motor behaviors iteratively change early in adaptation but eventually stabilize as adaptation proceeds. Behavioral work suggests that motor memory consolidation is initiated upon the attainment of asymptotic levels of performance. Separate lines of evidence point to a critical role of the primary motor cortex (M1) in consolidation. However, a causal relationship between M1 activity during asymptote and consolidation has yet to be demonstrated. The present study investigated this issue in male and female participants using single-pulse transcranial magnetic stimulation (TMS) to interfere with postmovement activity in M1 in two behavioral phases of a ramp-and-hold visuomotor adaptation paradigm. TMS was either provided after each trial of the ramp phase of adaptation when a gradual increase in the visuomotor rotation caused movements to be changing, or after each trial of the hold phase of adaptation when the rotation was held constant and movements tended to stabilize. Consolidation was assessed by measuring performance on the same task 24 h later. Results revealed that TMS did not influence adaptation to the new visuomotor relationship in either condition. Critically, however, TMS disruption of M1 activity selectively impaired consolidation of motor memories when it was provided during the hold phase of adaptation. This effect did not take place when TMS was delivered over adjacent dorsal premotor cortex or when motor behaviors in late adaptation were prevented from plateauing. Together, these data suggest that the impaired consolidation stemmed from interference with mechanisms of repetition-dependent plasticity in M1.SIGNIFICANCE STATEMENT The present work demonstrates that TMS disruption of M1 activity impairs the consolidation of motor memories selectively when performance reaches asymptotic levels during sensorimotor adaptation. These findings provide evidence for a causal contribution of M1 to motor memory formation when movements tend to repeat, likely through mechanisms of repetition-dependent plasticity.
Collapse
|
42
|
Della-Maggiore V, Villalta JI, Kovacevic N, McIntosh AR. Functional Evidence for Memory Stabilization in Sensorimotor Adaptation: A 24-h Resting-State fMRI Study. Cereb Cortex 2017; 27:1748-1757. [PMID: 26656723 DOI: 10.1093/cercor/bhv289] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Adaptation learning is crucial to maintain precise motor control in face of environmental perturbations. Although much progress has been made in understanding the psychophysics and neurophysiology of sensorimotor adaptation (SA), the time course of memory consolidation remains elusive. The lack of a reproducible gradient of memory resistance using protocols of retrograde interference has even led to the proposal that memories produced through SA do not consolidate. Here, we pursued an alternative approach using resting-state fMRI to track changes in functional connectivity (FC) induced by learning. Given that consolidation leads to long-term memory, we hypothesized that a change in FC that predicted long-term memory but not short-term memory would provide indirect evidence for memory stabilization. Six scans were acquired before, 15 min, 1, 3, 5.5, and 24 h after training on a center-out task under veridical or distorted visual feedback. The experimental group showed an increment in FC of a network including motor, premotor, posterior parietal cortex, cerebellum, and putamen that peaked at 5.5 h. Crucially, the strengthening of this network correlated positively with long-term retention but negatively with short-term retention. Our work provides evidence, suggesting that adaptation memories stabilize within a 6-h window, and points to different mechanisms subserving short- and long-term memory.
Collapse
Affiliation(s)
- Valeria Della-Maggiore
- IFIBIO Houssay, Systems Neuroscience Group, Department of Physiology and Biophysics, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Jorge I Villalta
- IFIBIO Houssay, Systems Neuroscience Group, Department of Physiology and Biophysics, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Natasa Kovacevic
- Rotman Research Institute at Baycrest Centre, University of Toronto, Toronto, Canada
| | | |
Collapse
|
43
|
The effect of local vs remote experimental pain on motor learning and sensorimotor integration using a complex typing task. Pain 2017; 157:1682-1695. [PMID: 27023419 DOI: 10.1097/j.pain.0000000000000570] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recent work demonstrated that capsaicin-induced acute pain improved motor learning performance; however, baseline accuracy was very high, making it impossible to discern the impact of acute pain on motor learning and retention. In addition, the effects of the spatial location of capsaicin application were not explored. Two experiments were conducted to determine the interactive effects of acute pain vs control (experiment 1) and local vs remote acute pain (experiment 2) on motor learning and sensorimotor processing. For both experiments, somatosensory evoked potential (SEP) amplitudes and motor learning acquisition and retention (accuracy and response time) data were collected at baseline, after application, and after motor learning. Experiment 1: N11 (P < 0.05), N13 (P < 0.05), and N30 (P < 0.05) SEP peak amplitudes increased after motor learning in both groups, whereas the N20 SEP peak increased in the control group (P < 0.05). At baseline, the intervention group outperformed the control group in accuracy (P < 0.001). Response time improved after motor learning (P < 0.001) and at retention (P < 0.001). Experiment 2: The P25 SEP peak decreased in the local group after application of capsaicin cream (P < 0.01), whereas the N30 SEP peaks increased after motor learning in both groups (P < 0.05). Accuracy improved in the local group at retention (P < 0.005), and response time improved after motor learning (P < 0.005) and at retention (P < 0.001). This study suggests that acute pain may increase focal attention to the body part used in motor learning, contributing to our understanding of how the location of pain impacts somatosensory processing and the associated motor learning.
Collapse
|
44
|
Summers SJ, Schabrun SM, Marinovic W, Chipchase LS. Peripheral electrical stimulation increases corticomotor excitability and enhances the rate of visuomotor adaptation. Behav Brain Res 2017; 322:42-50. [DOI: 10.1016/j.bbr.2017.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/04/2017] [Accepted: 01/06/2017] [Indexed: 10/20/2022]
|
45
|
Anodal transcranial direct current stimulation over the primary motor cortex does not enhance the learning benefits of self-controlled feedback schedules. PSYCHOLOGICAL RESEARCH 2017; 82:496-506. [DOI: 10.1007/s00426-017-0846-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 01/30/2017] [Indexed: 12/12/2022]
|
46
|
Spampinato D, Celnik P. Temporal dynamics of cerebellar and motor cortex physiological processes during motor skill learning. Sci Rep 2017; 7:40715. [PMID: 28091578 PMCID: PMC5238434 DOI: 10.1038/srep40715] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 12/08/2016] [Indexed: 11/30/2022] Open
Abstract
Learning motor tasks involves distinct physiological processes in the cerebellum (CB) and primary motor cortex (M1). Previous studies have shown that motor learning results in at least two important neurophysiological changes: modulation of cerebellar output mediated in-part by long-term depression of parallel fiber-Purkinje cell synapse and induction of long-term plasticity (LTP) in M1, leading to transient occlusion of additional LTP-like plasticity. However, little is known about the temporal dynamics of these two physiological mechanisms during motor skill learning. Here we use non-invasive brain stimulation to explore CB and M1 mechanisms during early and late motor skill learning in humans. We predicted that early skill acquisition would be proportional to cerebellar excitability (CBI) changes, whereas later stages of learning will result in M1 LTP-like plasticity modifications. We found that early, and not late into skill training, CBI changed. Whereas, occlusion of LTP-like plasticity over M1 occurred only during late, but not early training. These findings indicate a distinct temporal dissociation in the physiological role of the CB and M1 when learning a novel skill. Understanding the role and temporal dynamics of different brain regions during motor learning is critical to device optimal interventions to augment learning.
Collapse
Affiliation(s)
- D Spampinato
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, 720 Rutland Avenue Baltimore, MD 21205, USA.,Department of Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine, 600 North Wolfe Street Baltimore, MD 21287, USA
| | - P Celnik
- Department of Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine, 600 North Wolfe Street Baltimore, MD 21287, USA.,Department of Neuroscience, Johns Hopkins School of Medicine, 725 North Wolfe Street Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins School of Medicine, 600 North Wolfe Street Baltimore, MD 21287, USA
| |
Collapse
|
47
|
Seidler RD, Gluskin BS, Greeley B. Right prefrontal cortex transcranial direct current stimulation enhances multi-day savings in sensorimotor adaptation. J Neurophysiol 2016; 117:429-435. [PMID: 27832598 DOI: 10.1152/jn.00563.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/31/2016] [Indexed: 11/22/2022] Open
Abstract
We have previously reported that visuospatial working memory performance and magnitude of activation in the right dorsolateral prefrontal cortex predict the rate of visuomotor adaptation. Recent behavioral studies suggest that sensorimotor savings, or faster relearning on second exposure to a task, are due to recall of these early, strategic components of adaptation. In the present study we applied anodal transcranial direct current stimulation to right or left prefrontal cortex or left motor cortex. We found that all groups adapted dart throwing movements while wearing prism lenses at the same rate as subjects receiving sham stimulation on day 1 On test day 2, which was conducted a few days later, the right prefrontal and left motor cortex groups adapted faster than the sham group. Moreover, only the right prefrontal group exhibited greater savings, expressed as a greater difference between day 1 and day 2 errors, compared with sham stimulation. These findings support the hypothesis that the right prefrontal cortex contributes to sensorimotor adaptation and savings. NEW & NOTEWORTHY We have previously reported that visuospatial working memory performance and magnitude of activation in the right dorsolateral prefrontal cortex predict the rate of manual visuomotor adaptation. Sensorimotor savings, or faster adaptation to a previously experienced perturbation, has been recently linked to cognitive processes. We show that facilitating the right prefrontal cortex with anodal transcranial direct current stimulation enhances sensorimotor savings compared with sham stimulation.
Collapse
Affiliation(s)
- Rachael D Seidler
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan; and .,Department of Psychology, University of Michigan, Ann Arbor, Michigan
| | | | - Brian Greeley
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan; and.,Department of Psychology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
48
|
Dancey E, Murphy B, Andrew D, Yielder P. Interactive effect of acute pain and motor learning acquisition on sensorimotor integration and motor learning outcomes. J Neurophysiol 2016; 116:2210-2220. [PMID: 27535371 DOI: 10.1152/jn.00337.2016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/17/2016] [Indexed: 12/14/2022] Open
Abstract
Previous work has demonstrated differential changes in early somatosensory evoked potentials (SEPs) when motor learning acquisition occurred in the presence of acute pain; however, the learning task was insufficiently complex to determine how these underlying neurophysiological differences impacted learning acquisition and retention. To address this limitation, we have utilized a complex motor task in conjunction with SEPs. Two groups of 12 participants (n = 24) were randomly assigned to either a capsaicin (capsaicin cream) or a control (inert lotion) group. SEP amplitudes were collected at baseline, after application, and after motor learning acquisition. Participants performed a motor acquisition task followed by a pain-free retention task within 24-48 h. After motor learning acquisition, the amplitude of the N20 SEP peak significantly increased (P < 0.05) and the N24 SEP peak significantly decreased (P < 0.001) for the control group while the N18 SEP peak significantly decreased (P < 0.01) for the capsaicin group. The N30 SEP peak was significantly increased (P < 0.001) after motor learning acquisition for both groups. The P25 SEP peak decreased significantly (P < 0.05) after the application of capsaicin cream. Both groups improved in accuracy after motor learning acquisition (P < 0.001). The capsaicin group outperformed the control group before motor learning acquisition (P < 0.05) and after motor learning acquisition (P < 0.05) and approached significance at retention (P = 0.06). Improved motor learning in the presence of capsaicin provides support for the enhancement of motor learning while in acute pain. In addition, the changes in SEP peak amplitudes suggest that early SEP changes reflect neurophysiological alterations accompanying both motor learning and mild acute pain.
Collapse
Affiliation(s)
- Erin Dancey
- Faculty of Health Sciences, University of Ontario Institute of Technology, Oshawa, Ontario, Canada
| | - Bernadette Murphy
- Faculty of Health Sciences, University of Ontario Institute of Technology, Oshawa, Ontario, Canada
| | - Danielle Andrew
- Faculty of Health Sciences, University of Ontario Institute of Technology, Oshawa, Ontario, Canada
| | - Paul Yielder
- Faculty of Health Sciences, University of Ontario Institute of Technology, Oshawa, Ontario, Canada
| |
Collapse
|
49
|
Yavari F, Mahdavi S, Towhidkhah F, Ahmadi-Pajouh MA, Ekhtiari H, Darainy M. Cerebellum as a forward but not inverse model in visuomotor adaptation task: a tDCS-based and modeling study. Exp Brain Res 2015; 234:997-1012. [DOI: 10.1007/s00221-015-4523-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 12/01/2015] [Indexed: 12/25/2022]
|
50
|
Hashemirad F, Zoghi M, Fitzgerald PB, Jaberzadeh S. The effect of anodal transcranial direct current stimulation on motor sequence learning in healthy individuals: A systematic review and meta-analysis. Brain Cogn 2015; 102:1-12. [PMID: 26685088 DOI: 10.1016/j.bandc.2015.11.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 11/13/2015] [Accepted: 11/17/2015] [Indexed: 11/25/2022]
Abstract
A large number of studies have indicated the effect of anodal transcranial direct current stimulation (a-tDCS) on the primary motor cortex (M1) during motor skill training. The effects of a-tDCS on different stages of motor sequence learning are not yet completely understood. The purpose of this meta-analysis was to determine the effects of single and multiple sessions of a-tDCS on two different tasks: the sequential finger tapping task/serial reaction time task (SEQTAP/SRTT) and the sequential visual isometric pinch task (SVIPT). We searched electronic databases for M1 a-tDCS studies. Thirteen studies met the inclusion criteria. The results indicate that application of multiple sessions of a-tDCS, compared to single session a-tDCS induced a significant improvement in skill in both SEQTAP/SRTT and SVIPT. Retention after a single day and multiple days of a-tDCS was statistically significant for the SEQTAP/SRTT task but not for SVIPT. Therefore, our findings suggest that application of M1 a-tDCS across the three or five consecutive days can be helpful to improve motor sequence learning.
Collapse
Affiliation(s)
- Fahimeh Hashemirad
- Department of Physiotherapy, School of Primary Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia.
| | - Maryam Zoghi
- Department of Medicine at Royal Melbourne Hospital, The University of Melbourne, Melbourne, Australia
| | - Paul B Fitzgerald
- Monash Alfred Psychiatry Research Centre, The Alfred and Monash University Central Clinical School, Melbourne, Australia
| | - Shapour Jaberzadeh
- Department of Physiotherapy, School of Primary Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| |
Collapse
|