1
|
Takasaki T, Bamba A, Kukita Y, Nishida A, Kanbayashi D, Hagihara K, Satoh R, Ishihara K, Sugiura R. Rcn1, the fission yeast homolog of human DSCR1, regulates arsenite tolerance independently from calcineurin. Genes Cells 2024; 29:589-598. [PMID: 38715219 DOI: 10.1111/gtc.13122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 07/06/2024]
Abstract
Calcineurin (CN) is a conserved Ca2+/calmodulin-dependent phosphoprotein phosphatase that plays a key role in Ca2+ signaling. Regulator of calcineurin 1 (RCAN1), also known as Down syndrome critical region gene 1 (DSCR1), interacts with calcineurin and inhibits calcineurin-dependent signaling in various organisms. Ppb1, the fission yeast calcineurin regulates Cl--homeostasis, and Ppb1 deletion induces MgCl2 hypersensitivity. Here, we characterize the conserved and novel roles of the fission yeast RCAN1 homolog rcn1+. Consistent with its role as an endogenous calcineurin inhibitor, Rcn1 overproduction reproduced the calcineurin-null phenotypes, including MgCl2 hypersensitivity and inhibition of calcineurin signaling upon extracellular Ca2+ stimuli as evaluated by the nuclear translocation and transcriptional activation of the calcineurin substrate Prz1. Notably, overexpression of rcn1+ causes hypersensitivity to arsenite, whereas calcineurin deletion induces arsenite tolerance, showing a phenotypic discrepancy between Rcn1 overexpression and calcineurin deletion. Importantly, although Rcn1 deletion induces modest sensitivities to arsenite and MgCl2 in wild-type cells, the arsenite tolerance, but not MgCl2 sensitivity, associated with Ppb1 deletion was markedly suppressed by Rcn1 deletion. Collectively, our findings reveal a previously unrecognized functional collaboration between Rcn1 and calcineurin, wherein Rcn1 not only negatively regulates calcineurin in the Cl- homeostasis, but also Rcn1 mediates calcineurin signaling to modulate arsenite cytotoxicity.
Collapse
Affiliation(s)
- Teruaki Takasaki
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Osaka, Japan
| | - Asuka Bamba
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Osaka, Japan
| | - Yuka Kukita
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Osaka, Japan
| | - Aiko Nishida
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Osaka, Japan
| | - Daiki Kanbayashi
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Osaka, Japan
| | - Kanako Hagihara
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Osaka, Japan
- Laboratory of Hygienic Science, Department of Pharmacy, School of Pharmacy, Hyogo Medical University, Kobe, Japan
| | - Ryosuke Satoh
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Osaka, Japan
| | - Keiichi Ishihara
- Laboratory of Pathological Biochemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Osaka, Japan
| |
Collapse
|
2
|
Molecular Mechanisms Involved in the Regulation of Neurodevelopment by miR-124. Mol Neurobiol 2023; 60:3569-3583. [PMID: 36840845 DOI: 10.1007/s12035-023-03271-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/04/2023] [Indexed: 02/26/2023]
Abstract
miR-124 is a miRNA predominantly expressed in the nervous system and accounts for more than a quarter of the total miRNAs in the brain. It regulates neurogenesis, neuronal differentiation, neuronal maturation, and synapse formation and is the most important miRNA in the brain. Furthermore, emerging evidence has suggested miR-124 may be associated with the pathogenesis of various neurodevelopmental and neuropsychiatric disorders. Here, we provide an overview of the role of miR-124 in neurodevelopment and the underling mechanisms, and finally, we prospect the significance of miR-124 research to the field of neuroscience.
Collapse
|
3
|
Rimal S, Li Y, Vartak R, Geng J, Tantray I, Li S, Huh S, Vogel H, Glabe C, Grinberg LT, Spina S, Seeley WW, Guo S, Lu B. Inefficient quality control of ribosome stalling during APP synthesis generates CAT-tailed species that precipitate hallmarks of Alzheimer's disease. Acta Neuropathol Commun 2021; 9:169. [PMID: 34663454 PMCID: PMC8522249 DOI: 10.1186/s40478-021-01268-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 11/25/2022] Open
Abstract
Amyloid precursor protein (APP) metabolism is central to Alzheimer's disease (AD) pathogenesis, but the key etiological driver remains elusive. Recent failures of clinical trials targeting amyloid-β (Aβ) peptides, the proteolytic fragments of amyloid precursor protein (APP) that are the main component of amyloid plaques, suggest that the proteostasis-disrupting, key pathogenic species remain to be identified. Previous studies suggest that APP C-terminal fragment (APP.C99) can cause disease in an Aβ-independent manner. The mechanism of APP.C99 pathogenesis is incompletely understood. We used Drosophila models expressing APP.C99 with the native ER-targeting signal of human APP, expressing full-length human APP only, or co-expressing full-length human APP and β-secretase (BACE), to investigate mechanisms of APP.C99 pathogenesis. Key findings are validated in mammalian cell culture models, mouse 5xFAD model, and postmortem AD patient brain materials. We find that ribosomes stall at the ER membrane during co-translational translocation of APP.C99, activating ribosome-associated quality control (RQC) to resolve ribosome collision and stalled translation. Stalled APP.C99 species with C-terminal extensions (CAT-tails) resulting from inadequate RQC are prone to aggregation, causing endolysosomal and autophagy defects and seeding the aggregation of amyloid β peptides, the main component of amyloid plaques. Genetically removing stalled and CAT-tailed APP.C99 rescued proteostasis failure, endolysosomal/autophagy dysfunction, neuromuscular degeneration, and cognitive deficits in AD models. Our finding of RQC factor deposition at the core of amyloid plaques from AD brains further supports the central role of defective RQC of ribosome collision and stalled translation in AD pathogenesis. These findings demonstrate that amyloid plaque formation is the consequence and manifestation of a deeper level proteostasis failure caused by inadequate RQC of translational stalling and the resultant aberrantly modified APP.C99 species, previously unrecognized etiological drivers of AD and newly discovered therapeutic targets.
Collapse
Affiliation(s)
- Suman Rimal
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Yu Li
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Rasika Vartak
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ji Geng
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ishaq Tantray
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Shuangxi Li
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sungun Huh
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Hannes Vogel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Charles Glabe
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - Lea T Grinberg
- Memory and Aging Center, Department of Neurology and Department of Pathology, University of California, San Francisco, CA, 94158, USA
| | - Salvatore Spina
- Memory and Aging Center, Department of Neurology and Department of Pathology, University of California, San Francisco, CA, 94158, USA
| | - William W Seeley
- Memory and Aging Center, Department of Neurology and Department of Pathology, University of California, San Francisco, CA, 94158, USA
| | - Su Guo
- Department of Bioengineering and Therapeutic Sciences, Programs in Human Genetics and Biological Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
| | - Bingwei Lu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
4
|
Brewer GJ, Herrera RA, Philipp S, Sosna J, Reyes-Ruiz JM, Glabe CG. Age-Related Intraneuronal Aggregation of Amyloid-β in Endosomes, Mitochondria, Autophagosomes, and Lysosomes. J Alzheimers Dis 2021; 73:229-246. [PMID: 31771065 PMCID: PMC7029321 DOI: 10.3233/jad-190835] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This work provides new insight into the age-related basis of Alzheimer’s disease (AD), the composition of intraneuronal amyloid (iAβ), and the mechanism of an age-related increase in iAβ in adult AD-model mouse neurons. A new end-specific antibody for Aβ45 and another for aggregated forms of Aβ provide new insight into the composition of iAβ and the mechanism of accumulation in old adult neurons from the 3xTg-AD model mouse. iAβ levels containing aggregates of Aβ45 increased 30-50-fold in neurons from young to old age and were further stimulated upon glutamate treatment. iAβ was 8 times more abundant in 3xTg-AD than non-transgenic neurons with imaged particle sizes following the same log-log distribution, suggesting a similar snow-ball mechanism of intracellular biogenesis. Pathologically misfolded and mislocalized Alz50 tau colocalized with iAβ and rapidly increased following a brief metabolic stress with glutamate. AβPP-CTF, Aβ45, and aggregated Aβ colocalized most strongly with mitochondria and endosomes and less with lysosomes and autophagosomes. Differences in iAβ by sex were minor. These results suggest that incomplete carboxyl-terminal trimming of long Aβs by gamma-secretase produced large intracellular deposits which limited completion of autophagy in aged neurons. Understanding the mechanism of age-related changes in iAβ processing may lead to application of countermeasures to prolong dementia-free health span.
Collapse
Affiliation(s)
- Gregory J Brewer
- MIND Institute, Center for Neurobiology of Learning and Memory, Irvine, CA, USA.,Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Robert A Herrera
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Stephan Philipp
- Department of Molecular Biology, University of California Irvine, Irvine, CA, USA
| | - Justyna Sosna
- Department of Molecular Biology, University of California Irvine, Irvine, CA, USA
| | | | - Charles G Glabe
- MIND Institute, Center for Neurobiology of Learning and Memory, Irvine, CA, USA.,Department of Molecular Biology, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
5
|
Dcf1 alleviates C99-mediated deficits in drosophila by reducing the cleavage of C99. Biochem Biophys Res Commun 2020; 530:410-417. [DOI: 10.1016/j.bbrc.2020.05.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/07/2020] [Indexed: 12/23/2022]
|
6
|
Lee SK, Ahnn J. Regulator of Calcineurin (RCAN): Beyond Down Syndrome Critical Region. Mol Cells 2020; 43:671-685. [PMID: 32576715 PMCID: PMC7468584 DOI: 10.14348/molcells.2020.0060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022] Open
Abstract
The regulator of calcineurin (RCAN) was first reported as a novel gene called DSCR1, encoded in a region termed the Down syndrome critical region (DSCR) of human chromosome 21. Genome sequence comparisons across species using bioinformatics revealed three members of the RCAN gene family, RCAN1, RCAN2, and RCAN3, present in most jawed vertebrates, with one member observed in most invertebrates and fungi. RCAN is most highly expressed in brain and striated muscles, but expression has been reported in many other tissues, as well, including the heart and kidneys. Expression levels of RCAN homologs are responsive to external stressors such as reactive oxygen species, Ca2+, amyloid β, and hormonal changes and upregulated in pathological conditions, including Alzheimer's disease, cardiac hypertrophy, diabetes, and degenerative neuropathy. RCAN binding to calcineurin, a Ca2+/calmodulin-dependent phosphatase, inhibits calcineurin activity, thereby regulating different physiological events via dephosphorylation of important substrates. Novel functions of RCANs have recently emerged, indicating involvement in mitochondria homeostasis, RNA binding, circadian rhythms, obesity, and thermogenesis, some of which are calcineurin-independent. These developments suggest that besides significant contributions to DS pathologies and calcineurin regulation, RCAN is an important participant across physiological systems, suggesting it as a favorable therapeutic target.
Collapse
Affiliation(s)
- Sun-Kyung Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Joohong Ahnn
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
7
|
Mariano V, Achsel T, Bagni C, Kanellopoulos AK. Modelling Learning and Memory in Drosophila to Understand Intellectual Disabilities. Neuroscience 2020; 445:12-30. [PMID: 32730949 DOI: 10.1016/j.neuroscience.2020.07.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 12/24/2022]
Abstract
Neurodevelopmental disorders (NDDs) include a large number of conditions such as Fragile X syndrome, autism spectrum disorders and Down syndrome, among others. They are characterized by limitations in adaptive and social behaviors, as well as intellectual disability (ID). Whole-exome and whole-genome sequencing studies have highlighted a large number of NDD/ID risk genes. To dissect the genetic causes and underlying biological pathways, in vivo experimental validation of the effects of these mutations is needed. The fruit fly, Drosophila melanogaster, is an ideal model to study NDDs, with highly tractable genetics, combined with simple behavioral and circuit assays, permitting rapid medium-throughput screening of NDD/ID risk genes. Here, we review studies where the use of well-established assays to study mechanisms of learning and memory in Drosophila has permitted insights into molecular mechanisms underlying IDs. We discuss how technologies in the fly model, combined with a high degree of molecular and physiological conservation between flies and mammals, highlight the Drosophila system as an ideal model to study neurodevelopmental disorders, from genetics to behavior.
Collapse
Affiliation(s)
- Vittoria Mariano
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne 1005, Switzerland; Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Tilmann Achsel
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne 1005, Switzerland
| | - Claudia Bagni
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne 1005, Switzerland; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome 00133, Italy.
| | | |
Collapse
|
8
|
Imaizumi T, Yamamoto-Shimojima K, Yanagishita T, Ondo Y, Nishi E, Okamoto N, Yamamoto T. Complex chromosomal rearrangements of human chromosome 21 in a patient manifesting clinical features partially overlapped with that of Down syndrome. Hum Genet 2020; 139:1555-1563. [PMID: 32535809 DOI: 10.1007/s00439-020-02196-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/06/2020] [Indexed: 01/16/2023]
Abstract
The chromosomal region critical in Down syndrome has long been analyzed through genotype-phenotype correlation studies using data from many patients with partial trisomy 21. Owing to that, a relatively small region of human chromosome 21 (35.9 ~ 38.0 Mb) has been considered as Down syndrome critical region (DSCR). In this study, microarray-based comparative genomic hybridization analysis identified complex rearrangements of chromosome 21 in a patient manifesting clinical features partially overlapped with that of Down syndrome. Although the patient did not show up-slanting palpebral fissures and single transverse palmar creases, other symptoms were consistent with Down syndrome. Rearrangements were analyzed by whole-genome sequencing using Nanopore long-read sequencing. The analysis revealed that chromosome 21 was fragmented into seven segments and reassembled by six connected points. Among 12 breakpoints, 5 are located within the short region and overlapped with repeated segments. The rearrangement resulted in a maximum gain of five copies, but no region showed loss of genomic copy numbers. Breakpoint-junctions showed no homologous region. Based on these findings, chromoanasynthesis was considered as the mechanism. Although the distal 21q22.13 region was not included in the aberrant regions, some of the genes located on the duplicated regions, SOD1, SON, ITSN1, RCAN1, and RUNX1, were considered as possible candidate genes for clinical features of the patient. We discussed the critical region for Down syndrome, with the literature review.
Collapse
Affiliation(s)
- Taichi Imaizumi
- Institute of Medical Genetics, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ward, Tokyo, 162-8666, Japan
- Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Keiko Yamamoto-Shimojima
- Institute of Medical Genetics, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ward, Tokyo, 162-8666, Japan
- Japan Society for the Promotion of Science (RPD), Tokyo, Japan
- Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Tokyo, Japan
- Tokyo Women's Medical University Institute for Integrated Medical Sciences, Tokyo, Japan
| | - Tomoe Yanagishita
- Institute of Medical Genetics, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ward, Tokyo, 162-8666, Japan
- Department of Pediatrics, Tokyo Women's Medical University, Tokyo, Japan
| | - Yumiko Ondo
- Institute of Medical Genetics, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ward, Tokyo, 162-8666, Japan
| | - Eriko Nishi
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Toshiyuki Yamamoto
- Institute of Medical Genetics, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ward, Tokyo, 162-8666, Japan.
- Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki, Japan.
- Tokyo Women's Medical University Institute for Integrated Medical Sciences, Tokyo, Japan.
- Department of Pediatrics, Tokyo Women's Medical University, Tokyo, Japan.
| |
Collapse
|
9
|
Choi C, Kim T, Chang KT, Min K. DSCR1-mediated TET1 splicing regulates miR-124 expression to control adult hippocampal neurogenesis. EMBO J 2019; 38:e101293. [PMID: 31304631 PMCID: PMC6627232 DOI: 10.15252/embj.2018101293] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 11/09/2022] Open
Abstract
Whether epigenetic factors such as DNA methylation and microRNAs interact to control adult hippocampal neurogenesis is not fully understood. Here, we show that Down syndrome critical region 1 (DSCR1) protein plays a key role in adult hippocampal neurogenesis by modulating two epigenetic factors: TET1 and miR-124. We find that DSCR1 mutant mice have impaired adult hippocampal neurogenesis. DSCR1 binds to TET1 introns to regulate splicing of TET1, thereby modulating TET1 level. Furthermore, TET1 controls the demethylation of the miRNA-124 promoter to modulate miR-124 expression. Correcting the level of TET1 in DSCR1 knockout mice is sufficient to prevent defective adult neurogenesis. Importantly, restoring DSCR1 level in a Down syndrome mouse model effectively rescued adult neurogenesis and learning and memory deficits. Our study reveals that DSCR1 plays a critical upstream role in epigenetic regulation of adult neurogenesis and provides insights into potential therapeutic strategy for treating cognitive defects in Down syndrome.
Collapse
Affiliation(s)
- Chiyeol Choi
- Department of Biological SciencesSchool of Life SciencesUlsan National Institute of Science and TechnologyUlsanKorea
- National Creative Research Initiative Center for ProteostasisUlsan National Institute of Science and TechnologyUlsanKorea
| | - Taehoon Kim
- Department of Biological SciencesSchool of Life SciencesUlsan National Institute of Science and TechnologyUlsanKorea
- National Creative Research Initiative Center for ProteostasisUlsan National Institute of Science and TechnologyUlsanKorea
| | - Karen T Chang
- Zilkha Neurogenetic InstituteKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Kyung‐Tai Min
- Department of Biological SciencesSchool of Life SciencesUlsan National Institute of Science and TechnologyUlsanKorea
- National Creative Research Initiative Center for ProteostasisUlsan National Institute of Science and TechnologyUlsanKorea
| |
Collapse
|
10
|
Perez SE, Miguel JC, He B, Malek-Ahmadi M, Abrahamson EE, Ikonomovic MD, Lott I, Doran E, Alldred MJ, Ginsberg SD, Mufson EJ. Frontal cortex and striatal cellular and molecular pathobiology in individuals with Down syndrome with and without dementia. Acta Neuropathol 2019; 137:413-436. [PMID: 30734106 PMCID: PMC6541490 DOI: 10.1007/s00401-019-01965-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 02/06/2023]
Abstract
Although, by age 40, individuals with Down syndrome (DS) develop amyloid-β (Aβ) plaques and tau-containing neurofibrillary tangles (NFTs) linked to cognitive impairment in Alzheimer's disease (AD), not all people with DS develop dementia. Whether Aβ plaques and NFTs are associated with individuals with DS with (DSD +) and without dementia (DSD -) is under-investigated. Here, we applied quantitative immunocytochemistry and fluorescent procedures to characterize NFT pathology using antibodies specific for tau phosphorylation (pS422, AT8), truncation (TauC3, MN423), and conformational (Alz50, MC1) epitopes, as well as Aβ and its precursor protein (APP) to frontal cortex (FC) and striatal tissue from DSD + to DSD - cases. Expression profiling of single pS422 labeled FC layer V and VI neurons was also determined using laser capture microdissection and custom-designed microarray analysis. Analysis revealed that cortical and striatal Aβ plaque burdens were similar in DSD + and DSD - cases. In both groups, most FC plaques were neuritic, while striatal plaques were diffuse. By contrast, FC AT8-positive NFTs and neuropil thread densities were significantly greater in DSD + compared to DSD -, while striatal NFT densities were similar between groups. FC pS422-positive and TauC3 NFT densities were significantly greater than Alz50-labeled NFTs in DSD + , but not DSD - cases. Putaminal, but not caudate pS422-positive NFT density, was significantly greater than TauC3-positive NFTs. In the FC, AT8 + pS422 + Alz50, TauC3 + pS422 + Alz50, pS422 + Alz50, and TauC3 + pS422 positive NFTs were more frequent in DSD + compared to DSD- cases. Single gene-array profiling of FC pS422 positive neurons revealed downregulation of 63 of a total of 864 transcripts related to Aβ/tau biology, glutamatergic, cholinergic, and monoaminergic metabolism, intracellular signaling, cell homeostasis, and cell death in DSD + compared DSD - cases. These observations suggest that abnormal tau aggregation plays a critical role in the development of dementia in DS.
Collapse
Affiliation(s)
- Sylvia E Perez
- Department of Neurobiology and Neurology, Barrow Neurological Institute, 350 W. Thomas St, Phoenix, AZ, 85013, USA
- School of Life Sciences, College of Liberal Arts and Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Jennifer C Miguel
- Department of Neurobiology and Neurology, Barrow Neurological Institute, 350 W. Thomas St, Phoenix, AZ, 85013, USA
| | - Bin He
- Department of Neurobiology and Neurology, Barrow Neurological Institute, 350 W. Thomas St, Phoenix, AZ, 85013, USA
| | | | - Eric E Abrahamson
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, 15213, USA
- Departments of Neurology and Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Milos D Ikonomovic
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, 15213, USA
- Departments of Neurology and Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Ira Lott
- Departments of Pediatrics and Neurology, University of California, Irvine, CA, 92697, USA
| | - Eric Doran
- Departments of Pediatrics and Neurology, University of California, Irvine, CA, 92697, USA
| | - Melissa J Alldred
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA
- Departments of Psychiatry, NYU Neuroscience Institute, NYU Langone Medical Center, New York, NY, 10021, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA
- Departments of Psychiatry, NYU Neuroscience Institute, NYU Langone Medical Center, New York, NY, 10021, USA
- Departments of Neuroscience and Physiology, The NYU Neuroscience Institute, NYU Langone Medical Center, New York, NY, 10021, USA
| | - Elliott J Mufson
- Department of Neurobiology and Neurology, Barrow Neurological Institute, 350 W. Thomas St, Phoenix, AZ, 85013, USA.
| |
Collapse
|
11
|
Şentürk M, Bellen HJ. Genetic strategies to tackle neurological diseases in fruit flies. Curr Opin Neurobiol 2018; 50:24-32. [PMID: 29128849 PMCID: PMC5940587 DOI: 10.1016/j.conb.2017.10.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 10/13/2017] [Accepted: 10/17/2017] [Indexed: 10/18/2022]
Abstract
Drosophila melanogaster is a genetic model organism that has contributed to the discovery of numerous genes whose human homologues are associated with diseases. The development of sophisticated genetic tools to manipulate its genome accelerates the discovery of the genetic basis of undiagnosed human diseases and the elucidation of molecular pathogenic events of known and novel diseases. Here, we discuss various approaches used in flies to assess the function of the fly homologues of disease-associated genes. We highlight how systematic and combinatorial approaches based on recently established methods provide us with integrated tool sets that can be applied to the study of neurodevelopmental and neurodegenerative disorders.
Collapse
Affiliation(s)
- Mümine Şentürk
- Program in Developmental Biology, Baylor College of Medicine (BCM), Houston, TX 77030, USA
| | - Hugo J Bellen
- Program in Developmental Biology, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Department of Molecular and Human Genetics, BCM, Houston TX 77030, USA; Department of Neuroscience, BCM, Houston TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston TX 77030, USA; Howard Hughes Medical Institute, BCM, Houston, TX 77030, USA.
| |
Collapse
|
12
|
Wang W, Rai A, Hur EM, Smilansky Z, Chang KT, Min KT. DSCR1 is required for both axonal growth cone extension and steering. J Cell Biol 2016; 213:451-62. [PMID: 27185837 PMCID: PMC4878092 DOI: 10.1083/jcb.201510107] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 04/22/2016] [Indexed: 11/26/2022] Open
Abstract
Wang et al. identify that DSCR1, a gene on chromosome 21 that is associated with Down syndrome, controls both the rate and direction of axon growth in response to extrinsic cues by regulating cytoskeletal dynamics and local protein synthesis in the growth cone. Local information processing in the growth cone is essential for correct wiring of the nervous system. As an axon navigates through the developing nervous system, the growth cone responds to extrinsic guidance cues by coordinating axon outgrowth with growth cone steering. It has become increasingly clear that axon extension requires proper actin polymerization dynamics, whereas growth cone steering involves local protein synthesis. However, molecular components integrating these two processes have not been identified. Here, we show that Down syndrome critical region 1 protein (DSCR1) controls axon outgrowth by modulating growth cone actin dynamics through regulation of cofilin activity (phospho/dephospho-cofilin). Additionally, DSCR1 mediates brain-derived neurotrophic factor–induced local protein synthesis and growth cone turning. Our study identifies DSCR1 as a key protein that couples axon growth and pathfinding by dually regulating actin dynamics and local protein synthesis.
Collapse
Affiliation(s)
- Wei Wang
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Asit Rai
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Eun-Mi Hur
- Brain Science Institute-Center for Neuroscience, Korea Institute of Science and Technology, Seoul 02792, Korea Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792, Korea Department of Neuroscience, University of Science and Technology, Daejeon 34113, Korea
| | | | - Karen T Chang
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90089 Department of Cell and Neurobiology, University of Southern California, Los Angeles, CA 90089
| | - Kyung-Tai Min
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| |
Collapse
|