1
|
Douville CO. Reality and imagination intertwined: A sensorimotor paradox interpretation. Biosystems 2024; 246:105350. [PMID: 39433120 DOI: 10.1016/j.biosystems.2024.105350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/16/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024]
Abstract
As a hypothesis on the origins of mind and language, the evolutionary theory of the sensorimotor paradox suggests that capacities for imagination, self-representation and abstraction would operate from a dissociation in what is known as the forward model. In some studies, sensory perception is understood as a system of prediction and confirmation (feedforward and feedback processes) that would share common yet distinct and overlapping neural networks with mental imagery. The latter would then mostly operate through internal feedback processes. The hypothesis of our theory is that dissociation and parallelism between those processes would make it less likely for imaginary prediction to match and simultaneously coincide with any sensory feedback, contradicting the stimulus/response pattern. The gap between the two and the effort required to maintain this gap, born from the development of bipedal stance and a radical change to our relation to our own hands, would be the very structural foundation to our capacity to elaborate abstract thoughts, by partially blocking and inhibiting motor action. Mental imagery would structurally be dissociated from perception, though maintaining an intricated relation of interdependence. Moreover, the content of the images would be subordinate to their function as emotional regulators, prioritising consistency with some global, conditional and socially learnt body-image. As a higher-level and proto-aesthetic function, we can speculate that the action and instrumentalisation of dissociating imagination from perception would become the actual prediction and their coordination, the expected feedback.
Collapse
|
2
|
Finkelman T, Furman-Haran E, Aberg KC, Paz R, Tal A. Inhibitory mechanisms in the prefrontal-cortex differentially mediate Putamen activity during valence-based learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605168. [PMID: 39131397 PMCID: PMC11312490 DOI: 10.1101/2024.07.29.605168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Learning from appetitive and aversive stimuli involves interactions between the prefrontal cortex and subcortical structures. Preclinical and theoretical studies indicate that inhibition is essential in regulating the relevant neural circuitry. Here, we demonstrate that GABA, the main inhibitory neurotransmitter in the central nervous system, differentially affects how the dACC interacts with subcortical structures during appetitive and aversive learning in humans. Participants engaged in tasks involving appetitive and aversive learning, while using functional magnetic resonance spectroscopy (MRS) at 7T to track GABA concentrations in the dACC, alongside whole-brain fMRI scans to assess BOLD activation. During appetitive learning, dACC GABA concentrations were negatively correlated with learning performance and BOLD activity measured from the dACC and the Putamen. These correlations were absent during aversive learning, where dACC GABA concentrations negatively correlated with the connectivity between the dACC and the Putamen. Our results show that inhibition in the dACC mediates appetitive and aversive learning in humans through distinct mechanisms.
Collapse
Affiliation(s)
- Tal Finkelman
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Edna Furman-Haran
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Kristoffer C Aberg
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Rony Paz
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Assaf Tal
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
3
|
Ji MT, Pashankar N, Harter AM, Nemesh M, Przybyl KJ, Mulligan MK, Chen H, Redei EE. Limited WKY chromosomal regions confer increases in anxiety and fear memory in a F344 congenic rat strain. Physiol Genomics 2024; 56:327-342. [PMID: 38314698 PMCID: PMC11283897 DOI: 10.1152/physiolgenomics.00114.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 02/07/2024] Open
Abstract
This study investigated the interaction between genetic differences in stress reactivity/coping and environmental challenges, such as acute stress during adolescence on adult contextual fear memory and anxiety-like behaviors. Fischer 344 (F344) and the inbred F344;WKY-Stresp3/Eer congenic strain (congenic), in which chromosomal regions from the Wistar-Kyoto (WKY) strain were introgressed into the F344 background, were exposed to a modified forced swim test during adolescence, while controls were undisturbed. In adulthood, fear learning and memory, assessed by contextual fear conditioning, were significantly greater in congenic animals compared with F344 animals, and stress during adolescence increased them even further in males of both strains. Anxiety-like behavior, measured by the open field test, was also greater in congenic than F344 animals, and stress during adolescence increased it further in both strains of adult males. Whole genome sequencing of the F344;WKY-Stresp3/Eer strain revealed an enrichment of WKY genotypes in chromosomes 9, 14, and 15. An example of functional WKY sequence variations in the congenic strain, cannabinoid receptor interacting protein 1 (Cnrip1) had a Cnrip1 transcript isoform that lacked two exons. Although the original hypothesis that the genetic predisposition to increased anxiety of the WKY donor strain would exaggerate fear memory relative to the background strain was confirmed, the consequences of adolescent stress were strain independent but sex dependent in adulthood. Molecular genomic approaches combined with genetic mapping of WKY sequence variations in chromosomes 9, 14, and 15 could aid in finding quantitative trait genes contributing to the variation in fear memory.NEW & NOTEWORTHY This study found that 1) whole genome sequencing of congenic strains should be a criterion for their recognition; 2) sequence variations between Wistar-Kyoto and Fischer 344 strains at regions of chromosomes 9, 14, and 15 contribute to differences in contextual fear memory and anxiety-like behaviors; and 3) stress during adolescence affects these behaviors in males, but not females, and is independent of strain.
Collapse
Affiliation(s)
- Michelle T Ji
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Neha Pashankar
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Aspen M Harter
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Mariya Nemesh
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Katherine J Przybyl
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Megan K Mulligan
- Department of Genetics, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Hao Chen
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Eva E Redei
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| |
Collapse
|