1
|
Peer ND, Yamin HG, Cohen D. Multidimensional encoding of movement and contextual variables by rat globus pallidus neurons during a novel environment exposure task. iScience 2022; 25:105024. [PMID: 36117990 PMCID: PMC9475330 DOI: 10.1016/j.isci.2022.105024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 06/13/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022] Open
Abstract
The basal ganglia (BG) play a critical role in a variety of functions that are essential for animal survival. Information from different cortical areas propagates through the BG in anatomically segregated circuits along the parallel direct and indirect pathways. We examined how the globus pallidus (GP), a nucleus within the indirect pathway, encodes input from the motor and cognitive domains. We chronically recorded and analyzed neuronal activity in the GP of male rats engaged in a novel environment exposure task. GP neurons displayed multidimensional responses to movement and contextual information. A model predicting single unit activity required many task-related behavioral variables, thus confirming the multidimensionality of GP neurons. In addition, populations of GP neurons, but not single units, reliably encoded the animals’ locomotion speed and the environmental novelty. We posit that the GP independently processes information from different domains, effectively compresses it and collectively conveys it to successive nuclei. Single GP neurons encode independently many behavioral and contextual variables Many behavioral variables contribute to the prediction of single neuron firing rate Single neurons fail to approximate the rat’s locomotion and the environment novelty Populations of GP neurons encode the rats’ locomotion and the environment novelty
Collapse
|
2
|
Quartarone A, Cacciola A, Milardi D, Ghilardi MF, Calamuneri A, Chillemi G, Anastasi G, Rothwell J. New insights into cortico-basal-cerebellar connectome: clinical and physiological considerations. Brain 2020; 143:396-406. [PMID: 31628799 DOI: 10.1093/brain/awz310] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 12/15/2022] Open
Abstract
The current model of the basal ganglia system based on the 'direct', 'indirect' and 'hyperdirect' pathways provides striking predictions about basal ganglia function that have been used to develop deep brain stimulation approaches for Parkinson's disease and dystonia. The aim of this review is to challenge this scheme in light of new tract tracing information that has recently become available from the human brain using MRI-based tractography, thus providing a novel perspective on the basal ganglia system. We also explore the implications of additional direct pathways running from cortex to basal ganglia and between basal ganglia and cerebellum in the pathophysiology of movement disorders.
Collapse
Affiliation(s)
- Angelo Quartarone
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Alberto Cacciola
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Demetrio Milardi
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy.,IRCCS Centro Neurolesi 'Bonino Pulejo', Messina, Italy
| | | | | | | | - Giuseppe Anastasi
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - John Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, UK
| |
Collapse
|
3
|
Tarcijonas G, Foran W, Haas GL, Luna B, Sarpal DK. Intrinsic Connectivity of the Globus Pallidus: An Uncharted Marker of Functional Prognosis in People With First-Episode Schizophrenia. Schizophr Bull 2020; 46:184-192. [PMID: 31150557 PMCID: PMC6942165 DOI: 10.1093/schbul/sbz034] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There is growing evidence suggesting that abnormalities in cortical-basal ganglia circuitry may play a significant role in determining outcomes in schizophrenia. The globus pallidus (GP), a critical structure within this circuitry, unique in its role as a mediator of competing inputs through the striatum, has not been well characterized in schizophrenia. The following study examined functional interactions of the GP in individuals with first-episode schizophrenia (FES). To probe the large-scale intrinsic connectivity of the GP, resting-state fMRI scans were obtained from patients with FES and sex and age-matched healthy controls. Participants with FES were also evaluated after 6 months via the Strauss-Carpenter Outcomes Scale to assess overall functional trajectory. The GP was parcellated to generate seeds within its substructures, and connectivity maps were generated. Our FES cohort showed significantly lower functional connectivity between the left GP interna and a network of regions including the dorsolateral prefrontal cortex, caudate, and cerebellum at baseline. In addition, FES participants with lower overall scores of functioning at 6 months showed significantly decreased connectivity between the GP interna and the dorsal anterior cingulate and bilateral insula, all regions important for motivational salience. These results provide novel evidence for unique abnormalities in functional interactions of the GP with key prefrontal cortical regions in FES. Our findings also suggest that reduced prefrontal-pallidal connectivity may serve as a predictor of early functional outcome.
Collapse
Affiliation(s)
- Goda Tarcijonas
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - William Foran
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - Gretchen L Haas
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA,Department of Psychology, University of Pittsburgh, Pittsburgh, PA,Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA
| | - Deepak K Sarpal
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA,To whom correspondence should be addressed; Department of Psychiatry, University of Pittsburgh, 3501 Forbes Avenue, Suite 530, Pittsburgh, PA 15213, US; tel: 412-246-5618, fax: 412-246-5007, e-mail:
| |
Collapse
|
4
|
Nougaret S, Ravel S. Dynamic Encoding of Effort and Reward throughout the Execution of Action by External Globus Pallidus Neurons in Monkeys. J Cogn Neurosci 2018; 30:1130-1144. [PMID: 29762102 DOI: 10.1162/jocn_a_01277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Humans and animals must evaluate the costs and expected benefits of their actions to make adaptive choices. Prior studies have demonstrated the involvement of the basal ganglia in this evaluation. However, little is known about the role of the external part of the globus pallidus (GPe), which is well positioned to integrate motor and reward-related information, in this process. To investigate this role, the activity of 126 neurons was recorded in the associative and limbic parts of the GPe of two monkeys performing a behavioral task in which different levels of force were required to obtain different amounts of liquid reward. The results first revealed that the activity of associative and limbic GPe neurons could be modulated not only by cognitive and limbic but also motor information at the same time, both during a single period or during different periods throughout the trial, mainly in an independent way. Moreover, as a population, GPe neurons encoded these types of information dynamically throughout the trial, when each piece of information was the most relevant for the achievement of the action. Taken together, these results suggest that GPe neurons could be dedicated to the parallel monitoring of task parameters essential to adjusting and maintaining goal-directed behavior.
Collapse
Affiliation(s)
- Simon Nougaret
- Institut de Neurosciences de la Timone, UMR7289 Centre National de la Recherche Scientifique and Aix-Marseille Université, France
| | - Sabrina Ravel
- Institut de Neurosciences de la Timone, UMR7289 Centre National de la Recherche Scientifique and Aix-Marseille Université, France
| |
Collapse
|
5
|
Saga Y, Richard A, Sgambato-Faure V, Hoshi E, Tobler PN, Tremblay L. Ventral Pallidum Encodes Contextual Information and Controls Aversive Behaviors. Cereb Cortex 2017; 27:2528-2543. [PMID: 27114173 DOI: 10.1093/cercor/bhw107] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Successful avoidance of aversive outcomes is crucial for the survival of animals. Although accumulating evidence indicates that an indirect pathway in the basal ganglia is involved in aversive behavior, the ventral pallidum (VP), which is an important component of this pathway, has so far been implicated primarily in appetitive behavior. In this study, we used single-cell recordings and bicuculline (GABAA antagonist) injections to elucidate the role of VP both in the encoding of aversive context and in active avoidance. We found 2 populations of neurons that were preferentially activated by appetitive and aversive conditioned stimuli (CSs). In addition, VP showed appetitive and aversive outcome anticipatory activities. These activity patterns indicate that VP is involved in encoding and maintaining CS-induced aversive contextual information. Furthermore, the disturbance of VP activity by bicuculline injection increased the number of error trials in aversive trials. In particular, the subjects released the response bar prematurely, showed no response at all, or failed to avoid the aversive outcome. Overall, these results suggest that VP plays a central role in controlling CS-induced negative motivation to produce avoidance behavior.
Collapse
Affiliation(s)
- Yosuke Saga
- Centre de Neuroscience Cognitive, UMR-5229 CNRS, Bron, Cedex, France
| | - Augustin Richard
- Centre de Neuroscience Cognitive, UMR-5229 CNRS, Bron, Cedex, France
| | - Véronique Sgambato-Faure
- Centre de Neuroscience Cognitive, UMR-5229 CNRS, Bron, Cedex, France.,Université Claude-Bernard Lyon 1, 69100 Villeurbanne, France
| | - Eiji Hoshi
- Frontal Lobe Function Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan.,Japan Science and Technology Agency, CREST, Tokyo 102-0076, Japan
| | - Philippe N Tobler
- Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich, CH-8006 Zurich, Switzerland
| | - Léon Tremblay
- Centre de Neuroscience Cognitive, UMR-5229 CNRS, Bron, Cedex, France.,Université Claude-Bernard Lyon 1, 69100 Villeurbanne, France
| |
Collapse
|
6
|
Saga Y, Hoshi E, Tremblay L. Roles of Multiple Globus Pallidus Territories of Monkeys and Humans in Motivation, Cognition and Action: An Anatomical, Physiological and Pathophysiological Review. Front Neuroanat 2017; 11:30. [PMID: 28442999 PMCID: PMC5385466 DOI: 10.3389/fnana.2017.00030] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/23/2017] [Indexed: 12/11/2022] Open
Abstract
The globus pallidus (GP) communicates with widespread cortical areas that support various functions, including motivation, cognition and action. Anatomical tract-tracing studies revealed that the anteroventral GP communicates with the medial prefrontal and orbitofrontal cortices, which are involved in motivational control; the anterodorsal GP communicates with the lateral prefrontal cortex, which is involved in cognitive control; and the posterior GP communicates with the frontal motor cortex, which is involved in action control. This organization suggests that distinct subdivisions within the GP play specific roles. Neurophysiological studies examining GP neurons in monkeys during behavior revealed that the types of information coding performed within these subdivisions differ greatly. The anteroventral GP is characterized by activities related to motivation, such as reward seeking and aversive avoidance; the anterodorsal GP is characterized by activity that reflects cognition, such as goal decision and action selection; and the posterior GP is characterized by activity associated with action preparation and execution. Pathophysiological studies have shown that GABA-related substances or GP lesions result in abnormal activity in the GP, which causes site-specific behavioral and motor symptoms. The present review article discusses the anatomical organization, physiology and pathophysiology of the three major GP territories in nonhuman primates and humans.
Collapse
Affiliation(s)
- Yosuke Saga
- Institute of Cognitive Science Marc Jeannerod, UMR-5229 CNRSBron, France
| | - Eiji Hoshi
- Frontal Lobe Function Project, Tokyo Metropolitan Institute of Medical ScienceTokyo, Japan.,AMED-CREST, Japan Agency for Medical Research and DevelopmentTokyo, Japan
| | - Léon Tremblay
- Institute of Cognitive Science Marc Jeannerod, UMR-5229 CNRSBron, France
| |
Collapse
|
7
|
Saga Y, Nakayama Y, Inoue KI, Yamagata T, Hashimoto M, Tremblay L, Takada M, Hoshi E. Visuomotor signals for reaching movements in the rostro-dorsal sector of the monkey thalamic reticular nucleus. Eur J Neurosci 2016; 45:1186-1199. [DOI: 10.1111/ejn.13421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/28/2016] [Accepted: 09/29/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Yosuke Saga
- Frontal Lobe Function Project; Tokyo Metropolitan Institute of Medical Science; Tokyo Japan
- Centre de Neuroscience Cognitive Marc Jeannerod; UMR-5229 CNRS; 67 Boulevard Pinel 69675 Bron Cedex France
- Tamagawa University Brain Science Institute; Tokyo Japan
| | - Yoshihisa Nakayama
- Frontal Lobe Function Project; Tokyo Metropolitan Institute of Medical Science; Tokyo Japan
- Tamagawa University Brain Science Institute; Tokyo Japan
| | - Ken-ichi Inoue
- Systems Neuroscience Section; Primate Research Institute; Kyoto University; Inuyama Aichi Japan
| | - Tomoko Yamagata
- Frontal Lobe Function Project; Tokyo Metropolitan Institute of Medical Science; Tokyo Japan
- Tamagawa University Brain Science Institute; Tokyo Japan
| | - Masashi Hashimoto
- Frontal Lobe Function Project; Tokyo Metropolitan Institute of Medical Science; Tokyo Japan
- Tamagawa University Brain Science Institute; Tokyo Japan
| | - Léon Tremblay
- Centre de Neuroscience Cognitive Marc Jeannerod; UMR-5229 CNRS; 67 Boulevard Pinel 69675 Bron Cedex France
| | - Masahiko Takada
- Systems Neuroscience Section; Primate Research Institute; Kyoto University; Inuyama Aichi Japan
- AMED-CREST; Japan Agency for Medical Research and Development; Tokyo Japan
| | - Eiji Hoshi
- Frontal Lobe Function Project; Tokyo Metropolitan Institute of Medical Science; Tokyo Japan
- Tamagawa University Brain Science Institute; Tokyo Japan
- AMED-CREST; Japan Agency for Medical Research and Development; Tokyo Japan
| |
Collapse
|
8
|
Fiore VG, Dolan RJ, Strausfeld NJ, Hirth F. Evolutionarily conserved mechanisms for the selection and maintenance of behavioural activity. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2015.0053. [PMID: 26554043 PMCID: PMC4650127 DOI: 10.1098/rstb.2015.0053] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Survival and reproduction entail the selection of adaptive behavioural repertoires. This selection manifests as phylogenetically acquired activities that depend on evolved nervous system circuitries. Lorenz and Tinbergen already postulated that heritable behaviours and their reliable performance are specified by genetically determined programs. Here we compare the functional anatomy of the insect central complex and vertebrate basal ganglia to illustrate their role in mediating selection and maintenance of adaptive behaviours. Comparative analyses reveal that central complex and basal ganglia circuitries share comparable lineage relationships within clusters of functionally integrated neurons. These clusters are specified by genetic mechanisms that link birth time and order to their neuronal identities and functions. Their subsequent connections and associated functions are characterized by similar mechanisms that implement dimensionality reduction and transition through attractor states, whereby spatially organized parallel-projecting loops integrate and convey sensorimotor representations that select and maintain behavioural activity. In both taxa, these neural systems are modulated by dopamine signalling that also mediates memory-like processes. The multiplicity of similarities between central complex and basal ganglia suggests evolutionarily conserved computational mechanisms for action selection. We speculate that these may have originated from ancestral ground pattern circuitries present in the brain of the last common ancestor of insects and vertebrates.
Collapse
Affiliation(s)
- Vincenzo G Fiore
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, UK
| | - Raymond J Dolan
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, UK Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London, UK
| | | | - Frank Hirth
- Institute of Psychiatry, Psychology & Neuroscience, Department of Basic & Clinical Neuroscience, King's College London, London, UK
| |
Collapse
|
9
|
Nakayama Y, Yamagata T, Hoshi E. Rostrocaudal functional gradient among the pre-dorsal premotor cortex, dorsal premotor cortex and primary motor cortex in goal-directed motor behaviour. Eur J Neurosci 2016; 43:1569-89. [PMID: 27062460 DOI: 10.1111/ejn.13254] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/29/2016] [Accepted: 04/04/2016] [Indexed: 11/29/2022]
Abstract
The dorsal premotor cortex residing in the dorsolateral aspect of area 6 is a rostrocaudally elongated area that is rostral to the primary motor cortex (M1) and caudal to the prefrontal cortex. This region, which is subdivided into rostral [pre-dorsal premotor cortex (pre-PMd)] and caudal [dorsal premotor cortex proper (PMd)] components, probably plays a central role in planning and executing actions to achieve a behavioural goal. In the present study, we investigated the functional specializations of the pre-PMd, PMd, and M1, because the synthesis of the specific functions performed by each area is considered to be essential. Neurons were recorded while monkeys performed a conditional visuo-goal task designed to include separate processes for determining a behavioural goal (reaching towards a right or left potential target) on the basis of visual object instructions, specifying actions (direction of reaching) to be performed on the basis of the goal, and preparing and executing the action. Neurons in the pre-PMd and PMd retrieved and maintained behavioural goals without encoding the visual features of the visual object instructions, and subsequently specified the actions by multiplexing the goals with the locations of the targets. Furthermore, PMd and M1 neurons played a major role in representing the action during movement preparation and execution, whereas the contribution of the pre-PMd progressively decreased as the time of the actual execution of the movement approached. These findings revealed that the multiple processing stages necessary for the realization of an action to accomplish a goal were implemented in an area-specific manner across a functional gradient from the pre-PMd to M1 that included the PMd as an intermediary.
Collapse
Affiliation(s)
- Yoshihisa Nakayama
- Frontal Lobe Function Project, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya-ku, Tokyo, 156-8506, Japan.,Tamagawa University Brain Science Institute, Machida, Tokyo, Japan
| | - Tomoko Yamagata
- Frontal Lobe Function Project, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya-ku, Tokyo, 156-8506, Japan.,Tamagawa University Brain Science Institute, Machida, Tokyo, Japan
| | - Eiji Hoshi
- Frontal Lobe Function Project, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya-ku, Tokyo, 156-8506, Japan.,Tamagawa University Brain Science Institute, Machida, Tokyo, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
10
|
Yoshida A, Tanaka M. Two Types of Neurons in the Primate Globus Pallidus External Segment Play Distinct Roles in Antisaccade Generation. Cereb Cortex 2015; 26:1187-99. [PMID: 25577577 DOI: 10.1093/cercor/bhu308] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The globus pallidus external segment (GPe) constitutes part of the indirect pathway of the basal ganglia. Because of inhibitory projections from the striatum, most GPe neurons are expected to reduce activity during movements. However, many GPe neurons in fact display increased activity. We previously found that both excitatory and inhibitory responses were modulated during antisaccades, when eyes were directed away from a visual stimulus. To elucidate the roles of these neurons during antisaccades, we examined neuronal activities as monkeys performed antisaccades, prosaccades, and NoGo tasks under 2 conditions. In the Deliberate condition, the task-rule was instructed by color of the fixation point, while in the Immediate condition, it was given by color of the target. Under both conditions, the increase-type neurons exhibited greater activity during antisaccades compared with the other tasks and neuronal activity negatively correlated with saccade latency. The decrease-type neurons also showed greater modulation during antisaccades but their activity was comparable between NoGo and antisaccade trials in the Immediate condition. These results suggest that the increase-type neurons might play a role in facilitating antisaccades, whereas the decrease-type neurons could mediate signals for reflexive saccade suppression. We propose that these GPe neurons are differently involved in basal ganglia pathways.
Collapse
Affiliation(s)
- Atsushi Yoshida
- Department of Physiology Department of Diagnostic and Interventional Radiology, Hokkaido University School of Medicine, Sapporo 060-8638, Japan
| | | |
Collapse
|
11
|
Hoshi E. Cortico-basal ganglia networks subserving goal-directed behavior mediated by conditional visuo-goal association. Front Neural Circuits 2013; 7:158. [PMID: 24155692 PMCID: PMC3800817 DOI: 10.3389/fncir.2013.00158] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 09/17/2013] [Indexed: 12/02/2022] Open
Abstract
Action is often executed according to information provided by a visual signal. As this type of behavior integrates two distinct neural representations, perception and action, it has been thought that identification of the neural mechanisms underlying this process will yield deeper insights into the principles underpinning goal-directed behavior. Based on a framework derived from conditional visuomotor association, prior studies have identified neural mechanisms in the dorsal premotor cortex (PMd), dorsolateral prefrontal cortex (dlPFC), ventrolateral prefrontal cortex (vlPFC), and basal ganglia (BG). However, applications resting solely on this conceptualization encounter problems related to generalization and flexibility, essential processes in executive function, because the association mode involves a direct one-to-one mapping of each visual signal onto a particular action. To overcome this problem, we extend this conceptualization and postulate a more general framework, conditional visuo-goal association. According to this new framework, the visual signal identifies an abstract behavioral goal, and an action is subsequently selected and executed to meet this goal. Neuronal activity recorded from the four key areas of the brains of monkeys performing a task involving conditional visuo-goal association revealed three major mechanisms underlying this process. First, visual-object signals are represented primarily in the vlPFC and BG. Second, all four areas are involved in initially determining the goals based on the visual signals, with the PMd and dlPFC playing major roles in maintaining the salience of the goals. Third, the cortical areas play major roles in specifying action, whereas the role of the BG in this process is restrictive. These new lines of evidence reveal that the four areas involved in conditional visuomotor association contribute to goal-directed behavior mediated by conditional visuo-goal association in an area-dependent manner.
Collapse
Affiliation(s)
- Eiji Hoshi
- Frontal Lobe Function Project, Tokyo Metropolitan Institute of Medical Science Tokyo, Japan ; Japan Science and Technology Agency, Core Research for Evolutionary Science and Technology Tokyo, Japan
| |
Collapse
|