1
|
Hrybouski S, Das SR, Xie L, Brown CA, Flamporis M, Lane J, Nasrallah IM, Detre JA, Yushkevich PA, Wolk DA. BOLD amplitude correlates of preclinical Alzheimer's disease. Neurobiol Aging 2025; 150:157-171. [PMID: 40138942 DOI: 10.1016/j.neurobiolaging.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 03/08/2025] [Accepted: 03/12/2025] [Indexed: 03/29/2025]
Abstract
Alzheimer's disease (AD) is characterized by a long preclinical stage during which molecular markers of amyloid beta and tau pathology rise, but there is minimal neurodegeneration or cognitive decline. Previous literature suggests that measures of brain function might be more sensitive to neuropathologic burden during the preclinical stage of AD than conventional measures of macrostructure, such as cortical thickness. Among studies that used resting-state functional Magnetic Resonance Imaging (fMRI) acquisitions with Blood Oxygenation Level Dependent (BOLD) contrast, most employed connectivity-based analytic approaches. Consequently, little is known about the effects of amyloid and tau pathology on amplitude of intrinsic BOLD signal fluctuations. To address this knowledge gap, we characterized the effects of preclinical and prodromal AD on the amplitude of low-frequency fluctuations (ALFF) of the BOLD signal both at the whole-brain level and at a more granular level focused on subregions of the medial temporal lobe. We observed reduced ALFF in both preclinical and prodromal AD. In preclinical AD, amyloid positivity was associated with a spatially diffuse ALFF reduction in the frontal, medial parietal, and lateral temporal association cortices. In contrast, tau pathology was negatively associated with ALFF in the entorhinal cortex. These ALFF effects were observed in the absence of observable macrostructural changes in preclinical AD and remained after adjusting for structural atrophy in prodromal AD, indicating that ALFF offers additional sensitivity to early disease processes beyond what is provided by traditional structural imaging biomarkers of neurodegeneration. We conclude that ALFF may be a promising imaging-based biomarker in preclinical AD.
Collapse
Affiliation(s)
- Stanislau Hrybouski
- Penn Image Computing and Science Laboratory (PICSL), University of Pennsylvania, Philadelphia, PA, United States; Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States.
| | - Sandhitsu R Das
- Penn Image Computing and Science Laboratory (PICSL), University of Pennsylvania, Philadelphia, PA, United States; Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States; Penn Memory Center, University of Pennsylvania, Philadelphia, PA, United States; Penn Alzheimer's Disease Research Center, University of Pennsylvania, Philadelphia, PA, United States
| | - Long Xie
- Penn Image Computing and Science Laboratory (PICSL), University of Pennsylvania, Philadelphia, PA, United States; Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Christopher A Brown
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States; Penn Alzheimer's Disease Research Center, University of Pennsylvania, Philadelphia, PA, United States
| | - Melissa Flamporis
- Penn Memory Center, University of Pennsylvania, Philadelphia, PA, United States
| | - Jacqueline Lane
- Penn Memory Center, University of Pennsylvania, Philadelphia, PA, United States
| | - Ilya M Nasrallah
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States; Penn Alzheimer's Disease Research Center, University of Pennsylvania, Philadelphia, PA, United States
| | - John A Detre
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States; Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Paul A Yushkevich
- Penn Image Computing and Science Laboratory (PICSL), University of Pennsylvania, Philadelphia, PA, United States; Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States; Penn Alzheimer's Disease Research Center, University of Pennsylvania, Philadelphia, PA, United States
| | - David A Wolk
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States; Penn Memory Center, University of Pennsylvania, Philadelphia, PA, United States; Penn Alzheimer's Disease Research Center, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
2
|
Losinski GM, Key MN, Vidoni ED, Clutton J, Morris JK, Burns JM, Watts A. APOE4 and chronic health risk factors are associated with sex-specific preclinical Alzheimer's disease neuroimaging biomarkers. Front Glob Womens Health 2025; 6:1531062. [PMID: 40444147 PMCID: PMC12119584 DOI: 10.3389/fgwh.2025.1531062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 04/28/2025] [Indexed: 06/02/2025] Open
Abstract
Introduction Two thirds of Alzheimer's disease (AD) patients are female. Genetic and chronic health risk factors for AD affect females more negatively compared to males. Objective This multimodal neuroimaging study aimed to examine sex differences in cognitively unimpaired older adults on: (1) amyloid-β via 18F-AV-45 Florbetapir PET imaging, (2) neurodegeneration via T1 weighted MRI volumetrics, (3) cerebral blood flow via ASL-MRI. We identified AD risk factors including genetic (APOE genotype status) and health markers (fasting glucose, mean arterial pressure, waist-to-hip ratio, and android and gynoid body fat) associated with neuroimaging outcomes for which we observed sex differences. Methods Participants were sedentary, amyloid-β positive older adults (N = 112, ages 65-87 years) without evidence of cognitive impairment (CDR = 0). Results Multivariate analysis of covariance models adjusted for intracranial volume, age, and years of education demonstrated lower volume [F (7, 102) = 2.67, p = 0.014] and higher blood flow F (6, 102) = 4.25, p ≤ 0.001) among females compared to males in regions of interest connected to AD pathology and the estrogen receptor network. We did not observe sex differences in amyloid-β levels. Higher than optimal waist to hip ratio was most strongly associated with lower volume among female participants. Discussion Findings suggest genetic and chronic health risk factors are associated with sex-specific AD neuroimaging biomarkers. Underlying sex-specific biological pathways may explain these findings. Our results highlight the importance of considering sex differences in neuroimaging studies and when developing effective interventions for AD prevention and risk reduction.
Collapse
Affiliation(s)
- Genna M. Losinski
- Department of Psychology, University of Kansas, Lawrence, KS, United States
| | - Mickeal N. Key
- Department of Neurology, University of Kansas Alzheimer’s Disease Center, University of Kansas Medical Center, Fairway, KS, United States
| | - Eric D. Vidoni
- Department of Neurology, University of Kansas Alzheimer’s Disease Center, University of Kansas Medical Center, Fairway, KS, United States
| | - Jonathan Clutton
- Department of Neurology, University of Kansas Alzheimer’s Disease Center, University of Kansas Medical Center, Fairway, KS, United States
| | - Jill K. Morris
- Department of Neurology, University of Kansas Alzheimer’s Disease Center, University of Kansas Medical Center, Fairway, KS, United States
| | - Jeffrey M. Burns
- Department of Neurology, University of Kansas Alzheimer’s Disease Center, University of Kansas Medical Center, Fairway, KS, United States
| | - Amber Watts
- Department of Psychology, University of Kansas, Lawrence, KS, United States
- Department of Neurology, University of Kansas Alzheimer’s Disease Center, University of Kansas Medical Center, Fairway, KS, United States
| |
Collapse
|
3
|
Vrillon A, Ashton NJ, Bouaziz-Amar E, Mouton-Liger F, Cognat E, Dumurgier J, Lilamand M, Karikari TK, Prevot V, Zetterberg H, Blennow K, Paquet C. Dissection of blood-brain barrier dysfunction through CSF PDGFRβ and amyloid, tau, neuroinflammation, and synaptic CSF biomarkers in neurodegenerative disorders. EBioMedicine 2025; 115:105694. [PMID: 40239464 PMCID: PMC12020895 DOI: 10.1016/j.ebiom.2025.105694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 03/23/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Blood-brain barrier (BBB) dysfunction is an early event in neurodegenerative disorders. Pericytes are key cells for BBB maintenance. Upon pericyte injury, the platelet-derived growth factor receptor-β (PDGFRβ) is released in the cerebrospinal fluid (CSF). The relation of CSF PDGFRβ with markers of amyloid pathology, neuroinflammation, and axonal and synaptic damage across dementia remains unclear. METHODS Retrospectively, we quantified CSF PDGFRβ and CSF core Alzheimer's disease (AD), astrocytic (GFAP), microglial (sTREM 2, YKL-40), axonal (NfL), and synaptic (GAP-43, neurogranin) biomarkers in 210 patients from the Cognitive Neurology Centre, Paris, France, including n = 23 neurological controls (NC), n = 84 patients with mild cognitive impairment (MCI) [AD, n = 41; non-AD, n = 43], and n = 103 patients with dementia (AD, n = 73; non-AD, n = 30). FINDINGS Comparing clinical stages, CSF PDGFRβ levels were increased at the MCI stage (Cohen's d = 0.55 [CI95% 0.066, 1.0], P = 0.025) compared with NC. Non-AD MCI displayed higher levels than controls (Cohen's d = 0.74 [CI95% 0.22, 1.3], P = 0.042). No association was observed with CSF Aβ42/Aβ40 ratio but with p-tau 181 (β = 0.102 [CI95% 0.027, 0.176], P = 0.0080) and t-tau levels (β = 0.133 [0.054, 0.213], P = 0.0010). CSF PDGFRβ levels were positively associated with CSF neuroinflammation and synaptic markers levels. Higher CSF PDGFRβ levels were associated with lower MMSE scores at MCI (β = -1.23 [CI95% -2.33, -0.260], P = 0.015) and dementia stages (β = -2.24 [CI95% -3.62, -0.85], P = 0.0020). CSF neuroinflammation biomarkers mediated the association of CSF PDGFRβ with neurodegeneration and synaptic integrity markers. INTERPRETATION CSF PDGFRβ, a candidate biomarker of BBB dysfunction, is increased in the early stages of neurodegenerative disorders, in association with neuroinflammation and axonal and synaptic damage. FUNDING Association des Anciens Internes des Hôpitaux de Paris, Edmond de Rothschild Program, Fondation Vaincre Alzheimer, Demensförbundet, Gamla Tjänarinnor, Anna-Lisa och Bror Björnssons Stiftelse.
Collapse
Affiliation(s)
- Agathe Vrillon
- Cognitive Neurology Centre, Lariboisière Fernand Widal Hospital, Assistance Publique Hôpitaux de Paris, Université Paris Cité, Paris, France; INSERM U1144, Therapeutic Optimization in Neuropsychopharmacology, Paris, France; University of California San Francisco, San Francisco, CA, USA.
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Banner Alzheimer's Institute and University of Arizona, Phoenix, AZ, USA; Banner Sun Health Research Institute, Sun City, AZ 85351, USA; Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Elodie Bouaziz-Amar
- INSERM U1144, Therapeutic Optimization in Neuropsychopharmacology, Paris, France; Biochemistry Department, AP-HP. Nord, Site Lariboisière Fernand-Widal, Paris, France
| | | | - Emmanuel Cognat
- Cognitive Neurology Centre, Lariboisière Fernand Widal Hospital, Assistance Publique Hôpitaux de Paris, Université Paris Cité, Paris, France; INSERM U1144, Therapeutic Optimization in Neuropsychopharmacology, Paris, France
| | - Julien Dumurgier
- Cognitive Neurology Centre, Lariboisière Fernand Widal Hospital, Assistance Publique Hôpitaux de Paris, Université Paris Cité, Paris, France
| | - Matthieu Lilamand
- Cognitive Neurology Centre, Lariboisière Fernand Widal Hospital, Assistance Publique Hôpitaux de Paris, Université Paris Cité, Paris, France; INSERM U1144, Therapeutic Optimization in Neuropsychopharmacology, Paris, France
| | - Thomas K Karikari
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR_S1172, DISTALZ, Lille, France
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; UK Dementia Research Institute at UCL, London, UK; Hong Kong Centre for Neurodegenerative Diseases, Clear Water Bay, Hong Kong Special Administrative Region of China; Wisconsin Alzheimer's Disease Research Centre, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France; Neurodegenerative Disorder Research Centre, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, PR China
| | - Claire Paquet
- Cognitive Neurology Centre, Lariboisière Fernand Widal Hospital, Assistance Publique Hôpitaux de Paris, Université Paris Cité, Paris, France; INSERM U1144, Therapeutic Optimization in Neuropsychopharmacology, Paris, France
| |
Collapse
|
4
|
Carnevale L, Lembo G. Imaging the cerebral vasculature at different scales: translational tools to investigate the neurovascular interfaces. Cardiovasc Res 2025; 120:2373-2384. [PMID: 39082279 DOI: 10.1093/cvr/cvae165] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/26/2024] [Accepted: 05/23/2024] [Indexed: 04/09/2025] Open
Abstract
The improvements in imaging technology opened up the possibility to investigate the structure and function of cerebral vasculature and the neurovascular unit with unprecedented precision and gaining deep insights not only on the morphology of the vessels but also regarding their function and regulation related to the cerebral activity. In this review, we will dissect the different imaging capabilities regarding the cerebrovascular tree, the neurovascular unit, the haemodynamic response function, and thus, the vascular-neuronal coupling. We will discuss both clinical and preclinical setting, with a final discussion on the current scenery in cerebrovascular imaging where magnetic resonance imaging and multimodal microscopy emerge as the most potent and versatile tools, respectively, in the clinical and preclinical context.
Collapse
Affiliation(s)
- Lorenzo Carnevale
- Department of AngioCardioNeurology and Translational Medicine, I.R.C.C.S. INM Neuromed, Via dell'Elettronica, 86077 Pozzilli, IS, Italy
| | - Giuseppe Lembo
- Department of AngioCardioNeurology and Translational Medicine, I.R.C.C.S. INM Neuromed, Via dell'Elettronica, 86077 Pozzilli, IS, Italy
- Department of Molecular Medicine, 'Sapienza' University of Rome, Viale Regina Elena, 291, 00161 Rome, Italy
| |
Collapse
|
5
|
Wen Y, Cannistra M, Sacca V, Ma L, Feng L, Xie Z, Kong J. Elevated plasma Tau-PT217 linked to decreased hippocampal functional connectivity in patients with knee osteoarthritis. Brain Res 2025; 1851:149478. [PMID: 39875084 PMCID: PMC11848939 DOI: 10.1016/j.brainres.2025.149478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/31/2024] [Accepted: 01/24/2025] [Indexed: 01/30/2025]
Abstract
BACKGROUND Osteoarthritis is associated with a higher risk of developing dementia, though the underlying biological mechanisms have remained unclear. Recent studies suggest that blood phosphorylated tau proteins, particularly Tau-PT217, are sensitive biomarkers capable of detecting cognitive decline in its early stages, making it useful for early diagnosis of Alzheimer's disease and other forms of cognitive impairment. METHODS In this study, we investigated the plasma phosphorylated tau protein levels (Tau-PT217 and Tau-PT181), hippocampus functional connectivity, and cognitive function in people with knee osteoarthritis compared to age and gender matched pain-free controls. RESULTS We found that knee osteoarthritis was associated with increased plasma levels of Tau-PT217 (but not Tau-PT181), and that the Tau-PT217 is also correlated with reduced hippocampal functional connectivity with middle cingulate cortex. Our findings suggest a potential biological correlation between knee osteoarthritis and an elevated risk of dementia, contributing valuable insights that may guide the formulation of early intervention and preventative strategies to mitigate dementia in individuals with knee osteoarthritis.
Collapse
Affiliation(s)
- Ya Wen
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Mattia Cannistra
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Valeria Sacca
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Linting Ma
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Liang Feng
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Zhongcong Xie
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
6
|
Huang C, Wei Z, Zheng N, Yan J, Zhang J, Ye X, Zhao W. The interaction between dysfunction of vasculature and tauopathy in Alzheimer's disease and related dementias. Alzheimers Dement 2025; 21:e14618. [PMID: 39998958 PMCID: PMC11854360 DOI: 10.1002/alz.14618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/01/2025] [Accepted: 01/12/2025] [Indexed: 02/27/2025]
Abstract
Tauopathy is one of the pathological features of Alzheimer's disease and related dementias (ADRD). At present, there have been many studies on the formation, deposition, and intercellular transmission of tau in neurons and immune cells. The vasculature is an important component of the central nervous system. This review discusses the interaction between vasculature and tau in detail from three aspects. (1) The vascular risk factors (VRFs) discussed in this review include diabetes mellitus (DM), abnormal blood pressure (BP), and hypercholesterolemia. (2) In ADRD pathology, the hyperphosphorylation and deposition of tau interact with disrupted vasculature, such as different cells (endothelial cells, smooth muscular cells, and pericytes), the blood-brain barrier (BBB), and the cerebral lymphatic system. (3) The functions of vasculature are regulated by various signaling transductions. Endothelial nitric oxide synthase/nitric oxide, calcium signaling, Rho/Rho-associated coiled-coil containing Kinase, and receptors for advanced glycation end products are discussed in this review. Our findings indicate that the prevention and treatment of vascular health may be a potential target for ADRD combination therapy. HIGHLIGHTS: Persistent VRFs increase early disruption of vascular mechanisms and are strongly associated with tau pathology in ADRD. Cell dysfunction in the vasculature causes BBB leakage and drainage incapacity of the cerebral lymphatic system, which interacts with tau pathology. Signaling molecules in the vasculature regulate vasodilation and contraction, angiogenesis, and CBF. Abnormal signaling transduction is related to tau hyperphosphorylation and deposition.
Collapse
Affiliation(s)
- Chuyao Huang
- Science and Technology Innovation CenterGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Zhenwen Wei
- Science and Technology Innovation CenterGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Ningxiang Zheng
- Science and Technology Innovation CenterGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Jingsi Yan
- Science and Technology Innovation CenterGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Jiayu Zhang
- Science and Technology Innovation CenterGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Xinyi Ye
- Science and Technology Innovation CenterGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Wei Zhao
- Science and Technology Innovation CenterGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| |
Collapse
|
7
|
Jarutyte L, Petr J, Turner N, Kehoe PG, Mutsaerts HJ, Thomas DL. Advantages and challenges of using arterial spin labelling MRI to monitor cerebral blood flow in multi-centre clinical trials of neurodegenerative disease: Experience from the RADAR study. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2025; 8:100376. [PMID: 39877419 PMCID: PMC11773049 DOI: 10.1016/j.cccb.2024.100376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/03/2024] [Accepted: 12/22/2024] [Indexed: 01/31/2025]
Abstract
Arterial spin labelling (ASL) enables non-invasive quantification of regional brain perfusion using MRI. ASL was used in the Reducing Pathology in Alzheimer's Disease through Angiotensin TaRgeting (RADAR) multi-centre trial to pilot the assessment of the effects of the anti-hypertension drug losartan on cerebral blood flow (CBF). In the multi-centre setting, disparities in ASL implementation on scanners from different manufacturers lead to inherent differences in measured CBF and its associated parameters (e.g. spatial coefficient of variation (sCoV) of CBF, a proxy of arterial arrival times). In addition, differences in ASL acquisition parameter settings can also affect the measured quantitative perfusion values. In this study, we used data from the RADAR cohort as a case study to evaluate the site-dependent systematic differences of CBF and sCoV, and show that variations in the readout module (2D or 3D) and the post-labelling delay acquisition parameter introduced artifactual group differences. When accounting for this effect in data analysis, we show that it is still possible to combine ASL data across sites to observe the expected relationships between grey matter CBF and cognitive scores. In summary, ASL can provide useful information relating to CBF difference in multi-centre therapeutic trials, but care must be taken in data analysis to account for the inevitable inter-site differences in scanner type and acquisition protocol.
Collapse
Affiliation(s)
- Lina Jarutyte
- School of Psychological Science, University of Bristol, Bristol, UK
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Jan Petr
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | | | - Patrick G. Kehoe
- Bristol Medical School, University of Bristol, Bristol, UK
- Elizabeth Blackwell Institute for Health Research, University of Bristol
| | - Henk-Jan Mutsaerts
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - David L. Thomas
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
8
|
Thropp P, Phillips E, Jung Y, Thomas DL, Tosun D. Arterial spin labeling perfusion MRI in the Alzheimer's Disease Neuroimaging Initiative: Past, present, and future. Alzheimers Dement 2024; 20:8937-8952. [PMID: 39428971 DOI: 10.1002/alz.14310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/11/2024] [Indexed: 10/22/2024]
Abstract
On the 20th anniversary of the Alzheimer's Disease Neuroimaging Initiative (ADNI), this paper provides a comprehensive overview of the role of arterial spin labeling (ASL) magnetic resonance imaging (MRI) in understanding perfusion changes in the aging brain and the relationship with Alzheimer's disease (AD) pathophysiology and its comorbid conditions. We summarize previously used acquisition protocols, available data, and the motivation for adopting a multi-post-labeling delay (PLD) acquisition scheme in the latest ADNI MRI protocol (ADNI 4). We also detail the process of setting up this scheme on different scanners, emphasizing the potential of ASL imaging in future AD research. HIGHLIGHTS: The Alzheimer's Disease Neuroimaging Initiative (ADNI) adopted multimodal arterial spin labeling magnetic resonance imaging (ASL MRI) to meet evolving biomarker requirements. The ADNI provides one of the largest multisite, multi-vendor ASL data collections. The ADNI 4 incorporates multi-post-labeling delay ASL techniques to jointly quantify cerebral blood flow and arterial transit time. ADNI 4 ASL MRI protocol is apt for detecting early Alzheimer's disease with cerebrovascular pathology.
Collapse
Affiliation(s)
- Pamela Thropp
- Department of Veterans Affairs Medical Center, Northern California Institute for Research and Education (NCIRE), San Francisco, California, USA
| | - Eliana Phillips
- Department of Veterans Affairs Medical Center, Northern California Institute for Research and Education (NCIRE), San Francisco, California, USA
| | - Youngkyoo Jung
- Department of Radiology, University of California Davis, Sacramento, California, USA
| | - David L Thomas
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, UK
| | - Duygu Tosun
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
9
|
Li R, Zhuo Z, Hong Y, Yao Z, Li Z, Wang Y, Jiang J, Wang L, Jia Z, Sun M, Zhang Y, Li W, Ren Q, Zhang Y, Duan Y, Liu Y, Wei H, Zhang Y, Chappell M, Shi H, Liu Y, Xu J. Effects of the Fasting-Postprandial State on Arterial Spin Labeling MRI-Based Cerebral Perfusion Quantification in Alzheimer's Disease. J Magn Reson Imaging 2024; 60:2173-2183. [PMID: 38544434 DOI: 10.1002/jmri.29348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND The fasting-postprandial state remains an underrecognized confounding factor for quantifying cerebral blood flow (CBF) in the cognitive assessment and differential diagnosis of Alzheimer's disease (AD). PURPOSE To investigate the effects of fasting-postprandial state on arterial spin labeling (ASL)-based CBF in AD patients. STUDY TYPE Prospective. SUBJECTS Ninety-two subjects (mean age = 62.5 ± 6.4 years; females 29.3%), including 30 with AD, 32 with mild cognitive impairment (MCI), and 30 healthy controls (HCs). Differential diagnostic models were developed with a 4:1 training to testing set ratio. FIELD STRENGTH/SEQUENCE 3-T, T1-weighted imaging using gradient echo and pseudocontinuous ASL imaging using turbo spin echo. ASSESSMENT Two ASL scans were acquired to quantify fasting state and postprandial state regional CBFs based on an automated anatomical labeling atlas. Two-way ANOVA was used to assess the effects of fasting/postprandial state and disease state (AD, MCI, and HC) on regional CBF. Pearson's correlation analysis was conducted between regional CBF and cognitive scores (Mini-Mental State Examination [MMSE] and Montreal Cognitive Assessment [MoCA]). The diagnostic performances of the fasting state, postprandial state, and mixed state (random mixing of the fasting and postprandial state CBF) in differential diagnosis of AD were conducted using support vector machine and logistic regression models. STATISTICAL TESTS Two-way ANOVA, Pearson's correlation, and area under the curve (AUC) of diagnostic model were performed. P values <0.05 indicated statistical significance. RESULTS Fasting-state CBF was correlated with cognitive scores in more brain regions (17 vs. 4 [MMSE] and 15 vs. 9 [MoCA]) and had higher absolute correlation coefficients than postprandial-state CBF. In the differential diagnosis of AD patients from MCI patients and HCs, fasting-state CBF outperformed mixed-state CBF, which itself outperformed postprandial-state CBF. DATA CONCLUSION Compared with postprandial CBF, fasting-state CBF performed better in terms of cognitive score correlations and in differentiating AD patients from MCI patients and HCs. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Runzhi Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhizheng Zhuo
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yin Hong
- Health Management Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zeshan Yao
- Jingjinji National Center of Technology Innovation, Beijing, China
| | | | - Yanli Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiwei Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Linlin Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ziyan Jia
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Mengfan Sun
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuan Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenyi Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qiwei Ren
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yanling Zhang
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yunyun Duan
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yi Liu
- Department of Neurology, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Brain Disease Control, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Hongen Wei
- Department of Neurology, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Brain Disease Control, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Yechuan Zhang
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Michael Chappell
- Mental Health and Clinical Neurosciences and Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK
- Nottingham Biomedical Research Centre, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Hanping Shi
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| | - Yaou Liu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jun Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Hrybouski S, Das SR, Xie L, Brown CA, Flamporis M, Lane J, Nasrallah IM, Detre JA, Yushkevich PA, Wolk DA. BOLD Amplitude Correlates of Preclinical Alzheimer's Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.27.24316243. [PMID: 39574853 PMCID: PMC11581098 DOI: 10.1101/2024.10.27.24316243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Alzheimer's disease (AD) is characterized by a long preclinical stage during which molecular markers of amyloid beta and tau pathology rise, but there is minimal neurodegeneration or cognitive decline. Previous literature suggests that measures of brain function might be more sensitive to neuropathologic burden during the preclinical stage of AD than conventional measures of macrostructure, such as cortical thickness. However, among studies that used resting-state functional Magnetic Resonance Imaging (fMRI) acquisitions with Blood Oxygenation Level Dependent (BOLD) contrast, most employed connectivity-based analytic approaches, which discard information about the amplitude of spontaneous brain activity. Consequently, little is known about the effects of amyloid and tau pathology on BOLD amplitude. To address this knowledge gap, we characterized the effects of preclinical and prodromal AD on the amplitude of low-frequency fluctuations (ALFF) of the BOLD signal both at the whole-brain level and, at a more granular level, focused on subregions of the medial temporal lobe. We observed reduced ALFF in both preclinical and prodromal AD. In preclinical AD, amyloid positivity was associated with a spatially diffuse ALFF reduction in the frontal, medial parietal, and lateral temporal association cortices, while tau pathology was negatively associated with ALFF in the entorhinal cortex. These ALFF effects were observed in the absence of observable macrostructural changes in preclinical AD and remained after adjusting for structural atrophy in prodromal AD, indicating that ALFF offers additional sensitivity to early disease processes beyond what is provided by traditional structural imaging biomarkers of neurodegeneration. We conclude that ALFF may be a promising imaging-based biomarker for assessing the effects of amyloid-clearing immunotherapies in preclinical AD.
Collapse
|
11
|
Han J, Wang Y, Wei P, Lu D, Shan Y. Unveiling the hidden connection: the blood-brain barrier's role in epilepsy. Front Neurol 2024; 15:1413023. [PMID: 39206290 PMCID: PMC11349696 DOI: 10.3389/fneur.2024.1413023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024] Open
Abstract
Epilepsy is characterized by abnormal synchronous electrical activity of neurons in the brain. The blood-brain barrier, which is mainly composed of endothelial cells, pericytes, astrocytes and other cell types and is formed by connections between a variety of cells, is the key physiological structure connecting the blood and brain tissue and is critical for maintaining the microenvironment in the brain. Physiologically, the blood-brain barrier controls the microenvironment in the brain mainly by regulating the passage of various substances. Disruption of the blood-brain barrier and increased leakage of specific substances, which ultimately leading to weakened cell junctions and abnormal regulation of ion concentrations, have been observed during the development and progression of epilepsy in both clinical studies and animal models. In addition, disruption of the blood-brain barrier increases drug resistance through interference with drug trafficking mechanisms. The changes in the blood-brain barrier in epilepsy mainly affect molecular pathways associated with angiogenesis, inflammation, and oxidative stress. Further research on biomarkers is a promising direction for the development of new therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | - Yongzhi Shan
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Chen T, Dai Y, Hu C, Lin Z, Wang S, Yang J, Zeng L, Li S, Li W. Cellular and molecular mechanisms of the blood-brain barrier dysfunction in neurodegenerative diseases. Fluids Barriers CNS 2024; 21:60. [PMID: 39030617 PMCID: PMC11264766 DOI: 10.1186/s12987-024-00557-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/20/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Maintaining the structural and functional integrity of the blood-brain barrier (BBB) is vital for neuronal equilibrium and optimal brain function. Disruptions to BBB performance are implicated in the pathology of neurodegenerative diseases. MAIN BODY Early indicators of multiple neurodegenerative disorders in humans and animal models include impaired BBB stability, regional cerebral blood flow shortfalls, and vascular inflammation associated with BBB dysfunction. Understanding the cellular and molecular mechanisms of BBB dysfunction in brain disorders is crucial for elucidating the sustenance of neural computations under pathological conditions and for developing treatments for these diseases. This paper initially explores the cellular and molecular definition of the BBB, along with the signaling pathways regulating BBB stability, cerebral blood flow, and vascular inflammation. Subsequently, we review current insights into BBB dynamics in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis. The paper concludes by proposing a unified mechanism whereby BBB dysfunction contributes to neurodegenerative disorders, highlights potential BBB-focused therapeutic strategies and targets, and outlines lessons learned and future research directions. CONCLUSIONS BBB breakdown significantly impacts the development and progression of neurodegenerative diseases, and unraveling the cellular and molecular mechanisms underlying BBB dysfunction is vital to elucidate how neural computations are sustained under pathological conditions and to devise therapeutic approaches.
Collapse
Affiliation(s)
- Tongli Chen
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Yan Dai
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Chenghao Hu
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Zihao Lin
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Shengzhe Wang
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Jing Yang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China.
- Institute of Brain and Cognitive Science, Hangzhou City University, Hangzhou, China.
| | - Linghui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China.
- Institute of Brain and Cognitive Science, Hangzhou City University, Hangzhou, China.
| | - Shanshan Li
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China.
- Institute of Brain and Cognitive Science, Hangzhou City University, Hangzhou, China.
| | - Weiyun Li
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China.
- Institute of Brain and Cognitive Science, Hangzhou City University, Hangzhou, China.
| |
Collapse
|
13
|
Shir D, Graff-Radford J, Fought AJ, Lesnick TG, Przybelski SA, Vassilaki M, Lowe VJ, Knopman DS, Machulda MM, Petersen RC, Jack CR, Mielke MM, Vemuri P. Complex relationships of socioeconomic status with vascular and Alzheimer's pathways on cognition. Neuroimage Clin 2024; 43:103634. [PMID: 38909419 PMCID: PMC11253683 DOI: 10.1016/j.nicl.2024.103634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024]
Abstract
INTRODUCTION AD and CVD, which frequently co-occur, are leading causes of age-related cognitive decline. We assessed how demographic factors, socioeconomic status (SES) as indicated by education and occupation, vascular risk factors, and a range of biomarkers associated with both CVD (including white matter hyperintensities [WMH], diffusion MRI abnormalities, infarctions, and microbleeds) and AD (comprising amyloid-PET and tau-PET) collectively influence cognitive function. METHODS In this cross-sectional population study, structural equation models were utilized to understand these associations in 449 participants (mean age (SD) = 74.5 (8.4) years; 56% male; 7.5% cognitively impaired). RESULTS (1) Higher SES had a protective effect on cognition with mediation through the vascular pathway. (2) The effect of amyloid directly on cognition and through tau was 11-fold larger than the indirect effect of amyloid on cognition through WMH. (3) There is a significant effect of vascular risk on tau deposition. DISCUSSION The utilized biomarkers captured the impact of CVD and AD on cognition. The overall effect of vascular risk and SES on these biomarkers are complex and need further investigation.
Collapse
Affiliation(s)
- Dror Shir
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Angela J Fought
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Timothy G Lesnick
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Scott A Przybelski
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Maria Vassilaki
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - David S Knopman
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, 55905 USA
| | - Ronald C Petersen
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Michelle M Mielke
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA; Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
| | | |
Collapse
|
14
|
Yang HS, Yau WYW, Carlyle BC, Trombetta BA, Zhang C, Shirzadi Z, Schultz AP, Pruzin JJ, Fitzpatrick CD, Kirn DR, Rabin JS, Buckley RF, Hohman TJ, Rentz DM, Tanzi RE, Johnson KA, Sperling RA, Arnold SE, Chhatwal JP. Plasma VEGFA and PGF impact longitudinal tau and cognition in preclinical Alzheimer's disease. Brain 2024; 147:2158-2168. [PMID: 38315899 PMCID: PMC11146430 DOI: 10.1093/brain/awae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/08/2023] [Accepted: 12/21/2023] [Indexed: 02/07/2024] Open
Abstract
Vascular dysfunction is increasingly recognized as an important contributor to the pathogenesis of Alzheimer's disease. Alterations in vascular endothelial growth factor (VEGF) pathways have been implicated as potential mechanisms. However, the specific impact of VEGF proteins in preclinical Alzheimer's disease and their relationships with other Alzheimer's disease and vascular pathologies during this critical early period remain to be elucidated. We included 317 older adults from the Harvard Aging Brain Study, a cohort of individuals who were cognitively unimpaired at baseline and followed longitudinally for up to 12 years. Baseline VEGF family protein levels (VEGFA, VEGFC, VEGFD, PGF and FLT1) were measured in fasting plasma using high-sensitivity immunoassays. Using linear mixed effects models, we examined the interactive effects of baseline plasma VEGF proteins and amyloid PET burden (Pittsburgh Compound-B) on longitudinal cognition (Preclinical Alzheimer Cognitive Composite-5). We further investigated if effects on cognition were mediated by early neocortical tau accumulation (flortaucipir PET burden in the inferior temporal cortex) or hippocampal atrophy. Lastly, we examined the impact of adjusting for baseline cardiovascular risk score or white matter hyperintensity volume. Baseline plasma VEGFA and PGF each showed a significant interaction with amyloid burden on prospective cognitive decline. Specifically, low VEGFA and high PGF were associated with greater cognitive decline in individuals with elevated amyloid, i.e. those on the Alzheimer's disease continuum. Concordantly, low VEGFA and high PGF were associated with accelerated longitudinal tau accumulation in those with elevated amyloid. Moderated mediation analyses confirmed that accelerated tau accumulation fully mediated the effects of low VEGFA and partially mediated (31%) the effects of high PGF on faster amyloid-related cognitive decline. The effects of VEGFA and PGF on tau and cognition remained significant after adjusting for cardiovascular risk score or white matter hyperintensity volume. There were concordant but non-significant associations with longitudinal hippocampal atrophy. Together, our findings implicate low VEGFA and high PGF in accelerating early neocortical tau pathology and cognitive decline in preclinical Alzheimer's disease. Additionally, our results underscore the potential of these minimally-invasive plasma biomarkers to inform the risk of Alzheimer's disease progression in the preclinical population. Importantly, VEGFA and PGF appear to capture distinct effects from vascular risks and cerebrovascular injury. This highlights their potential as new therapeutic targets, in combination with anti-amyloid and traditional vascular risk reduction therapies, to slow the trajectory of preclinical Alzheimer's disease and delay or prevent the onset of cognitive decline.
Collapse
Affiliation(s)
- Hyun-Sik Yang
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Wai-Ying Wendy Yau
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Becky C Carlyle
- Harvard Medical School, Boston, MA 02115, USA
- Alzheimer’s Clinical and Translational Research Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Physiology, Anatomy and Genetics, Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3PT, UK
| | - Bianca A Trombetta
- Alzheimer’s Clinical and Translational Research Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Can Zhang
- Harvard Medical School, Boston, MA 02115, USA
- Alzheimer’s Clinical and Translational Research Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Zahra Shirzadi
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Aaron P Schultz
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Jeremy J Pruzin
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Department of Neurology, Banner Alzheimer’s Institute, Phoenix, AZ 85006, USA
| | | | - Dylan R Kirn
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Jennifer S Rabin
- Harquail Centre for Neuromodulation and Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Department of Medicine, Rehabilitation Sciences Institute, University of Toronto, Toronto, ON M5G 1V7, Canada
| | - Rachel F Buckley
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Timothy J Hohman
- Vanderbilt Memory and Alzheimer’s Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Dorene M Rentz
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Rudolph E Tanzi
- Harvard Medical School, Boston, MA 02115, USA
- Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Keith A Johnson
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Reisa A Sperling
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Steven E Arnold
- Harvard Medical School, Boston, MA 02115, USA
- Alzheimer’s Clinical and Translational Research Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Jasmeer P Chhatwal
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
15
|
Lee H, Fu JF, Gaudet K, Bryant AG, Price JC, Bennett RE, Johnson KA, Hyman BT, Hedden T, Salat DH, Yen YF, Huang SY. Aberrant vascular architecture in the hippocampus correlates with tau burden in mild cognitive impairment and Alzheimer's disease. J Cereb Blood Flow Metab 2024; 44:787-800. [PMID: 38000018 PMCID: PMC11197134 DOI: 10.1177/0271678x231216144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/04/2023] [Accepted: 10/21/2023] [Indexed: 11/26/2023]
Abstract
Cerebrovascular dysfunction is a significant contributor to Alzheimer's disease (AD) progression. AD mouse models show altered capillary morphology, density, and diminished blood flow in areas of tau and beta-amyloid accumulation. The purpose of this study was to examine alterations in vascular structure and their contributions to perfusion deficits in the hippocampus in AD and mild cognitive impairment (MCI). Seven individuals with AD and MCI (1 AD/6 MCI), nine cognitively intact older healthy adults, and seven younger healthy adults underwent pseudo-continuous arterial spin labeling (PCASL) and gradient-echo/spin-echo (GESE) dynamic susceptibility contrast (DSC) MRI. Cerebral blood flow (CBF), cerebral blood volume, relative vessel size index (rVSI), and mean vessel density were calculated from model fitting. Lower CBF from PCASL and SE DSC MRI was observed in the hippocampus of AD/MCI group. rVSI in the hippocampus of the AD/MCI group was larger than that of the two healthy groups (FDR-P = 0.02). No difference in vessel density was detected between the groups. We also explored relationship of tau burden from 18F-flortaucipir positron emission tomography and vascular measures from MRI. Tau burden was associated with larger vessel size and lower CBF in the hippocampus. We postulate that larger vessel size may be associated with vascular alterations in AD/MCI.
Collapse
Affiliation(s)
- Hansol Lee
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Jessie Fanglu Fu
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Kyla Gaudet
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Annie G Bryant
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Julie C Price
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Rachel E Bennett
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Keith A Johnson
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Trey Hedden
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David H Salat
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Yi-Fen Yen
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Susie Y Huang
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
16
|
Cadoni MPL, Coradduzza D, Congiargiu A, Sedda S, Zinellu A, Medici S, Nivoli AM, Carru C. Platelet Dynamics in Neurodegenerative Disorders: Investigating the Role of Platelets in Neurological Pathology. J Clin Med 2024; 13:2102. [PMID: 38610867 PMCID: PMC11012481 DOI: 10.3390/jcm13072102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Background: Neurological disorders, particularly those associated with aging, pose significant challenges in early diagnosis and treatment. The identification of specific biomarkers, such as platelets (PLTs), has emerged as a promising strategy for early detection and intervention in neurological health. This systematic review aims to explore the intricate relationship between PLT dynamics and neurological health, focusing on their potential role in cognitive functions and the pathogenesis of cognitive disorders. Methods: Adhering to PRISMA guidelines, a comprehensive search strategy was employed in the PubMed and Scholar databases to identify studies on the role of PLTs in neurological disorders published from 2013 to 2023. The search criteria included studies focusing on PLTs as biomarkers in neurological disorders, their dynamics, and their potential in monitoring disease progression and therapy effectiveness. Results: The systematic review included 104 studies, revealing PLTs as crucial biomarkers in neurocognitive disorders, acting as inflammatory mediators. The findings suggest that PLTs share common features with altered neurons, which could be utilised for monitoring disease progression and evaluating the effectiveness of treatments. PLTs are identified as significant biomarkers for detecting neurological disorders in their early stages and understanding the pathological events leading to neuronal death. Conclusions: The systematic review underscores the critical role of PLTs in neurological disorders, highlighting their potential as biomarkers for the early detection and monitoring of disease progression. However, it also emphasises the need for further research to solidify the use of PLTs in neurological disorders, aiming to enhance early diagnosis and intervention strategies.
Collapse
Affiliation(s)
| | | | | | - Stefania Sedda
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Serenella Medici
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| | - Alessandra Matilde Nivoli
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy
- Psychiatric Unit Clinic of the University Hospital, 07100 Sassari, Italy
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
17
|
van Gils V, Rizzo M, Côté J, Viechtbauer W, Fanelli G, Salas-Salvadó J, Wimberley T, Bulló M, Fernandez-Aranda F, Dalsgaard S, Visser PJ, Jansen WJ, Vos SJB. The association of glucose metabolism measures and diabetes status with Alzheimer's disease biomarkers of amyloid and tau: A systematic review and meta-analysis. Neurosci Biobehav Rev 2024; 159:105604. [PMID: 38423195 DOI: 10.1016/j.neubiorev.2024.105604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
Conflicting evidence exists on the relationship between diabetes mellitus (DM) and Alzheimer's disease (AD) biomarkers. Therefore, we conducted a random-effects meta-analysis to evaluate the correlation of glucose metabolism measures (glycated hemoglobin, fasting blood glucose, insulin resistance indices) and DM status with AD biomarkers of amyloid-β and tau measured by positron emission tomography or cerebrospinal fluid. We selected 37 studies from PubMed and Embase, including 11,694 individuals. More impaired glucose metabolism and DM status were associated with higher tau biomarkers (r=0.11[0.03-0.18], p=0.008; I2=68%), but were not associated with amyloid-β biomarkers (r=-0.06[-0.13-0.01], p=0.08; I2=81%). Meta-regression revealed that glucose metabolism and DM were specifically associated with tau biomarkers in population settings (p=0.001). Furthermore, more impaired glucose metabolism and DM status were associated with lower amyloid-β biomarkers in memory clinic settings (p=0.004), and in studies with a higher prevalence of dementia (p<0.001) or lower cognitive scores (p=0.04). These findings indicate that DM is associated with biomarkers of tau but not with amyloid-β. This knowledge is valuable for improving dementia and DM diagnostics and treatment.
Collapse
Affiliation(s)
- Veerle van Gils
- Department of Psychiatry & Neuropsychology, Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.
| | - Marianna Rizzo
- Department of Psychiatry & Neuropsychology, Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Jade Côté
- Department of Psychiatry & Neuropsychology, Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Wolfgang Viechtbauer
- Department of Psychiatry & Neuropsychology, Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Giuseppe Fanelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| | - Jordi Salas-Salvadó
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentació, Nutrició, Desenvolupament i Salut Mental (ANUT-DSM), Unitat de Nutrició Humana, Reus, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Alimentació, Nutrició, Desenvolupament i Salut Mental, Reus, Spain; CIBER Physiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, Madrid 28029, Spain
| | - Theresa Wimberley
- The National Center for Register-based Research, School of Business and Social Sciences, Aarhus University, Aarhus, Denmark
| | - Mònica Bulló
- CIBER Physiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, Madrid 28029, Spain; Nutrition and Metabolic Health Research Group (NuMeH). Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), Reus 43201, Spain; Center of Environmental, Food and Toxicological Technology - TecnATox, Rovira i Virgili University, Reus 43201, Spain
| | - Fernando Fernandez-Aranda
- CIBER Physiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, Madrid 28029, Spain; Department of Clinical Psychology, Bellvitge University Hospital-IDIBELL, Barcelona, Spain; Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Spain
| | - Søren Dalsgaard
- The National Center for Register-based Research, School of Business and Social Sciences, Aarhus University, Aarhus, Denmark; iPSYCH - The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Pieter Jelle Visser
- Department of Psychiatry & Neuropsychology, Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Alzheimer Center and Department of Neurology, Amsterdam Neuroscience Campus, VU University Medical Center, Amsterdam, the Netherlands
| | - Willemijn J Jansen
- Department of Psychiatry & Neuropsychology, Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Stephanie J B Vos
- Department of Psychiatry & Neuropsychology, Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
18
|
Cao H, Zhou X, Xu B, Hu H, Guo J, Ma Y, Wang M, Li N, Jun Z. Advances in the study of protein folding and endoplasmic reticulum-associated degradation in mammal cells. J Zhejiang Univ Sci B 2024; 25:212-232. [PMID: 38453636 PMCID: PMC10918413 DOI: 10.1631/jzus.b2300403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/03/2023] [Indexed: 03/09/2024]
Abstract
The endoplasmic reticulum is a key site for protein production and quality control. More than one-third of proteins are synthesized and folded into the correct three-dimensional conformation in the endoplasmic reticulum. However, during protein folding, unfolded and/or misfolded proteins are prone to occur, which may lead to endoplasmic reticulum stress. Organisms can monitor the quality of the proteins produced by endoplasmic reticulum quality control (ERQC) and endoplasmic reticulum-associated degradation (ERAD), which maintain endoplasmic reticulum protein homeostasis by degrading abnormally folded proteins. The underlying mechanisms of protein folding and ERAD in mammals have not yet been fully explored. Therefore, this paper reviews the process and function of protein folding and ERAD in mammalian cells, in order to help clinicians better understand the mechanism of ERAD and to provide a scientific reference for the treatment of diseases caused by abnormal ERAD.
Collapse
Affiliation(s)
- Hong Cao
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai 200438, China
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai 200433, China
| | - Xuchang Zhou
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai 200438, China
| | - Bowen Xu
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai 200433, China
| | - Han Hu
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai 200433, China
| | - Jianming Guo
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai 200438, China
| | - Yuwei Ma
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai 200438, China
| | - Miao Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai 200438, China
| | - Nan Li
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai 200433, China.
| | - Zou Jun
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
19
|
Kim YA, Mellen M, Kizil C, Santa-Maria I. Mechanisms linking cerebrovascular dysfunction and tauopathy: Adding a layer of epiregulatory complexity. Br J Pharmacol 2024; 181:879-895. [PMID: 37926507 DOI: 10.1111/bph.16280] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 09/11/2023] [Accepted: 09/30/2023] [Indexed: 11/07/2023] Open
Abstract
Intracellular accumulation of hyperphosphorylated misfolded tau proteins are found in many neurodegenerative tauopathies, including Alzheimer's disease (AD). Tau pathology can impact cerebrovascular physiology and function through multiple mechanisms. In vitro and in vivo studies have shown that alterations in the blood-brain barrier (BBB) integrity and function can result in synaptic abnormalities and neuronal damage. In the present review, we will summarize how tau proteostasis dysregulation contributes to vascular dysfunction and, conversely, we will examine the factors and pathways leading to tau pathological alterations triggered by cerebrovascular dysfunction. Finally, we will highlight the role epigenetic and epitranscriptomic factors play in regulating the integrity of the cerebrovascular system and the progression of tauopathy including a few observartions on potential therapeutic interventions. LINKED ARTICLES: This article is part of a themed issue From Alzheimer's Disease to Vascular Dementia: Different Roads Leading to Cognitive Decline. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.6/issuetoc.
Collapse
Affiliation(s)
- Yoon A Kim
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, USA
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Marian Mellen
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcon, Madrid, Spain
| | - Caghan Kizil
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Ismael Santa-Maria
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, USA
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcon, Madrid, Spain
| |
Collapse
|
20
|
Carnevale L, Perrotta M, Mastroiacovo F, Perrotta S, Migliaccio A, Fardella V, Pacella J, Fardella S, Pallante F, Carnevale R, Carnevale D, Lembo G. Advanced Magnetic Resonance Imaging to Define the Microvascular Injury Driven by Neuroinflammation in the Brain of a Mouse Model of Hypertension. Hypertension 2024; 81:636-647. [PMID: 38174566 DOI: 10.1161/hypertensionaha.123.21940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Hypertension is one of the main risk factors for dementia and cognitive impairment. METHODS We used the model of transverse aortic constriction to induce chronic pressure overload in mice. We characterized brain injury by advanced translational applications of magnetic resonance imaging. In parallel, we analyzed peripheral target organ damage induced by chronic pressure overload by ultrasonography. Microscopical characterization of brain vasculature was performed as well, together with the analysis of immune and inflammatory markers. RESULTS We identified a specific structural, microstructural, and functional brain injury. In particular, we highlighted a regional enlargement of the hypothalamus, microstructural damage in the white matter of the fimbria, and a reduction of the cerebral blood flow. A parallel analysis performed by confocal microscopy revealed a correspondent tissue damage evidenced by a reduction of cerebral capillary density, paired with loss of pericyte coverage. We assessed cognitive impairment and cardiac damage induced by hypertension to perform correlation analyses with the brain injury severity. At the mechanistic level, we found that CD8+T cells, producing interferon-γ, infiltrated the brain of hypertensive mice. By neutralizing this proinflammatory cytokine, we obtained a rescue of the phenotype, demonstrating their crucial role in establishing the microvascular damage. CONCLUSIONS Overall, we have used translational tools to comprehensively characterize brain injury in a mouse model of hypertension induced by chronic pressure overload. We have identified early cerebrovascular damage in hypertensive mice, sustained by CD8+IFN-γ+T lymphocytes, which fuel neuroinflammation to establish the injury of brain capillaries.
Collapse
Affiliation(s)
- Lorenzo Carnevale
- Department of Angiocardioneurology and Translational Medicine, IRCCS INM Neuromed, Pozzilli, Italy (L.C., M.P., F.M., S.P., A.M., V.F., J.P., S.F., F.P., R.C., D.C., G.L.)
| | - Marialuisa Perrotta
- Department of Angiocardioneurology and Translational Medicine, IRCCS INM Neuromed, Pozzilli, Italy (L.C., M.P., F.M., S.P., A.M., V.F., J.P., S.F., F.P., R.C., D.C., G.L.)
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy (M.P., D.C., G.L.)
| | - Francesco Mastroiacovo
- Department of Angiocardioneurology and Translational Medicine, IRCCS INM Neuromed, Pozzilli, Italy (L.C., M.P., F.M., S.P., A.M., V.F., J.P., S.F., F.P., R.C., D.C., G.L.)
| | - Sara Perrotta
- Department of Angiocardioneurology and Translational Medicine, IRCCS INM Neuromed, Pozzilli, Italy (L.C., M.P., F.M., S.P., A.M., V.F., J.P., S.F., F.P., R.C., D.C., G.L.)
| | - Agnese Migliaccio
- Department of Angiocardioneurology and Translational Medicine, IRCCS INM Neuromed, Pozzilli, Italy (L.C., M.P., F.M., S.P., A.M., V.F., J.P., S.F., F.P., R.C., D.C., G.L.)
| | - Valentina Fardella
- Department of Angiocardioneurology and Translational Medicine, IRCCS INM Neuromed, Pozzilli, Italy (L.C., M.P., F.M., S.P., A.M., V.F., J.P., S.F., F.P., R.C., D.C., G.L.)
| | - Jacopo Pacella
- Department of Angiocardioneurology and Translational Medicine, IRCCS INM Neuromed, Pozzilli, Italy (L.C., M.P., F.M., S.P., A.M., V.F., J.P., S.F., F.P., R.C., D.C., G.L.)
| | - Stefania Fardella
- Department of Angiocardioneurology and Translational Medicine, IRCCS INM Neuromed, Pozzilli, Italy (L.C., M.P., F.M., S.P., A.M., V.F., J.P., S.F., F.P., R.C., D.C., G.L.)
| | - Fabio Pallante
- Department of Angiocardioneurology and Translational Medicine, IRCCS INM Neuromed, Pozzilli, Italy (L.C., M.P., F.M., S.P., A.M., V.F., J.P., S.F., F.P., R.C., D.C., G.L.)
| | - Raimondo Carnevale
- Department of Angiocardioneurology and Translational Medicine, IRCCS INM Neuromed, Pozzilli, Italy (L.C., M.P., F.M., S.P., A.M., V.F., J.P., S.F., F.P., R.C., D.C., G.L.)
| | - Daniela Carnevale
- Department of Angiocardioneurology and Translational Medicine, IRCCS INM Neuromed, Pozzilli, Italy (L.C., M.P., F.M., S.P., A.M., V.F., J.P., S.F., F.P., R.C., D.C., G.L.)
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy (M.P., D.C., G.L.)
| | - Giuseppe Lembo
- Department of Angiocardioneurology and Translational Medicine, IRCCS INM Neuromed, Pozzilli, Italy (L.C., M.P., F.M., S.P., A.M., V.F., J.P., S.F., F.P., R.C., D.C., G.L.)
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy (M.P., D.C., G.L.)
| |
Collapse
|
21
|
Fettahoglu A, Zhao M, Khalighi M, Vossler H, Jovin M, Davidzon G, Zeineh M, Boada F, Mormino E, Henderson VW, Moseley M, Chen KT, Zaharchuk G. Early-Frame [ 18F]Florbetaben PET/MRI for Cerebral Blood Flow Quantification in Patients with Cognitive Impairment: Comparison to an [ 15O]Water Gold Standard. J Nucl Med 2024; 65:306-312. [PMID: 38071587 PMCID: PMC10858379 DOI: 10.2967/jnumed.123.266273] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/24/2023] [Indexed: 02/03/2024] Open
Abstract
Cerebral blood flow (CBF) may be estimated from early-frame PET imaging of lipophilic tracers, such as amyloid agents, enabling measurement of this important biomarker in participants with dementia and memory decline. Although previous methods could map relative CBF, quantitative measurement in absolute units (mL/100 g/min) remained challenging and has not been evaluated against the gold standard method of [15O]water PET. The purpose of this study was to develop and validate a minimally invasive quantitative CBF imaging method combining early [18F]florbetaben (eFBB) with phase-contrast MRI using simultaneous PET/MRI. Methods: Twenty participants (11 men and 9 women; 8 cognitively normal, 9 with mild cognitive impairment, and 3 with dementia; 10 β-amyloid negative and 10 β-amyloid positive; 69 ± 9 y old) underwent [15O]water PET, phase-contract MRI, and eFBB imaging in a single session on a 3-T PET/MRI scanner. Quantitative CBF images were created from the first 2 min of brain activity after [18F]florbetaben injection combined with phase-contrast MRI measurement of total brain blood flow. These maps were compared with [15O]water CBF using concordance correlation (CC) and Bland-Altman statistics for gray matter, white matter, and individual regions derived from the automated anatomic labeling (AAL) atlas. Results: The 2 methods showed similar results in gray matter ([15O]water, 55.2 ± 14.7 mL/100 g/min; eFBB, 55.9 ± 14.2 mL/100 g/min; difference, 0.7 ± 2.4 mL/100 g/min; P = 0.2) and white matter ([15O]water, 21.4 ± 5.6 mL/100 g/min; eFBB, 21.2 ± 5.3 mL/100 g/min; difference, -0.2 ± 1.0 mL/100 g/min; P = 0.4). The intrasubject CC for AAL-derived regions was high (0.91 ± 0.04). Intersubject CC in different AAL-derived regions was similarly high, ranging from 0.86 for midfrontal regions to 0.98 for temporal regions. There were no significant differences in performance between the methods in the amyloid-positive and amyloid-negative groups as well as participants with different cognitive statuses. Conclusion: We conclude that eFBB PET/MRI can provide robust CBF measurements, highlighting the capability of simultaneous PET/MRI to provide measurements of both CBF and amyloid burden in a single imaging session in participants with memory disorders.
Collapse
Affiliation(s)
- Ates Fettahoglu
- Department of Radiology, Stanford University, Stanford, California
- Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Moss Zhao
- Department of Radiology, Stanford University, Stanford, California
- Stanford Cardiovascular Institute, Stanford University, Stanford, California
| | - Mehdi Khalighi
- Department of Radiology, Stanford University, Stanford, California
| | - Hillary Vossler
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California; and
| | - Maria Jovin
- Department of Radiology, Stanford University, Stanford, California
| | - Guido Davidzon
- Department of Radiology, Stanford University, Stanford, California
| | - Michael Zeineh
- Department of Radiology, Stanford University, Stanford, California
| | - Fernando Boada
- Department of Radiology, Stanford University, Stanford, California
| | - Elizabeth Mormino
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California; and
| | - Victor W Henderson
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California; and
| | - Michael Moseley
- Department of Radiology, Stanford University, Stanford, California
| | - Kevin T Chen
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Greg Zaharchuk
- Department of Radiology, Stanford University, Stanford, California
| |
Collapse
|
22
|
Bi S, Yan S, Chen Z, Cui B, Shan Y, Yang H, Qi Z, Zhao Z, Han Y, Lu J. Comparison of 18F-FDG PET and arterial spin labeling MRI in evaluating Alzheimer's disease and amnestic mild cognitive impairment using integrated PET/MR. EJNMMI Res 2024; 14:9. [PMID: 38270821 PMCID: PMC10811308 DOI: 10.1186/s13550-024-01068-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/14/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Developing biomarkers for early stage AD patients is crucial. Glucose metabolism measured by 18F-FDG PET is the most common biomarker for evaluating cellular energy metabolism to diagnose AD. Arterial spin labeling (ASL) MRI can potentially provide comparable diagnostic information to 18F-FDG PET in patients with neurodegenerative disorders. However, the conclusions about the diagnostic performance of AD are still controversial between 18F-FDG PET and ASL. This study aims to compare quantitative cerebral blood flow (CBF) and glucose metabolism measured by 18F-FDG PET diagnostic values in patients with Alzheimer's disease (AD) and amnestic mild cognitive impairment (aMCI) using integrated PET/MR. RESULTS Analyses revealed overlapping between decreased regional rCBF and 18F-FDG PET SUVR in patients with AD compared with NC participants in the bilateral parietotemporal regions, frontal cortex, and cingulate cortex. Compared with NC participants, patients with aMCI exclusively demonstrated lower 18F-FDG PET SUVR in the bilateral temporal cortex, insula cortex, and inferior frontal cortex. Comparison of the rCBF in patients with aMCI and NC participants revealed no significant difference (P > 0.05). The ROC analysis of rCBF in the meta-ROI could diagnose patients with AD (AUC, 0.87) but not aMCI (AUC, 0.61). The specificity of diagnosing aMCI has been improved to 75.56% when combining rCBF and 18F-FDG PET SUVR. CONCLUSION ASL could detect similar aberrant patterns of abnormalities compared to 18F-FDG PET in patients with AD compared with NC participants but not in aMCI. The diagnostic efficiency of 18F-FDG-PET for AD and aMCI patients remained higher to ASL. Our findings support that applying 18F-FDG PET may be preferable for diagnosing AD and aMCI.
Collapse
Affiliation(s)
- Sheng Bi
- Department of Radiology & Nuclear Medicine, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, 100053, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Shaozhen Yan
- Department of Radiology & Nuclear Medicine, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, 100053, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Zhigeng Chen
- Department of Radiology & Nuclear Medicine, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, 100053, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Bixiao Cui
- Department of Radiology & Nuclear Medicine, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, 100053, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Yi Shan
- Department of Radiology & Nuclear Medicine, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, 100053, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Hongwei Yang
- Department of Radiology & Nuclear Medicine, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, 100053, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Zhigang Qi
- Department of Radiology & Nuclear Medicine, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, 100053, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Zhilian Zhao
- Department of Radiology & Nuclear Medicine, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, 100053, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Ying Han
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Lu
- Department of Radiology & Nuclear Medicine, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, 100053, China.
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China.
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China.
| |
Collapse
|
23
|
Cerina V, Crivellaro C, Morzenti S, Pozzi FE, Bigiogera V, Jonghi-Lavarini L, Moresco RM, Basso G, De Bernardi E. A ROI-based quantitative pipeline for 18F-FDG PET metabolism and pCASL perfusion joint analysis: Validation of the 18F-FDG PET line. Heliyon 2024; 10:e23340. [PMID: 38163125 PMCID: PMC10755331 DOI: 10.1016/j.heliyon.2023.e23340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024] Open
Abstract
In Mild Cognitive Impairment (MCI), the study of brain metabolism, provided by 18F-FluoroDeoxyGlucose Positron Emission Tomography (18F-FDG PET) can be integrated with brain perfusion through pseudo-Continuous Arterial Spin Labeling Magnetic Resonance sequences (MR pCASL). Cortical hypometabolism identification generally relies on wide control group datasets; pCASL control groups are instead not publicly available yet, due to lack of standardization in the acquisition parameters. This study presents a quantitative pipeline to be applied to PET and pCASL data to coherently analyze metabolism and perfusion inside 16 matching cortical regions of interest (ROIs) derived from the AAL3 atlas. The PET line is tuned on 36 MCI patients and 107 healthy control subjects, to agree in identifying hypometabolic regions with clinical reference methods (visual analysis supported by a vendor tool and Statistical Parametric Mapping, SPM, with two parametrizations here identified as SPM-A and SPM-B). The analysis was conducted for each ROI separately. The proposed PET analysis pipeline obtained accuracy 78 % and Cohen's к 60 % vs visual analysis, accuracy 79 % and Cohen's к 58 % vs SPM-A, accuracy 77 % and Cohen's к 54 % vs SPM-B. Cohen's к resulted not significantly different from SPM-A and SPM-B Cohen's к when assuming visual analysis as reference method (p-value 0.61 and 0.31 respectively). Considering SPM-A as reference method, Cohen's к is not significantly different from SPM-B Cohen's к as well (p-value = 1.00). The complete PET-pCASL pipeline was then preliminarily applied on 5 MCI patients and metabolism-perfusion regional correlations were assessed. The proposed approach can be considered as a promising tool for PET-pCASL joint analyses in MCI, even in the absence of a pCASL control group, to perform metabolism-perfusion regional correlation studies, and to assess and compare perfusion in hypometabolic or normo-metabolic areas.
Collapse
Affiliation(s)
- Valeria Cerina
- PhD program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Italy
| | - Cinzia Crivellaro
- Nuclear Medicine, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italia
| | - Sabrina Morzenti
- Medical Physics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italia
| | - Federico E. Pozzi
- PhD program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Italy
- Neurology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italia
- Milan center for Neuroscience (NeuroMI), University of Milano-Bicocca, Italy
| | | | | | - Rosa M. Moresco
- School of Medicine and Surgery, University of Milano-Bicocca, Italy
| | - Gianpaolo Basso
- Milan center for Neuroscience (NeuroMI), University of Milano-Bicocca, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Italy
- Neuroradiology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italia
| | | |
Collapse
|
24
|
Van Hulle C, Ince S, Okonkwo OC, Bendlin BB, Johnson SC, Carlsson CM, Asthana S, Love S, Blennow K, Zetterberg H, Scott Miners J. Elevated CSF angiopoietin-2 correlates with blood-brain barrier leakiness and markers of neuronal injury in early Alzheimer's disease. Transl Psychiatry 2024; 14:3. [PMID: 38182581 PMCID: PMC10770135 DOI: 10.1038/s41398-023-02706-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 11/12/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2024] Open
Abstract
Breakdown of the neurovascular unit is associated with blood-brain barrier (BBB) leakiness contributing to cognitive decline and disease pathology in the early stages of Alzheimer's disease (AD). Vascular stability depends on angiopoietin-1 (ANGPT-1) signalling, antagonised by angiopoietin-2 (ANGPT-2) expressed upon endothelial injury. We examined the relationship between CSF ANGPT-2 and CSF markers of BBB leakiness and core AD biomarkers across three independent cohorts: (i) 31 AD patients and 33 healthy controls grouped according to their biomarker profile (i.e., AD cases t-tau > 400 pg/mL, p-tau > 60 pg/mL and Aβ42 < 550 pg/mL); (ii) 121 participants in the Wisconsin Registry for Alzheimer's Prevention or Wisconsin Alzheimer's Disease Research study (84 participants cognitively unimpaired (CU) enriched for a parental history of AD, 20 participants with mild cognitive impairment (MCI), and 17 with AD); (iii) a neurologically normal cohort aged 23-78 years with paired CSF and serum samples. CSF ANGPT-2, sPDGFRβ, albumin and fibrinogen levels were measured by sandwich ELISA. In cohort (i), CSF ANGPT-2 was elevated in AD and correlated with CSF t-tau and p-tau181 but not Aβ42. ANGPT-2 also correlated positively with CSF sPDGFRβ and fibrinogen - markers of pericyte injury and BBB leakiness. In cohort (ii), CSF ANGPT-2 was highest in MCI and correlated with CSF albumin in the CU and MCI cohorts but not in AD. CSF ANGPT-2 also correlated with CSF t-tau and p-tau and with markers of neuronal injury (neurogranin and α-synuclein) and neuroinflammation (GFAP and YKL-40). In cohort (iii), CSF ANGPT-2 correlated strongly with the CSF/serum albumin ratio. Serum ANGPT-2 showed non-significant positive associations with CSF ANGPT-2 and the CSF/serum albumin ratio. Together, these data indicate that CSF and possibly serum ANGPT-2 is associated with BBB leakiness in early AD and is closely related to tau pathology and neuronal injury. The utility of serum ANGPT-2 as a biomarker of BBB damage in AD requires further study.
Collapse
Affiliation(s)
- Carol Van Hulle
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, University of Wisconsin-Madison, Madison, WI, USA
| | - Selvi Ince
- Dementia Research Group, Clinical Neurosciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Ozioma C Okonkwo
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Barbara B Bendlin
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Sterling C Johnson
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Cynthia M Carlsson
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Sanjay Asthana
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Seth Love
- Dementia Research Group, Clinical Neurosciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - J Scott Miners
- Dementia Research Group, Clinical Neurosciences, Bristol Medical School, University of Bristol, Bristol, UK.
| |
Collapse
|
25
|
Frentz I, van Arendonk J, Leeuwis AE, Vernooij MW, van der Flier WM, Bos D, De Deyn PP, Wolters FJ, Ikram MA. Interaction Between Arteriosclerosis and Amyloid-β on Cognitive Function. J Alzheimers Dis 2024; 97:953-961. [PMID: 38217596 PMCID: PMC10836547 DOI: 10.3233/jad-230604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2023] [Indexed: 01/15/2024]
Abstract
BACKGROUND Dementia is a multifactorial disease, with Alzheimer's disease (AD) and vascular pathology often co-occurring in many individuals with dementia. Yet, the interplay between AD and vascular pathology in cognitive decline is largely undetermined. OBJECTIVE The aim of the present study was to examine the joint effect of arteriosclerosis and AD pathology on cognition in the general population without dementia. METHODS We determined the interaction between blood-based AD biomarkers and CT-defined arteriosclerosis on cognition in 2,229 dementia-free participants of the population-based Rotterdam Study (mean age: 68.9 years, 52% women) cross-sectionally. RESULTS Amyloid-β (Aβ)42 and arterial calcification were associated with cognitive performance. After further adjustment for confounders in a model that combined all biomarkers, only arterial calcification remained independently associated with cognition. There was a significant interaction between arterial calcification and Aβ42 and between arterial calcification and the ratio of Aβ42/40. Yet, estimates attenuated, and interactions were no longer statistically significant after adjustment for cardio metabolic risk factors. CONCLUSIONS Arteriosclerosis and AD display additive interaction-effects on cognition in the general population, that are due in part to cardio metabolic risk factors. These findings suggest that joint assessment of arteriosclerosis and AD pathology is important for understanding of disease etiology in individuals with cognitive impairment.
Collapse
Affiliation(s)
- Ingeborg Frentz
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Department of Neurology, UMCG, Groningen, The Netherlands
| | - Joyce van Arendonk
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Department of Radiology & Nuclear Medicine, Erasmus MC, GD Rotterdam, The Netherlands
| | - Anna E. Leeuwis
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Meike W. Vernooij
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Department of Radiology & Nuclear Medicine, Erasmus MC, GD Rotterdam, The Netherlands
| | - Wiesje M. van der Flier
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Epidemiology, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Daniel Bos
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Department of Radiology & Nuclear Medicine, Erasmus MC, GD Rotterdam, The Netherlands
| | - Peter Paul De Deyn
- Department of Neurology, UMCG, Groningen, The Netherlands
- Alzheimer Centre Groningen, UMCG, Groningen, The Netherlands
| | - Frank J. Wolters
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Department of Radiology & Nuclear Medicine, Erasmus MC, GD Rotterdam, The Netherlands
| | - M. Arfan Ikram
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
26
|
Swinford CG, Risacher SL, Vosmeier A, Deardorff R, Chumin EJ, Dzemidzic M, Wu YC, Gao S, McDonald BC, Yoder KK, Unverzagt FW, Wang S, Farlow MR, Brosch JR, Clark DG, Apostolova LG, Sims J, Wang DJ, Saykin AJ. Amyloid and tau pathology are associated with cerebral blood flow in a mixed sample of nondemented older adults with and without vascular risk factors for Alzheimer's disease. Neurobiol Aging 2023; 130:103-113. [PMID: 37499587 PMCID: PMC10529454 DOI: 10.1016/j.neurobiolaging.2023.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 05/30/2023] [Accepted: 06/21/2023] [Indexed: 07/29/2023]
Abstract
Identification of biomarkers for the early stages of Alzheimer's disease (AD) is an imperative step in developing effective treatments. Cerebral blood flow (CBF) is a potential early biomarker for AD; generally, older adults with AD have decreased CBF compared to normally aging peers. CBF deviates as the disease process and symptoms progress. However, further characterization of the relationships between CBF and AD risk factors and pathologies is still needed. We assessed the relationships between CBF quantified by arterial spin-labeled magnetic resonance imaging, hypertension, APOEε4, and tau and amyloid positron emission tomography in 77 older adults: cognitively normal, subjective cognitive decline, and mild cognitive impairment. Tau and amyloid aggregation were related to altered CBF, and some of these relationships were dependent on hypertension or APOEε4 status. Our findings suggest a complex relationship between risk factors, AD pathologies, and CBF that warrants future studies of CBF as a potential early biomarker for AD.
Collapse
Affiliation(s)
- Cecily G Swinford
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA
| | - Shannon L Risacher
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA
| | - Aaron Vosmeier
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA
| | - Rachael Deardorff
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA
| | - Evgeny J Chumin
- Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA; Indiana University Network Science Institute, Bloomington, IN, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Mario Dzemidzic
- Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA; Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yu-Chien Wu
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA
| | - Sujuan Gao
- Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA; Department of Biostatistics and Health Data Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Brenna C McDonald
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA; Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Karmen K Yoder
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA
| | - Frederick W Unverzagt
- Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA; Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sophia Wang
- Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA; Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Martin R Farlow
- Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA; Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jared R Brosch
- Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA; Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David G Clark
- Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA; Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Liana G Apostolova
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA; Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Network Science Institute, Bloomington, IN, USA
| | - Justin Sims
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Danny J Wang
- Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA; Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Network Science Institute, Bloomington, IN, USA.
| |
Collapse
|
27
|
Liu G, Wang J, Wei Z, Fang C, Shen K, Qian C, Qi C, Li T, Gao P, Wong PC, Lu H, Cao X, Wan M. Elevated PDGF-BB from Bone Impairs Hippocampal Vasculature by Inducing PDGFRβ Shedding from Pericytes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206938. [PMID: 37102631 PMCID: PMC10369301 DOI: 10.1002/advs.202206938] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/11/2023] [Indexed: 06/19/2023]
Abstract
Evidence suggests a unique association between bone aging and neurodegenerative/cerebrovascular disorders. However, the mechanisms underlying bone-brain interplay remain elusive. Here platelet-derived growth factor-BB (PDGF-BB) produced by preosteoclasts in bone is reported to promote age-associated hippocampal vascular impairment. Aberrantly elevated circulating PDGF-BB in aged mice and high-fat diet (HFD)-challenged mice correlates with capillary reduction, pericyte loss, and increased blood-brain barrier (BBB) permeability in their hippocampus. Preosteoclast-specific Pdgfb transgenic mice with markedly high plasma PDGF-BB concentration faithfully recapitulate the age-associated hippocampal BBB impairment and cognitive decline. Conversely, preosteoclast-specific Pdgfb knockout mice have attenuated hippocampal BBB impairment in aged mice or HFD-challenged mice. Persistent exposure of brain pericytes to high concentrations of PDGF-BB upregulates matrix metalloproteinase 14 (MMP14), which promotes ectodomain shedding of PDGF receptor β (PDGFRβ) from pericyte surface. MMP inhibitor treatment alleviates hippocampal pericyte loss and capillary reduction in the conditional Pdgfb transgenic mice and antagonizes BBB leakage in aged mice. The findings establish the role of bone-derived PDGF-BB in mediating hippocampal BBB disruption and identify the ligand-induced PDGFRβ shedding as a feedback mechanism for age-associated PDGFRβ downregulation and the consequent pericyte loss.
Collapse
Affiliation(s)
- Guanqiao Liu
- Department of Orthopaedic SurgeryJohns Hopkins University School of MedicineRoss Building, Room 232, 720 Rutland AvenueBaltimoreMD21205USA
| | - Jiekang Wang
- Department of Orthopaedic SurgeryJohns Hopkins University School of MedicineRoss Building, Room 232, 720 Rutland AvenueBaltimoreMD21205USA
| | - Zhiliang Wei
- The Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Ching‐Lien Fang
- Department of Orthopaedic SurgeryJohns Hopkins University School of MedicineRoss Building, Room 232, 720 Rutland AvenueBaltimoreMD21205USA
| | - Ke Shen
- Department of Orthopaedic SurgeryJohns Hopkins University School of MedicineRoss Building, Room 232, 720 Rutland AvenueBaltimoreMD21205USA
| | - Cheng Qian
- Department of Orthopaedic SurgeryJohns Hopkins University School of MedicineRoss Building, Room 232, 720 Rutland AvenueBaltimoreMD21205USA
| | - Cheng Qi
- Department of Orthopaedic SurgeryJohns Hopkins University School of MedicineRoss Building, Room 232, 720 Rutland AvenueBaltimoreMD21205USA
| | - Tong Li
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Peisong Gao
- Division of Allergy and Clinical ImmunologyJohns Hopkins University School of MedicineBaltimoreMD21224USA
| | - Philip C. Wong
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMD21205USA
- Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Xu Cao
- Department of Orthopaedic SurgeryJohns Hopkins University School of MedicineRoss Building, Room 232, 720 Rutland AvenueBaltimoreMD21205USA
| | - Mei Wan
- Department of Orthopaedic SurgeryJohns Hopkins University School of MedicineRoss Building, Room 232, 720 Rutland AvenueBaltimoreMD21205USA
| |
Collapse
|
28
|
Miners J, van Hulle C, Ince S, Jonaitis E, Okonkwo OC, Bendlin B, Johnson S, Carlsson C, Asthana S, Love S, Blennow K, Zetterberg H. Elevated CSF angiopoietin-2 correlates with blood-brain barrier leakiness and markers of neuronal injury in early Alzheimer's disease. RESEARCH SQUARE 2023:rs.3.rs-2722280. [PMID: 37131622 PMCID: PMC10153378 DOI: 10.21203/rs.3.rs-2722280/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Breakdown of the neurovascular unit in early Alzheimer's disease (AD) leads to leakiness of the blood-brain barrier (BBB), contributing to cognitive decline and disease pathology. Vascular stability depends on angiopoietin-1 (ANGPT1) signalling, antagonised by angiopoietin-2 (ANGPT2) upon endothelial injury. We have examined the relationship between CSF ANGPT2 and CSF markers of BBB leakiness and disease pathology, across three independent cohorts: (i) 31 AD patients and 33 healthy controls grouped according to their biomarker profile (i.e., AD cases t-tau > 400 pg/mL, p-tau > 60 pg/mL and Aβ42 < 550 pg/mL); (ii) 121 participants in the Wisconsin Registry for Alzheimer's Prevention or Wisconsin Alzheimer's Disease Research study (84 participants cognitively unimpaired (CU) enriched for a parental history of AD, 19 participants with mild cognitive impairment (MCI), and 21 with AD); (iii) a neurologically normal cohort aged 23-78 years with paired CSF and serum samples. CSF ANGPT2 level was measured by sandwich ELISA. In cohort (i), CSF ANGPT2 was elevated in AD, correlating with CSF t-tau and p-tau181 but not Aβ42. ANGPT2 also correlated positively with CSF sPDGFRβ and fibrinogen - markers of pericyte injury and BBB leakiness. In cohort (ii), CSF ANGPT2 was highest in MCI. CSF ANGT2 correlated with CSF albumin in the CU and MCI cohorts but not in AD. ANGPT2 also correlated with t-tau and p-tau and with markers of neuronal injury (neurogranin and α-synuclein) and neuroinflammation (GFAP and YKL-40). In cohort (iii), CSF ANGPT2 correlated strongly with the CSF:serum albumin ratio. Increased CSF ANGPT2 and the CSF:serum albumin ratio showed non-significant associations with elevated serum ANGPT2 in this small cohort. Together, these data indicate that CSF ANGPT2 is associated with BBB leakiness in early AD and is closely related to tau pathology and neuronal injury. The utility of serum ANGPT2 as a biomarker of BBB damage in AD requires further study.
Collapse
Affiliation(s)
| | - Carol van Hulle
- Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health
| | - Selvi Ince
- Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health
| | - Erin Jonaitis
- Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health
| | - O C Okonkwo
- Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health
| | - Barbara Bendlin
- Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health
| | - Sterling Johnson
- Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health
| | | | | | | | | | | |
Collapse
|
29
|
Swinford CG, Risacher SL, Wu YC, Apostolova LG, Gao S, Bice PJ, Saykin AJ. Altered cerebral blood flow in older adults with Alzheimer's disease: a systematic review. Brain Imaging Behav 2023; 17:223-256. [PMID: 36484922 PMCID: PMC10117447 DOI: 10.1007/s11682-022-00750-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/26/2022] [Accepted: 11/20/2022] [Indexed: 12/13/2022]
Abstract
The prevalence of Alzheimer's disease is projected to reach 13 million in the U.S. by 2050. Although major efforts have been made to avoid this outcome, so far there are no treatments that can stop or reverse the progressive cognitive decline that defines Alzheimer's disease. The utilization of preventative treatment before significant cognitive decline has occurred may ultimately be the solution, necessitating a reliable biomarker of preclinical/prodromal disease stages to determine which older adults are most at risk. Quantitative cerebral blood flow is a promising potential early biomarker for Alzheimer's disease, but the spatiotemporal patterns of altered cerebral blood flow in Alzheimer's disease are not fully understood. The current systematic review compiles the findings of 81 original studies that compared resting gray matter cerebral blood flow in older adults with mild cognitive impairment or Alzheimer's disease and that of cognitively normal older adults and/or assessed the relationship between cerebral blood flow and objective cognitive function. Individuals with Alzheimer's disease had relatively decreased cerebral blood flow in all brain regions investigated, especially the temporoparietal and posterior cingulate, while individuals with mild cognitive impairment had consistent results of decreased cerebral blood flow in the posterior cingulate but more mixed results in other regions, especially the frontal lobe. Most papers reported a positive correlation between regional cerebral blood flow and cognitive function. This review highlights the need for more studies assessing cerebral blood flow changes both spatially and temporally over the course of Alzheimer's disease, as well as the importance of including potential confounding factors in these analyses.
Collapse
Affiliation(s)
- Cecily G Swinford
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W 16th St. IU Neuroscience Center, GH 4101, 46202, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shannon L Risacher
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W 16th St. IU Neuroscience Center, GH 4101, 46202, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yu-Chien Wu
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W 16th St. IU Neuroscience Center, GH 4101, 46202, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Liana G Apostolova
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W 16th St. IU Neuroscience Center, GH 4101, 46202, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sujuan Gao
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Paula J Bice
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W 16th St. IU Neuroscience Center, GH 4101, 46202, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W 16th St. IU Neuroscience Center, GH 4101, 46202, Indianapolis, IN, USA.
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
30
|
Ahmadi K, Pereira JB, Berron D, Vogel J, Ingala S, Strandberg OT, Janelidze S, Barkhof F, Pfeuffer J, Knutsson L, van Westen D, Palmqvist S, Mutsaerts HJ, Hansson O. Gray matter hypoperfusion is a late pathological event in the course of Alzheimer's disease. J Cereb Blood Flow Metab 2023; 43:565-580. [PMID: 36412244 PMCID: PMC10063832 DOI: 10.1177/0271678x221141139] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Several studies have shown decreased cerebral blood flow (CBF) in Alzheimer's disease (AD). However, the role of hypoperfusion in the disease pathogenesis remains unclear. Combining arterial spin labeling MRI, PET, and CSF biomarkers, we investigated the associations between gray matter (GM)-CBF and the key mechanisms in AD including amyloid-β (Aβ) and tau pathology, synaptic and axonal degeneration. Further, we applied a disease progression modeling to characterize the temporal sequence of different AD biomarkers. Lower perfusion was observed in temporo-occipito-parietal cortex in the Aβ-positive cognitively impaired compared to both Aβ-negative and Aβ-positive cognitively unimpaired individuals. In participants along the AD spectrum, GM-CBF was associated with tau, synaptic and axonal dysfunction, but not Aβ in similar cortical regions. Axonal degeneration was further associated with hypoperfusion in cognitively unimpaired individuals. Disease progression modeling revealed that GM-CBF disruption Followed the abnormality of biomarkers of Aβ, tau and brain atrophy. These findings indicate that tau tangles and neurodegeneration are more closely connected with GM-CBF changes than Aβ pathology. Although subjected to the sensitivity of the employed neuroimaging techniques and the modeling approach, these findings suggest that hypoperfusion might not be an early event associated with the build-up of Aβ in preclinical phase of AD.
Collapse
Affiliation(s)
- Khazar Ahmadi
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden.,Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Joana B Pereira
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden.,Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - David Berron
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Jacob Vogel
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Silvia Ingala
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Location VUmc, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Olof T Strandberg
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Location VUmc, Amsterdam Neuroscience, Amsterdam, the Netherlands.,Queen's Square Institute of Neurology and Centre for Medical Image Computing, University College London, London, UK
| | - Josef Pfeuffer
- Application Development, Siemens Healthcare, Erlangen, Germany
| | - Linda Knutsson
- Department of Medical Radiation Physics, Lund University, Lund, Sweden.,The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Danielle van Westen
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden.,Diagnostic Radiology, Lund University, Lund, Sweden
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden.,Department of Neurology, Skåne University Hospital, Lund, Sweden
| | - Henk Jmm Mutsaerts
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Location VUmc, Amsterdam Neuroscience, Amsterdam, the Netherlands.,Queen's Square Institute of Neurology and Centre for Medical Image Computing, University College London, London, UK
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
31
|
Ennis GE, Betthauser TJ, Koscik RL, Chin NA, Christian BT, Asthana S, Johnson SC, Bendlin BB. The relationship of insulin resistance and diabetes to tau PET SUVR in middle-aged to older adults. Alzheimers Res Ther 2023; 15:55. [PMID: 36932429 PMCID: PMC10022314 DOI: 10.1186/s13195-023-01180-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/31/2023] [Indexed: 03/19/2023]
Abstract
BACKGROUND Insulin resistance (IR) and type 2 diabetes have been found to increase the risk for Alzheimer's clinical syndrome in epidemiologic studies but have not been associated with tau tangles in neuropathological research and have been inconsistently associated with cerebrospinal fluid P-tau181. IR and type 2 diabetes are well-recognized vascular risk factors. Some studies suggest that cardiovascular risk may act synergistically with cortical amyloid to increase tau measured using tau PET. Utilizing data from largely nondemented middle-aged and older adult cohorts enriched for AD risk, we investigated the association of IR and diabetes to tau PET and whether amyloid moderated those relationships. METHODS Participants were enrolled in either the Wisconsin Registry for Alzheimer's Prevention (WRAP) or Wisconsin Alzheimer's Disease Research Center (WI-ADRC) Clinical Core. Two partially overlapping samples were studied: a sample characterized using HOMA-IR (n=280 WRAP participants) and a sample characterized on diabetic status (n=285 WRAP and n=109 WI-ADRC). IR was measured using the homeostasis model assessment of insulin resistance (HOMA-IR). Tau PET employing the radioligand 18F-MK-6240 was used to detect AD-specific aggregated tau. Linear regression tested the relationship of IR and diabetic status to tau PET standardized uptake value ratio (SUVR) within the entorhinal cortex and whether relationships were moderated by amyloid assessed by amyloid PET distribution volume ratio (DVR) and amyloid PET positivity status. RESULTS Neither HOMA-IR nor diabetic status was significantly associated with tau PET SUVR. The relationship between IR and tau PET SUVR was not moderated by amyloid PET DVR or positivity status. The association between diabetic status and tau PET SUVR was not significantly moderated by amyloid PET DVR but was significantly moderated by amyloid PET positivity status. Among the amyloid PET-positive participants, the estimated marginal tau PET SUVR mean was higher in the diabetic (n=6) relative to the nondiabetic group (n=88). CONCLUSION Findings indicate that IR may not be related to tau in generally healthy middle-aged and older adults who are in the early stages of the AD clinicopathologic continuum but suggest the need for additional research to investigate whether a synergistic relationship between type 2 diabetes and amyloid is associated with increased tau levels.
Collapse
Affiliation(s)
- Gilda E Ennis
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.
| | - Tobey J Betthauser
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Rebecca Langhough Koscik
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer's Institute, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Nathaniel A Chin
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer's Institute, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Bradley T Christian
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Sanjay Asthana
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer's Institute, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Hospital Department of Veterans Affairs, Madison, WI, USA
| | - Sterling C Johnson
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer's Institute, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Hospital Department of Veterans Affairs, Madison, WI, USA
| | - Barbara B Bendlin
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer's Institute, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Hospital Department of Veterans Affairs, Madison, WI, USA
| |
Collapse
|
32
|
Kecheliev V, Boss L, Maheshwari U, Konietzko U, Keller A, Razansky D, Nitsch RM, Klohs J, Ni R. Aquaporin 4 is differentially increased and dislocated in association with tau and amyloid-beta. Life Sci 2023; 321:121593. [PMID: 36934970 DOI: 10.1016/j.lfs.2023.121593] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
AIMS Neurovascular-glymphatic dysfunction plays an important role in Alzheimer's disease and has been analysed mainly in relation to amyloid-beta (Aβ) pathology. Here, we aim to investigate the neurovascular alterations and mapping of aquaporin 4 (AQP4) distribution and dislocation associated with tau and Aβ. MATERIALS AND METHODS Perfusion, susceptibility weighted imaging and structural magnetic resonance imaging (MRI) were performed in the pR5 mouse model of 4-repeat tau and the arcAβ mouse model of amyloidosis. Immunofluorescence staining was performed using antibodies against AQP4, vessel, astroglia, microglia, phospho-tau and Aβ in brain tissue slices from pR5, arcAβ and non-transgenic mice. KEY FINDINGS pR5 mice showed regional atrophy, preserved cerebral blood flow, and reduced cerebral vessel density compared to non-transgenic mice, while arcAβ mice showed cerebral microbleeds and reduced cerebral vessel density. AQP4 dislocation and peri-tau enrichment in the hippocampus and increased AQP4 levels in the cortex and hippocampus were detected in pR5 mice compared to non-transgenic mice. In comparison, cortical AQP4 dislocation and cortical/hippocampal peri-plaque increases were observed in arcAβ mice. Increased expression of reactive astrocytes were detected around the tau inclusions in pR5 mice and Aβ plaques in arcAβ mice. SIGNIFICANCE We demonstrated the neurovascular alterations, microgliosis, astrogliosis and increased AQP4 regional expression in pR5 tau and arcAβ mice. We observed a divergent region-specific AQP4 dislocation and association with phospho-tau and Aβ pathologies.
Collapse
Affiliation(s)
- Vasil Kecheliev
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Leo Boss
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Upasana Maheshwari
- Department of Neurosurgery, Clinical Neuroscience Center, Zürich University Hospital, Zurich, Switzerland
| | - Uwe Konietzko
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Annika Keller
- Department of Neurosurgery, Clinical Neuroscience Center, Zürich University Hospital, Zurich, Switzerland; Zentrum für Neurowissenschaften Zurich, Zurich, Switzerland
| | - Daniel Razansky
- Zentrum für Neurowissenschaften Zurich, Zurich, Switzerland; Institute for Biomedical Engineering, ETH Zurich & University of Zurich, Zurich, Switzerland
| | - Roger M Nitsch
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland; Zentrum für Neurowissenschaften Zurich, Zurich, Switzerland
| | - Jan Klohs
- Institute for Biomedical Engineering, ETH Zurich & University of Zurich, Zurich, Switzerland
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland; Zentrum für Neurowissenschaften Zurich, Zurich, Switzerland; Institute for Biomedical Engineering, ETH Zurich & University of Zurich, Zurich, Switzerland.
| |
Collapse
|
33
|
Kapadia A, Billimoria K, Desai P, Grist JT, Heyn C, Maralani P, Symons S, Zaccagna F. Hypoperfusion Precedes Tau Deposition in the Entorhinal Cortex: A Retrospective Evaluation of ADNI-2 Data. J Clin Neurol 2023; 19:131-137. [PMID: 36647226 PMCID: PMC9982189 DOI: 10.3988/jcn.2022.0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND AND PURPOSE Tau deposition in the entorhinal cortex is the earliest pathological feature of Alzheimer's disease (AD). However, this feature has also been observed in cognitively normal (CN) individuals and those with mild cognitive impairment (MCI). The precise pathophysiology for the development of tau deposition remains unclear. We hypothesized that reduced cerebral perfusion is associated with the development of tau deposition. METHODS A subset of the Alzheimer's Disease Neuroimaging Initiative data set was utilized. Included patients had undergone arterial spin labeling perfusion MRI along with [18F]flortaucipir tau PET at baseline, within 1 year of the MRI, and a follow-up at 6 years. The association between baseline cerebral blood flow (CBF) and the baseline and 6-year tau PET was assessed. Univariate and multivariate linear modeling was performed, with p<0.05 indicating significance. RESULTS Significant differences were found in the CBF between patients with AD and MCI, and CN individuals in the left entorhinal cortex (p=0.013), but not in the right entorhinal cortex (p=0.076). The difference in maximum standardized uptake value ratio between 6 years and baseline was significantly and inversely associated with the baseline mean CBF (p=0.042, R²=0.54) in the left entorhinal cortex but not the right entorhinal cortex. Linear modeling demonstrated that CBF predicted 6-year tau deposition (p=0.015, R²=0.11). CONCLUSIONS The results of this study suggest that a reduction in CBF at the entorhinal cortex precedes tau deposition. Further work is needed to understand the mechanism underlying tau deposition in aging and disease.
Collapse
Affiliation(s)
- Anish Kapadia
- Division of Neuroradiology, Department of Medical Imaging, University of Toronto, Toronto, ON, Canada.,Division of Neuroradiology, Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.
| | - Krish Billimoria
- MD Program, Temetry Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Prarthna Desai
- Department of Medicine, Maharaja Sayajirao University of Baroda, Vadodara, India
| | - James T. Grist
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK.,Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, UK.,Department of Radiology, Oxford University Hospitals Trust, Oxford, UK.,Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Chris Heyn
- Division of Neuroradiology, Department of Medical Imaging, University of Toronto, Toronto, ON, Canada.,Division of Neuroradiology, Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Pejman Maralani
- Division of Neuroradiology, Department of Medical Imaging, University of Toronto, Toronto, ON, Canada.,Division of Neuroradiology, Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Sean Symons
- Division of Neuroradiology, Department of Medical Imaging, University of Toronto, Toronto, ON, Canada.,Division of Neuroradiology, Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Fulvio Zaccagna
- Division of Neuroradiology, Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
34
|
Fenton L, Isenberg AL, Aslanyan V, Albrecht D, Contreras JA, Stradford J, Monreal T, Pa J. Variability in objective sleep is associated with Alzheimer's pathology and cognition. Brain Commun 2023; 5:fcad031. [PMID: 36895954 PMCID: PMC9989141 DOI: 10.1093/braincomms/fcad031] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/28/2022] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Both sleep duration and sleep efficiency have been associated with risk of Alzheimer's disease, suggesting that interventions to promote optimal sleep may be a way to reduce Alzheimer's disease risk. However, studies often focus on average sleep measures, usually from self-report questionnaires, ignoring the role of intra-individual variability in sleep across nights quantified from objective sleep measures. The current cross-sectional study sought to investigate the role of intra-individual variability in accelerometer-based objective sleep duration and sleep efficiency in relation to in vivo Alzheimer's disease pathology (β-amyloid and tau) using positron emission tomography imaging and cognition (working memory, inhibitory control, verbal memory, visual memory and global cognition). To examine these relationships, we evaluated 52 older adults (age = 66.4 ± 6.89, 67% female, 27% apolipoprotein E4 carriers) with objective early mild cognitive impairment. Modifying effects of apolipoprotein E4 status were also explored. Less intra-individual variability in sleep duration was associated with lower β-amyloid burden, higher global cognition and better inhibitory control, with a trend for lower tau burden. Less intra-individual variability in sleep efficiency was associated with lower β-amyloid burden, higher global cognition and better inhibitory control, but not with tau burden. Longer sleep duration was associated with better visual memory and inhibitory control. Apolipoprotein E4 status significantly modified the association between intra-individual variability in sleep efficiency and β-amyloid burden, such that less sleep efficiency variability was associated with lower β-amyloid burden in apolipoprotein E4 carriers only. There was a significant interaction between sleep duration and apolipoprotein E4 status, suggesting that longer sleep duration is more strongly associated with lower β-amyloid burden in apolipoprotein E4 carriers relative to non-carriers. These results provide evidence that lower intra-individual variability in both sleep duration and sleep efficiency and longer mean sleep duration are associated with lower levels of β-amyloid pathology and better cognition. The relationships between sleep duration and intra-individual variability in sleep efficiency with β-amyloid burden differ by apolipoprotein E4 status, indicating that longer sleep duration and more consistent sleep efficiency may be protective against β-amyloid burden in apolipoprotein E4 carriers. Longitudinal and causal studies are needed to better understand these relationships. Future work should investigate factors contributing to intra-individual variability in sleep duration and sleep efficiency in order to inform intervention studies.
Collapse
Affiliation(s)
- Laura Fenton
- Alzheimer Disease Research Center, Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA
- Department of Psychology, University of Southern California, Los Angeles, CA 90089, USA
| | - A Lisette Isenberg
- Alzheimer’s Disease Cooperative Study (ADCS), Department of Neurosciences, University of California, San Diego, CA 92037, USA
| | - Vahan Aslanyan
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, USA
| | - Daniel Albrecht
- Alzheimer’s Disease Cooperative Study (ADCS), Department of Neurosciences, University of California, San Diego, CA 92037, USA
| | - Joey A Contreras
- Alzheimer’s Disease Cooperative Study (ADCS), Department of Neurosciences, University of California, San Diego, CA 92037, USA
| | - Joy Stradford
- Alzheimer’s Disease Cooperative Study (ADCS), Department of Neurosciences, University of California, San Diego, CA 92037, USA
| | - Teresa Monreal
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Judy Pa
- Alzheimer Disease Research Center, Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA
- Department of Psychology, University of Southern California, Los Angeles, CA 90089, USA
- Alzheimer’s Disease Cooperative Study (ADCS), Department of Neurosciences, University of California, San Diego, CA 92037, USA
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
35
|
Cheng ZZ, Gao F, Lv XY, Wang Q, Wu Y, Sun BL, Shen Y. Features of Cerebral Small Vessel Disease Contributes to the Differential Diagnosis of Alzheimer's Disease. J Alzheimers Dis 2023; 91:795-804. [PMID: 36502328 DOI: 10.3233/jad-220872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cerebral small vessel disease (CSVD), which comprises the typical features of white matter hyperintensity (WMH) and Vichor-Robin spaces (VRSs) in the brain, is one of the leading causes of aging-related cognitive decline and, ultimately, contributes to the occurrence of dementia, including Alzheimer's disease (AD). OBJECTIVE To investigate whether CSVD imaging markers modify the pathological processes of AD and whether these markers improve AD diagnosis. METHODS 208 participants were enrolled in the China Aging and Neurodegenerative Initiative (CANDI). Fluid AD biomarkers were detected using a single-molecule array, and cerebral small vessel dysfunction was determined using magnetic resonance imaging. RESULTS WMH contributed to AD pathology only within the NC and MCI groups (CDR ≤0.5), whereas VRSs had no effect on AD pathology. The associations between AD biomarkers and cognitive mental status were consistent with the presence of CSVD pathology. That is, within individuals without CSVD pathology, the MMSE scores were correlated with AD fluid biomarkers, except for plasma Aβ42 and Aβ40. Increased plasma p-Tau levels were associated with worse cognitive performance in individuals with WMH (β= -0.465, p = 0.0016) or VRSs (β= -0.352, p = 0.0257) pathology. Plasma AD biomarkers combined with CSVD markers showed high accuracy in diagnosing dementia. CONCLUSION Findings from this cross-sectional cohort study support the notion that CSVD is a risk factor for dementia and highlights that vascular pathology can promote AD biomarker levels, especially in the early course of the disease. Moreover, our results suggest that adding a vascular category to the ATN framework improves the diagnostic accuracy of AD.
Collapse
Affiliation(s)
- Zhao-Zhao Cheng
- Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Feng Gao
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xin-Yi Lv
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qiong Wang
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yan Wu
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Bao-Liang Sun
- The Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Yong Shen
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
36
|
Ebenau JL, Visser D, Verfaillie SCJ, Timmers T, van Leeuwenstijn MSSA, Kate MT, Windhorst AD, Barkhof F, Scheltens P, Prins ND, Boellaard R, van der Flier WM, van Berckel BNM. Cerebral blood flow, amyloid burden, and cognition in cognitively normal individuals. Eur J Nucl Med Mol Imaging 2023; 50:410-422. [PMID: 36071221 PMCID: PMC9816289 DOI: 10.1007/s00259-022-05958-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/24/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE The role of cerebral blood flow (CBF) in the early stages of Alzheimer's disease is complex and largely unknown. We investigated cross-sectional and longitudinal associations between CBF, amyloid burden, and cognition, in cognitively normal individuals with subjective cognitive decline (SCD). METHODS We included 187 cognitively normal individuals with SCD from the SCIENCe project (65 ± 8 years, 39% F, MMSE 29 ± 1). Each underwent a dynamic (0-70 min) [18F]florbetapir PET and T1-weighted MRI scan, enabling calculation of mean binding potential (BPND; specific amyloid binding) and R1 (measure of relative (r)CBF). Eighty-three individuals underwent a second [18F]florbetapir PET (2.6 ± 0.7 years). Participants annually underwent neuropsychological assessment (follow-up time 3.8 ± 3.1 years; number of observations n = 774). RESULTS A low baseline R1 was associated with steeper decline on tests addressing memory, attention, and global cognition (range betas 0.01 to 0.27, p < 0.05). High BPND was associated with steeper decline on tests covering all domains (range betas - 0.004 to - 0.70, p < 0.05). When both predictors were simultaneously added to the model, associations remained essentially unchanged. Additionally, we found longitudinal associations between R1 and BPND. High baseline BPND predicted decline over time in R1 (all regions, range betasBP×time - 0.09 to - 0.14, p < 0.05). Vice versa, low baseline R1 predicted increase in BPND in frontal, temporal, and composite ROIs over time (range betasR1×time - 0.03 to - 0.08, p < 0.05). CONCLUSION Our results suggest that amyloid accumulation and decrease in rCBF are two parallel disease processes without a fixed order, both providing unique predictive information for cognitive decline and each process enhancing the other longitudinally.
Collapse
Affiliation(s)
- Jarith L Ebenau
- Alzheimer Centre, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081 HZ, Amsterdam, The Netherlands.
| | - Denise Visser
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Sander C J Verfaillie
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Tessa Timmers
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Mardou S S A van Leeuwenstijn
- Alzheimer Centre, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081 HZ, Amsterdam, The Netherlands
| | - Mara Ten Kate
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Albert D Windhorst
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- UCL Institutes of Neurology and Healthcare Engineering, London, UK
| | - Philip Scheltens
- Alzheimer Centre, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081 HZ, Amsterdam, The Netherlands
| | - Niels D Prins
- Alzheimer Centre, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081 HZ, Amsterdam, The Netherlands
- Brain Research Centre, Amsterdam, The Netherlands
| | - Ronald Boellaard
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Wiesje M van der Flier
- Alzheimer Centre, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081 HZ, Amsterdam, The Netherlands
- Department of Epidemiology & Data Science, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Bart N M van Berckel
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
37
|
Jann K, Boudreau J, Albrecht D, Cen SY, Cabeen RP, Ringman JM, Wang DJ, for the Alzheimer’s Disease Neuroimaging Initiative. FMRI Complexity Correlates with Tau-PET and Cognitive Decline in Late-Onset and Autosomal Dominant Alzheimer's Disease. J Alzheimers Dis 2023; 95:437-451. [PMID: 37599531 PMCID: PMC10578217 DOI: 10.3233/jad-220851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Neurofibrillary tangle pathology detected with tau-PET correlates closely with neuronal injury and cognitive symptoms in Alzheimer's disease (AD). Complexity of rs-fMRI has been demonstrated to decrease with cognitive decline in AD. OBJECTIVE We hypothesize that the rs-fMRI complexity provides an index for tau-related neuronal injury and cognitive decline in the AD process. METHODS Data was obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI3) and the Estudio de la Enfermedad de Alzheimer en Jalisciences (EEAJ) study. Associations between tau-PET and rs-fMRI complexity were calculated. Potential pathways relating complexity to cognitive function mediated through tau-PET were assessed by path analysis. RESULTS We found significant negative correlations between rs-fMRI complexity and tau-PET in medial temporal lobe of both cohorts, and associations of rs-fMRI complexity with cognitive scores were mediated through tau-PET. CONCLUSION The association of rs-fMRI complexity with tau-PET and cognition, suggests that a reduction in complexity is indicative of tau-related neuropathology and cognitive decline in AD processes.
Collapse
Affiliation(s)
- Kay Jann
- Laboratory of Functional MRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Julia Boudreau
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Daniel Albrecht
- Laboratory of NeuroImaging (LONI), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Steven Y. Cen
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ryan P. Cabeen
- Laboratory of NeuroImaging (LONI), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - John M. Ringman
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Danny J.J. Wang
- Laboratory of Functional MRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | |
Collapse
|
38
|
Dong H, Guo L, Yang H, Zhu W, Liu F, Xie Y, Zhang Y, Xue K, Li Q, Liang M, Zhang N, Qin W. Association between gray matter atrophy, cerebral hypoperfusion, and cognitive impairment in Alzheimer's disease. Front Aging Neurosci 2023; 15:1129051. [PMID: 37091519 PMCID: PMC10117777 DOI: 10.3389/fnagi.2023.1129051] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/15/2023] [Indexed: 04/25/2023] Open
Abstract
Background Alzheimer's disease (AD) is one of the most severe neurodegenerative diseases leading to dementia in the elderly. Cerebral atrophy and hypoperfusion are two important pathophysiological characteristics. However, it is still unknown about the area-specific causal pathways between regional gray matter atrophy, cerebral hypoperfusion, and cognitive impairment in AD patients. Method Forty-two qualified AD patients and 49 healthy controls (HC) were recruited in this study. First, we explored voxel-wise inter-group differences in gray matter volume (GMV) and arterial spin labeling (ASL) -derived cerebral blood flow (CBF). Then we explored the voxel-wise associations between GMV and Mini-Mental State Examination (MMSE) score, GMV and CBF, and CBF and MMSE to identify brain targets contributing to cognitive impairment in AD patients. Finally, a mediation analysis was applied to test the causal pathways among atrophied GMV, hypoperfusion, and cognitive impairment in AD. Results Voxel-wise permutation test identified that the left middle temporal gyrus (MTG) had both decreased GMV and CBF in the AD. Moreover, the GMV of this region was positively correlated with MMSE and its CBF, and CBF of this region was also positively correlated with MMSE in AD (p < 0.05, corrected). Finally, mediation analysis revealed that gray matter atrophy of left MTG drives cognitive impairment of AD via the mediation of CBF (proportion of mediation = 55.82%, β = 0.242, 95% confidence interval by bias-corrected and accelerated bootstrap: 0.082 to 0.530). Conclusion Our findings indicated suggested that left MTG is an important hub linking gray matter atrophy, hypoperfusion, and cognitive impairment for AD, and might be a potential treatment target for AD.
Collapse
Affiliation(s)
- Haoyang Dong
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Lining Guo
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Hailei Yang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenshuang Zhu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Fang Liu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yingying Xie
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Yu Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Kaizhong Xue
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiang Li
- Technical College for the Deaf, Tianjin University of Technology, Tianjin, China
| | - Meng Liang
- School of Medical Imaging, Tianjin Medical University, Tianjin, China
| | - Nan Zhang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Nan Zhang,
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
- Wen Qin,
| |
Collapse
|
39
|
Synergistic interaction of high blood pressure and cerebral beta-amyloid on tau pathology. Alzheimers Res Ther 2022; 14:193. [PMID: 36566225 PMCID: PMC9789538 DOI: 10.1186/s13195-022-01149-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Hypertension has been associated with Alzheimer's disease (AD) dementia as well as vascular dementia. However, the underlying neuropathological changes that link hypertension to AD remain poorly understood. In our study, we examined the relationships of a history of hypertension and high current blood pressure (BP) with in vivo AD pathologies including β-amyloid (Aβ) and tau and also investigated whether a history of hypertension and current BP respectively affect the association between Aβ and tau deposition. METHODS This cross-sectional study was conducted as part of the Korean Brain Aging Study for Early Diagnosis and Prediction of Alzheimer's Disease, a prospective cohort study. Cognitively normal older adults who underwent both Aβ and tau positron emission tomography (PET) (i.e., [11C]-Pittsburgh compound B and [18F] AV-1451 PET) were selected. History of hypertension and current BP were evaluated and cerebral Aβ and tau deposition measured by PET were used as main outcomes. Generalized linear regression models were used to estimate associations. RESULTS A total of 68 cognitively normal older adults (mean [SD] age, 71.5 [7.4] years; 40 women [59%]) were included in the study. Neither a history of hypertension nor the current BP exhibited a direct association with Aβ or tau deposition. However, the synergistic interaction effects of high current systolic (β, 0.359; SE, 0.141; p = 0.014) and diastolic (β, 0.696; SE, 0.158; p < 0.001) BP state with Aβ deposition on tau deposition were significant, whereas there was no such effect for a history of hypertension (β, 0.186; SE, 0.152; p = 0.224). CONCLUSIONS The findings suggest that high current BP, but not a history of hypertension, synergistically modulate the relationship between cerebral Aβ and tau deposition in late-life. In terms of AD prevention, the results support the importance of strict BP control in cognitively normal older adults with hypertension.
Collapse
|
40
|
Li H, Jiang S, Dong D, Hu J, He C, Hou C, He H, Huang H, Shen D, Pei H, Zhao G, Dong L, Yao D, Luo C. Vascular feature as a modulator of the aging brain. Cereb Cortex 2022; 32:5609-5621. [PMID: 35174854 DOI: 10.1093/cercor/bhac039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 01/25/2023] Open
Abstract
The cerebral functional reorganization and declined cognitive function of aging might associate with altered vascular features. Here, we explored the altered cerebral hierarchical functional network of 2 conditions (task-free and naturalistic stimuli) in older adults and its relationship with vascular features (systemic microvascular and perfusion features, measured by magnetic resonance imaging) and behavior. Using cerebral gradient analysis, we found that compressive gradient of resting-state mainly located on the primary sensory-motor system and transmodal regions in aging, and further compress in these regions under the continuous naturalistic stimuli. Combining cerebral functional gradient, vascular features, and cognitive performance, the more compressive gradient in the resting-state, the worse vascular state, the lower cognitive function in older adults. Further modulation analysis demonstrated that both vascular features can regulate the relationship between gradient scores in the insula and behavior. Interestingly, systemic microvascular oxygenation also can modulate the relationship between cerebral gradient and cerebral perfusion. Furthermore, the less alteration of the compressive gradient with naturalistic stimuli came with lower cognitive function. Our findings demonstrated that the altered cerebral hierarchical functional structure in aging was linked with changed vascular features and behavior, offering a new framework for studying the physiological mechanism of functional connectivity in aging.
Collapse
Affiliation(s)
- Hechun Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, No.4, Section 2, North Jianshe Road, Chengdu 610054, P. R. China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Sisi Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, No.4, Section 2, North Jianshe Road, Chengdu 610054, P. R. China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- Radiology Department, Chengdu Mental Health Center, Chengdu 610036, P. R. China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu 2019RU035, P. R. China
| | - Debo Dong
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, No.4, Section 2, North Jianshe Road, Chengdu 610054, P. R. China
- Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Jian Hu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, No.4, Section 2, North Jianshe Road, Chengdu 610054, P. R. China
| | - Chuan He
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, No.4, Section 2, North Jianshe Road, Chengdu 610054, P. R. China
| | - Changyue Hou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, No.4, Section 2, North Jianshe Road, Chengdu 610054, P. R. China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Hui He
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, No.4, Section 2, North Jianshe Road, Chengdu 610054, P. R. China
- Radiology Department, Chengdu Mental Health Center, Chengdu 610036, P. R. China
| | - Huan Huang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, No.4, Section 2, North Jianshe Road, Chengdu 610054, P. R. China
| | - Dai Shen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, No.4, Section 2, North Jianshe Road, Chengdu 610054, P. R. China
| | - Haonan Pei
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, No.4, Section 2, North Jianshe Road, Chengdu 610054, P. R. China
| | - Guocheng Zhao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, No.4, Section 2, North Jianshe Road, Chengdu 610054, P. R. China
- Radiology Department, Chengdu Mental Health Center, Chengdu 610036, P. R. China
| | - Li Dong
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, No.4, Section 2, North Jianshe Road, Chengdu 610054, P. R. China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu 2019RU035, P. R. China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, No.4, Section 2, North Jianshe Road, Chengdu 610054, P. R. China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu 2019RU035, P. R. China
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital affiliate to School of Medicine, University of Electronic Science and Technology of China, Chengdu 610042, P. R. China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, No.4, Section 2, North Jianshe Road, Chengdu 610054, P. R. China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu 2019RU035, P. R. China
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital affiliate to School of Medicine, University of Electronic Science and Technology of China, Chengdu 610042, P. R. China
| |
Collapse
|
41
|
Cerebral blood flow and cardiovascular risk effects on resting brain regional homogeneity. Neuroimage 2022; 262:119555. [PMID: 35963506 PMCID: PMC10044499 DOI: 10.1016/j.neuroimage.2022.119555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 11/22/2022] Open
Abstract
Regional homogeneity (ReHo) is a measure of local functional brain connectivity that has been reported to be altered in a wide range of neuropsychiatric disorders. Computed from brain resting-state functional MRI time series, ReHo is also sensitive to fluctuations in cerebral blood flow (CBF) that in turn may be influenced by cerebrovascular health. We accessed cerebrovascular health with Framingham cardiovascular risk score (FCVRS). We hypothesize that ReHo signal may be influenced by regional CBF; and that these associations can be summarized as FCVRS→CBF→ReHo. We used three independent samples to test this hypothesis. A test-retest sample of N = 30 healthy volunteers was used for test-retest evaluation of CBF effects on ReHo. Amish Connectome Project (ACP) sample (N = 204, healthy individuals) was used to evaluate association between FCVRS and ReHo and testing if the association diminishes given CBF. The UKBB sample (N = 6,285, healthy participants) was used to replicate the effects of FCVRS on ReHo. We observed strong CBF→ReHo links (p<2.5 × 10-3) using a three-point longitudinal sample. In ACP sample, marginal and partial correlations analyses demonstrated that both CBF and FCVRS were significantly correlated with the whole-brain average (p<10-6) and regional ReHo values, with the strongest correlations observed in frontal, parietal, and temporal areas. Yet, the association between ReHo and FCVRS became insignificant once the effect of CBF was accounted for. In contrast, CBF→ReHo remained significantly linked after adjusting for FCVRS and demographic covariates (p<10-6). Analysis in N = 6,285 replicated the FCVRS→ReHo effect (p = 2.7 × 10-27). In summary, ReHo alterations in health and neuropsychiatric illnesses may be partially driven by region-specific variability in CBF, which is, in turn, influenced by cardiovascular factors.
Collapse
|
42
|
Yau WYW, Shirzadi Z, Yang HS, Ikoba AP, Rabin JS, Properzi MJ, Kirn DR, Schultz AP, Rentz DM, Johnson KA, Sperling RA, Chhatwal JP. Tau Mediates Synergistic Influence of Vascular Risk and Aβ on Cognitive Decline. Ann Neurol 2022; 92:745-755. [PMID: 35880989 PMCID: PMC9650958 DOI: 10.1002/ana.26460] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/13/2022] [Accepted: 07/21/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Elevated vascular risk and beta-amyloid (Aβ) burden have been synergistically associated with cognitive decline in preclinical Alzheimer's disease (AD), although the underlying mechanisms remain unclear. We examined whether accelerated longitudinal tau accumulation mediates the vascular risk-Aβ interaction on cognitive decline. METHODS We included 175 cognitively unimpaired older adults (age 70.5 ± 8.0 years). Baseline vascular risk was quantified using the office-based Framingham Heart Study general cardiovascular disease risk score (FHS-CVD). Baseline Aβ burden was measured with Pittsburgh Compound-B positron emission tomography (PET). Tau burden was measured longitudinally (3.6 ± 1.5 years) with Flortaucipir PET, focusing on inferior temporal cortex (ITC). Cognition was assessed longitudinally (7.0 ± 2.0 years) using the Preclinical Alzheimer's Cognitive Composite. Linear mixed effects models examined the interactive effects of baseline vascular risk and Aβ on longitudinal ITC tau. Additionally, moderated mediation was used to determine whether tau accumulation mediated the FHS-CVD*Aβ effect on cognitive decline. RESULTS We observed a significant interaction between elevated baseline FHS-CVD and Aβ on greater ITC tau accumulation (p = 0.004), even in individuals with Aβ burden below the conventional threshold for amyloid positivity. Examining individual vascular risk factors, we found elevated systolic blood pressure and body mass index showed independent interactions with Aβ on longitudinal tau (both p < 0.0001). ITC tau accumulation mediated 33% of the interactive association of FHS-CVD and Aβ on cognitive decline. INTERPRETATION Vascular risks interact with subthreshold levels of Aβ to promote cognitive decline, partially by accelerating early neocortical tau accumulation. Our findings support vascular risk reduction, especially treating hypertension and obesity, to attenuate Aβ-related tau pathology and reduce late-life cognitive decline. ANN NEUROL 2022;92:745-755.
Collapse
Affiliation(s)
- Wai-Ying Wendy Yau
- Department of Neurology, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Zahra Shirzadi
- Department of Neurology, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Hyun-Sik Yang
- Department of Neurology, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, MA
| | - Akpevweoghene P Ikoba
- Department of Neurology, Massachusetts General Hospital, Boston, MA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA
| | - Jennifer S Rabin
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
| | - Michael J Properzi
- Department of Neurology, Massachusetts General Hospital, Boston, MA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA
| | - Dylan R Kirn
- Department of Neurology, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Aaron P Schultz
- Department of Neurology, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA
| | - Dorene M Rentz
- Department of Neurology, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, MA
| | - Keith A Johnson
- Department of Neurology, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, MA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA
| | - Reisa A Sperling
- Department of Neurology, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, MA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA
| | - Jasmeer P Chhatwal
- Department of Neurology, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
43
|
Weigand AJ, Hamlin AM, Breton J, Clark AL. Cerebral blood flow, tau imaging, and memory associations in cognitively unimpaired older adults. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2022; 3:100153. [PMID: 36353072 PMCID: PMC9637859 DOI: 10.1016/j.cccb.2022.100153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/11/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Objective Cerebral blood flow (CBF) has been independently linked to cognitive impairment and traditional Alzheimer's disease (AD) pathology (e.g., amyloid-beta [Aβ], tau) in older adults. However, less is known about the possible interactive effects of CBF, Aβ, and tau on memory performance. The present study examined whether CBF moderates the effect of Aβ and tau on objective and subjective memory within cognitively unimpaired (CU) older adults. Methods Participants included 54 predominately white CU older adults from the Alzheimer's Disease Neuroimaging Initiative. Multiple linear regression models examined meta-temporal CBF associations with (1) meta-temporal tau PET adjusting for cortical Aβ PET and (2) and cortical Aβ PET adjusting for tau PET. The CBF and tau meta region was an average of 5 distinct temporal lobe regions. CBF interactions with Aβ or tau PET on memory performance were also examined. Covariates for all models included age, sex, education, pulse pressure, APOE-ε4 positivity, and imaging acquisition date differences. Results CBF was significantly negatively associated with tau PET (t = -2.16, p = .04) but not Aβ PET (t = 0.98, p = .33). Results revealed a CBF by tau PET interaction such that there was a stronger effect of tau PET on objective (t = 2.51, p = .02) and subjective (t = -2.67, p = .01) memory outcomes among individuals with lower levels of CBF. Conclusions Cerebrovascular and tau pathologies may interact to influence cognitive performance. This study highlights the need for future vascular risk interventions, which could offer a scalable and cost-effective method for AD prevention.
Collapse
Affiliation(s)
- Alexandra J. Weigand
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, United States
| | - Abbey M. Hamlin
- Department of Psychology, College of Liberal Arts, University of Texas at Austin, 108 East Dean Keeton, SEA 3.234, Austin, TX 78712, United States
| | - Jordana Breton
- Department of Psychology, College of Liberal Arts, University of Texas at Austin, 108 East Dean Keeton, SEA 3.234, Austin, TX 78712, United States
| | - Alexandra L. Clark
- Department of Psychology, College of Liberal Arts, University of Texas at Austin, 108 East Dean Keeton, SEA 3.234, Austin, TX 78712, United States
| |
Collapse
|
44
|
Traylor MK, Bauman AJ, Saiyasit N, Frizell CA, Hill BD, Nelson AR, Keller JL. An examination of the relationship among plasma brain derived neurotropic factor, peripheral vascular function, and body composition with cognition in midlife African Americans/Black individuals. Front Aging Neurosci 2022; 14:980561. [PMID: 36092801 PMCID: PMC9453229 DOI: 10.3389/fnagi.2022.980561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022] Open
Abstract
African American/Black individuals have been excluded from several lines of prominent neuroscience research, despite exhibiting disproportionately higher risk factors associated with the onset and magnitude of neurodegeneration. Therefore, the objective of the current investigation was to examine potential relationships among brain derived neurotropic factor (BDNF), peripheral vascular function, and body composition with cognition in a sample of midlife, African American/Black individuals. Midlife adults (men: n = 3, 60 ± 4 years; women: n = 9, 58 ± 5 years) were invited to complete two baseline visits separated by 4 weeks. Peripheral vascular function was determined by venous occlusion plethysmography, a dual-energy X-ray absorptiometry was used to determine body composition, and plasma was collected to quantify BDNF levels. The CNS Vital Signs computer-based test was used to provide scores on numerous cognitive domains. The principal results included that complex attention (r = 0.629) and processing speed (r = 0.734) were significantly (p < 0.05) related to the plasma BDNF values. However, there was no significant (p > 0.05) relationship between any vascular measure and any cognitive domain or BDNF value. Secondary findings included the relationship between lean mass and peak hyperemia (r = 0.758) as well as total hyperemia (r = 0.855). The major conclusion derived from these results was that there is rationale for future clinical trials to use interventions targeting increasing BDNF to potentially improve cognition. Additionally, these results strongly suggest that clinicians aiming to improve cognitive health via improvements in the known risk factor of vascular function should consider interventions capable of promoting the size and function of skeletal muscle, especially in the African American/Black population.
Collapse
Affiliation(s)
- Miranda K. Traylor
- Integrative Laboratory of Exercise and Applied Physiology (iLEAP), Department of Health, Kinesiology, and Sport, College of Education and Professional Studies, University of South Alabama, Mobile, AL, United States
| | - Allison J. Bauman
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Napatsorn Saiyasit
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Carl A. Frizell
- Physician Assistant Sciences Program, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, United States
| | - Benjamin D. Hill
- Department of Psychology, College of Arts and Sciences, University of South Alabama, Mobile, AL, United States
| | - Amy R. Nelson
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Joshua L. Keller
- Integrative Laboratory of Exercise and Applied Physiology (iLEAP), Department of Health, Kinesiology, and Sport, College of Education and Professional Studies, University of South Alabama, Mobile, AL, United States
| |
Collapse
|
45
|
Bilgel M, Wong DF, Moghekar AR, Ferrucci L, Resnick SM, the Alzheimer’s Disease Neuroimaging Initiative. Causal links among amyloid, tau, and neurodegeneration. Brain Commun 2022; 4:fcac193. [PMID: 35938073 PMCID: PMC9345312 DOI: 10.1093/braincomms/fcac193] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/19/2022] [Accepted: 07/22/2022] [Indexed: 07/27/2023] Open
Abstract
Amyloid-β pathology is associated with greater tau pathology and facilitates tau propagation from the medial temporal lobe to the neocortex, where tau is closely associated with local neurodegeneration. The degree of the involvement of amyloid-β versus existing tau pathology in tau propagation and neurodegeneration has not been fully elucidated in human studies. Careful quantification of these effects can inform the development and timing of therapeutic interventions. We conducted causal mediation analyses to investigate the relative contributions of amyloid-β and existing tau to tau propagation and neurodegeneration in two longitudinal studies of individuals without dementia: the Baltimore Longitudinal Study of Aging (N = 103, age range 57-96) and the Alzheimer's Disease Neuroimaging Initiative (N = 122, age range 56-92). As proxies of neurodegeneration, we investigated cerebral blood flow, glucose metabolism, and regional volume. We first confirmed that amyloid-β moderates the association between tau in the entorhinal cortex and in the inferior temporal gyrus, a neocortical region exhibiting early tau pathology (amyloid group × entorhinal tau interaction term β = 0.488, standard error [SE] = 0.126, P < 0.001 in the Baltimore Longitudinal Study of Aging; β = 0.619, SE = 0.145, P < 0.001 in the Alzheimer's Disease Neuroimaging Initiative). In causal mediation analyses accounting for this facilitating effect of amyloid, amyloid positivity had a statistically significant direct effect on inferior temporal tau as well as an indirect effect via entorhinal tau (average direct effect =0.47, P < 0.001 and average causal mediation effect =0.44, P = 0.0028 in Baltimore Longitudinal Study of Aging; average direct effect =0.43, P = 0.004 and average causal mediation effect =0.267, P = 0.0088 in Alzheimer's Disease Neuroimaging Initiative). Entorhinal tau mediated up to 48% of the total effect of amyloid on inferior temporal tau. Higher inferior temporal tau was associated with lower colocalized cerebral blood flow, glucose metabolism, and regional volume, whereas amyloid had only an indirect effect on these measures via tau, implying tau as the primary driver of neurodegeneration (amyloid-cerebral blood flow average causal mediation effect =-0.28, P = 0.021 in Baltimore Longitudinal Study of Aging; amyloid-volume average causal mediation effect =-0.24, P < 0.001 in Alzheimer's Disease Neuroimaging Initiative). Our findings suggest targeting amyloid or medial temporal lobe tau might slow down neocortical spread of tau and subsequent neurodegeneration, but a combination therapy may yield better outcomes.
Collapse
Affiliation(s)
- Murat Bilgel
- Brain Aging and Behavior Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD 21224, USA
| | - Dean F Wong
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Abhay R Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21224, USA
| | - Susan M Resnick
- Brain Aging and Behavior Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD 21224, USA
| | | |
Collapse
|
46
|
Marcolini S, Frentz I, Sanchez-Catasus CA, Mondragon JD, Feltes PK, van der Hoorn A, Borra RJ, Ikram MA, Dierckx RA, De Deyn PP. Effects of interventions on cerebral perfusion in the Alzheimer's disease spectrum: A systematic review. Ageing Res Rev 2022; 79:101661. [PMID: 35671869 DOI: 10.1016/j.arr.2022.101661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/22/2022] [Accepted: 05/31/2022] [Indexed: 11/01/2022]
Abstract
Cerebral perfusion dysfunctions are seen in the early stages of Alzheimer's disease (AD). We systematically reviewed the literature to investigate the effect of pharmacological and non-pharmacological interventions on cerebral hemodynamics in randomized controlled trials involving AD patients or Mild Cognitive Impairment (MCI) due to AD. Studies involving other dementia types were excluded. Data was searched in April 2021 on MEDLINE, Embase, and Web of Science. Risk of bias was assessed using Cochrane Risk of Bias Tool. A meta-synthesis was performed separating results from MCI and AD studies. 31 studies were included and involved 310 MCI and 792 CE patients. The MCI studies (n = 8) included physical, cognitive, dietary, and pharmacological interventions. The AD studies (n = 23) included pharmacological, physical interventions, and phytotherapy. Cerebral perfusion was assessed with PET, ASL, Doppler, fNIRS, DSC-MRI, Xe-CT, and SPECT. Randomization and allocation concealment methods and subject characteristics such as AD-onset, education, and ethnicity were missing in several papers. Positive effects on hemodynamics were seen in 75 % of the MCI studies, and 52 % of the AD studies. Inserting cerebral perfusion outcome measures, together with established AD biomarkers, is fundamental to target all disease mechanisms and understand the role of cerebral perfusion in AD.
Collapse
|
47
|
Baker J, Schott J. AD and its comorbidities: An obstacle to develop a clinically efficient treatment? Rev Neurol (Paris) 2022; 178:450-459. [DOI: 10.1016/j.neurol.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/08/2022] [Indexed: 10/18/2022]
|
48
|
Addressing Blood–Brain Barrier Impairment in Alzheimer’s Disease. Biomedicines 2022; 10:biomedicines10040742. [PMID: 35453494 PMCID: PMC9029506 DOI: 10.3390/biomedicines10040742] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022] Open
Abstract
The blood–brain barrier (BBB) plays a vital role in maintaining the specialized microenvironment of the brain tissue. It facilitates communication while separating the peripheral circulation system from the brain parenchyma. However, normal aging and neurodegenerative diseases can alter and damage the physiological properties of the BBB. In this review, we first briefly present the essential pathways maintaining and regulating BBB integrity, and further review the mechanisms of BBB breakdown associated with normal aging and peripheral inflammation-causing neurodegeneration and cognitive impairments. We also discuss how BBB disruption can cause or contribute to Alzheimer’s disease (AD), the most common form of dementia and a devastating neurological disorder. Next, we document overlaps between AD and vascular dementia (VaD) and briefly sum up the techniques for identifying biomarkers linked to BBB deterioration. Finally, we conclude that BBB breakdown could be used as a biomarker to help diagnose cognitive impairment associated with normal aging and neurodegenerative diseases such as AD.
Collapse
|
49
|
Fisher RA, Miners JS, Love S. Pathological changes within the cerebral vasculature in Alzheimer's disease: New perspectives. Brain Pathol 2022; 32:e13061. [PMID: 35289012 PMCID: PMC9616094 DOI: 10.1111/bpa.13061] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/11/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
Cerebrovascular disease underpins vascular dementia (VaD), but structural and functional changes to the cerebral vasculature contribute to disease pathology and cognitive decline in Alzheimer's disease (AD). In this review, we discuss the contribution of cerebral amyloid angiopathy and non‐amyloid small vessel disease in AD, and the accompanying changes to the density, maintenance and remodelling of vessels (including alterations to the composition and function of the cerebrovascular basement membrane). We consider how abnormalities of the constituent cells of the neurovascular unit – particularly of endothelial cells and pericytes – and impairment of the blood‐brain barrier (BBB) impact on the pathogenesis of AD. We also discuss how changes to the cerebral vasculature are likely to impair Aβ clearance – both intra‐periarteriolar drainage (IPAD) and transport of Aβ peptides across the BBB, and how impaired neurovascular coupling and reduced blood flow in relation to metabolic demand increase amyloidogenic processing of APP and the production of Aβ. We review the vasoactive properties of Aβ peptides themselves, and the probable bi‐directional relationship between vascular dysfunction and Aβ accumulation in AD. Lastly, we discuss recent methodological advances in transcriptomics and imaging that have provided novel insights into vascular changes in AD, and recent advances in assessment of the retina that allow in vivo detection of vascular changes in the early stages of AD.
Collapse
Affiliation(s)
- Robert A Fisher
- Dementia Research Group, University of Bristol Medical School, Bristol, UK
| | - J Scott Miners
- Dementia Research Group, University of Bristol Medical School, Bristol, UK
| | - Seth Love
- Dementia Research Group, University of Bristol Medical School, Bristol, UK
| |
Collapse
|
50
|
Tsiknia AA, Reas E, Bangen KJ, Sundermann EE, McEvoy L, Brewer JB, Edland SD, Banks SJ. Sex and APOE ε4 modify the effect of cardiovascular risk on tau in cognitively normal older adults. Brain Commun 2022; 4:fcac035. [PMID: 35233525 PMCID: PMC8882003 DOI: 10.1093/braincomms/fcac035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/12/2021] [Accepted: 02/15/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
The interaction between APOE ε4 and vascular risk factors on cognitive function is stronger in women than in men. These effects may be mediated by the amount of tau pathology in the brain. Therefore, we examined whether APOE ε4 and sex modify cross-sectional associations between cardiovascular risk and tau deposition in cognitively normal older adults from the Alzheimer’s Disease Neuroimaging Initiative. We calculated the Framingham Heart Study cardiovascular disease risk score for 141 participants (74 women, 47 APOE ε4 carriers) with complete medical history data, processed tau PET data and a Clinical Dementia Rating global score of 0.0 at the time of the tau PET scan, implying no significant cognitive or functional impairment. We used linear regression models to examine the effects of sex, APOE ε4, cardiovascular risk and their interactions on tau deposition in the entorhinal cortex, inferior temporal cortex and a composite meta-region of interest of temporal lobe areas. We found a significant three-way interaction among sex, APOE ε4 status, and cardiovascular disease risk on tau deposition in the entorhinal cortex (β = 0.04; 95% CI, 0.01 to 0.07; P =0.008), inferior temporal cortex (β = 0.02; 95% CI, 0.0 to 0.05; P =0.029) and meta-region (β = 0.02; 95% CI, 0.0–0.04; P = 0.042). After stratifying by APOE ε4 status to examine interactions between sex and cardiovascular disease risk on tau in APOE ε4 carriers and non-carriers, we found a significant two-way interaction between sex and cardiovascular disease risk on tau in the entorhinal cortex (β = 0.05; 95% CI, 0.02 to 0.08; P =0.001), inferior temporal cortex (β = 0.03; 95% CI, 0.01 to 0.05; P =0.009) and meta-region (β = 0.02; 95% CI, 0.01 to 0.04; P =0.008) only among APOE ε4 carriers. In analyses stratified by sex, higher cardiovascular risk scores were associated with higher levels of tau in the entorhinal cortex (β = 0.05; 95% CI, 0.02 to 0.08; P =0.002), inferior temporal cortex (β = 0.02; 95% CI, 0.0 to 0.05; P =0.023) and meta-region (β = 0.02; 95% CI, 0.01 to 0.04; P =0.013) in female APOE ε4 carriers but not in male carriers. Our findings suggest that cognitively normal older women carrying at least one APOE ε4 allele, may be particularly vulnerable to the effects of cardiovascular disease risk on early tau deposition.
Collapse
Affiliation(s)
- Amaryllis A. Tsiknia
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Emilie Reas
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Katherine J. Bangen
- Research Service, VA San Diego Healthcare System, San Diego, La Jolla, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Erin E. Sundermann
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Linda McEvoy
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA, USA
| | - James B. Brewer
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Steven D. Edland
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA, USA
| | - Sarah J. Banks
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | | |
Collapse
|