1
|
Obeng E, Shen B, Wang W, Xie Z, Zhang W, Li Z, Yao Q, Wu W. Engineered bio-functional material-based nerve guide conduits for optic nerve regeneration: a view from the cellular perspective, challenges and the future outlook. Regen Biomater 2024; 12:rbae133. [PMID: 39776856 PMCID: PMC11703557 DOI: 10.1093/rb/rbae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/16/2024] [Accepted: 11/03/2024] [Indexed: 01/11/2025] Open
Abstract
Nerve injuries can be tantamount to severe impairment, standard treatment such as the use of autograft or surgery comes with complications and confers a shortened relief. The mechanism relevant to the regeneration of the optic nerve seems yet to be fully uncovered. The prevailing rate of vision loss as a result of direct or indirect insult on the optic nerve is alarming. Currently, the use of nerve guide conduits (NGC) to some extent has proven reliable especially in rodents and among the peripheral nervous system, a promising ground for regeneration and functional recovery, however in the optic nerve, this NGC function seems quite unfamous. The insufficient NGC application and the unabridged regeneration of the optic nerve could be a result of the limited information on cellular and molecular activities. This review seeks to tackle two major factors (i) the cellular and molecular activity involved in traumatic optic neuropathy and (ii) the NGC application for the optic nerve regeneration. The understanding of cellular and molecular concepts encompassed, ocular inflammation, extrinsic signaling and intrinsic signaling for axon growth, mobile zinc role, Ca2+ factor associated with the optic nerve, alternative therapies from nanotechnology based on the molecular information and finally the nanotechnological outlook encompassing applicable biomaterials and the use of NGC for regeneration. The challenges and future outlook regarding optic nerve regenerations are also discussed. Upon the many approaches used, the comprehensive role of the cellular and molecular mechanism may set grounds for the efficient application of the NGC for optic nerve regeneration.
Collapse
Affiliation(s)
- Enoch Obeng
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Baoguo Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Wei Wang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Zhenyuan Xie
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Wenyi Zhang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Zhixing Li
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Qinqin Yao
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Wencan Wu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou, Zhejiang 325000, China
| |
Collapse
|
2
|
Peng J, Yang S, Zhou C, Qin C, Fang K, Tan Y, Da J, Zhang J, Zha Y. Identification of common biomarkers in diabetic kidney disease and cognitive dysfunction using machine learning algorithms. Sci Rep 2024; 14:22057. [PMID: 39333211 PMCID: PMC11436791 DOI: 10.1038/s41598-024-72327-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 09/05/2024] [Indexed: 09/29/2024] Open
Abstract
Cognitive dysfunction caused by diabetes has become a serious global medical issue. Diabetic kidney disease (DKD) exacerbates cognitive dysfunction in patients, although the precise mechanism behind this remains unclear. Here, we conducted an investigation using RNA sequencing data from the Gene Expression Omnibus (GEO) database. We analyzed the differentially expressed genes in DKD and three types of neurons in the temporal cortex (TC) of diabetic patients with cognitive dysfunction. Through our analysis, we identified a total of 133 differentially expressed genes (DEGs) shared between DKD and TC neurons (62 up-regulated and 71 down-regulated). To identify potential common biomarkers, we employed machine learning algorithms (LASSO and SVM-RFE) and Venn diagram analysis. Ultimately, we identified 8 overlapping marker genes (ZNF564, VPS11, YPEL4, VWA5B1, A2ML1, KRT6A, SEC14L1P1, SH3RF1) as potential biomarkers, which exhibited high sensitivity and specificity in ROC curve analysis. Functional analysis using Gene Ontology (GO) revealed that these genes were primarily enriched in autophagy, ubiquitin/ubiquitin-like protein ligase activity, MAP-kinase scaffold activity, and syntaxin binding. Further enrichment analysis using Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA) indicates that these biomarkers may play a crucial role in the development of cognitive dysfunction and diabetic nephropathy. Building upon these biomarkers, we developed a diagnostic model with a reliable predictive ability for DKD complicated by cognitive dysfunction. To validate the 8 biomarkers, we conducted RT-PCR analysis in the cortex, hippocampus and kidney of animal models. The results demonstrated the up-regulation of SH3RF1 in the cortex, hippocampus and kidney of mice, which was further confirmed by immunofluorescence and Western blot validation. Notably, SH3RF1 is a scaffold protein involved in cell survival in the JNK signaling pathway. Based on these findings, we support that SH3RF1 may be a common gene expression feature that influences DKD and cognitive dysfunction through the apoptotic pathway.
Collapse
Affiliation(s)
- Jing Peng
- Guizhou University Medical College, Guiyang, 550002, China
- Department of Anesthesiology, Guizhou Provincial People's Hospital, 83, Zhongshan Road, Nanming District, GuiyangGuizhou, 550002, China
| | - Sha Yang
- Guizhou University Medical College, Guiyang, 550002, China
| | - Chaomin Zhou
- Guizhou University Medical College, Guiyang, 550002, China
- Department of Nephrology, Guizhou Provincial People's Hospital, 83, Zhongshan Road, Nanming District, GuiyangGuizhou, 550002, China
| | - Chenguang Qin
- Department of Anesthesiology, Guizhou Provincial People's Hospital, 83, Zhongshan Road, Nanming District, GuiyangGuizhou, 550002, China
| | - Kaiyun Fang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, 83, Zhongshan Road, Nanming District, GuiyangGuizhou, 550002, China
| | - Ying Tan
- Department of Neurosurgery, Guizhou Provincial People's Hospital, 83, Zhongshan Road, Nanming District, GuiyangGuizhou, 550002, China
| | - Jingjing Da
- Department of Nephrology, Guizhou Provincial People's Hospital, 83, Zhongshan Road, Nanming District, GuiyangGuizhou, 550002, China.
| | - Jiqing Zhang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, 83, Zhongshan Road, Nanming District, GuiyangGuizhou, 550002, China.
| | - Yan Zha
- Guizhou University Medical College, Guiyang, 550002, China.
- Department of Nephrology, Guizhou Provincial People's Hospital, 83, Zhongshan Road, Nanming District, GuiyangGuizhou, 550002, China.
| |
Collapse
|
3
|
Kim MS, Cho K, Cho MH, Kim NY, Kim K, Kim DH, Yoon SY. Neuronal MHC-I complex is destabilized by amyloid-β and its implications in Alzheimer's disease. Cell Biosci 2023; 13:181. [PMID: 37773139 PMCID: PMC10540404 DOI: 10.1186/s13578-023-01132-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/11/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUNDS The expression of major histocompatibility complex I (MHC-I) in neurons has recently been shown to regulate neurite outgrowth and synaptic plasticity. However, its contribution to neurodegenerative diseases such as Alzheimer's disease (AD) remains largely unknown. METHODS In this study, we investigated the relationship between impaired MHC-I-β2M complex and AD in vitro and human AD samples. Interaction between protein was identified by liquid chromatography-tandem mass spectrometry and confirmed by immunoprecipitation. Single-chain trimer of MHC-I-β2M was generated to study the effect of stabilization of MHC-I-β2M complex on NCAM1 signaling. RESULTS MHC-I is destabilized in the brains of AD patients and neuronal cells treated with oligomeric β-amyloid (Aβ). Specifically, Aβ oligomers disassemble the MHC-I-β2-microglobulin (β2M) complex, leading to reduced interactions with neural cell adhesion molecule 1 (NCAM1), a novel interactor of neuronal MHC-I, and decreased signaling. Inhibition of MHC-I-β2M complex destabilization by non-dissociable MHC-I-β2M-peptide complex restored MHC-I-NCAM1 signaling in neuronal cells. CONCLUSIONS The current study demonstrated that disruption of MHC-1-NCAM1 signaling by Aβ induced disassembly of MHC-I-β2M complex is involved in the pathophysiology of AD. Moreover, our findings suggest modulation of MHC-I stability may be a potential therapeutic target for restoring synaptic function in AD.
Collapse
Affiliation(s)
- Min-Seok Kim
- ADEL Institute of Science & Technology (AIST), ADEL, Inc., Seoul, Korea
| | - Kwangmin Cho
- ADEL Institute of Science & Technology (AIST), ADEL, Inc., Seoul, Korea
| | - Mi-Hyang Cho
- ADEL Institute of Science & Technology (AIST), ADEL, Inc., Seoul, Korea
| | - Na-Young Kim
- ADEL Institute of Science & Technology (AIST), ADEL, Inc., Seoul, Korea
| | - Kyunggon Kim
- Department of Convergence Medicine, Convergence Medicine Research Center/Biomedical Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dong-Hou Kim
- Department of Brain Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| | - Seung-Yong Yoon
- ADEL Institute of Science & Technology (AIST), ADEL, Inc., Seoul, Korea.
- Department of Brain Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
4
|
Adula KP, Shorey M, Chauhan V, Nassman K, Chen SF, Rolls MM, Sagasti A. The MAP3Ks DLK and LZK Direct Diverse Responses to Axon Damage in Zebrafish Peripheral Neurons. J Neurosci 2022; 42:6195-6210. [PMID: 35840323 PMCID: PMC9374156 DOI: 10.1523/jneurosci.1395-21.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 06/14/2022] [Accepted: 06/27/2022] [Indexed: 11/21/2022] Open
Abstract
Mitogen-activated protein kinase kinase kinases (MAP3Ks) dual leucine kinase (DLK) and leucine zipper kinase (LZK) are essential mediators of axon damage responses, but their responses are varied, complex, and incompletely understood. To characterize their functions in axon injury, we generated zebrafish mutants of each gene, labeled motor neurons (MNs) and touch-sensing neurons in live zebrafish, precisely cut their axons with a laser, and assessed the ability of mutant axons to regenerate in larvae, before sex is apparent in zebrafish. DLK and LZK were required redundantly and cell autonomously for axon regeneration in MNs but not in larval Rohon-Beard (RB) or adult dorsal root ganglion (DRG) sensory neurons. Surprisingly, in dlk lzk double mutants, the spared branches of wounded RB axons grew excessively, suggesting that these kinases inhibit regenerative sprouting in damaged axons. Uninjured trigeminal sensory axons also grew excessively in mutants when neighboring neurons were ablated, indicating that these MAP3Ks are general inhibitors of sensory axon growth. These results demonstrate that zebrafish DLK and LZK promote diverse injury responses, depending on the neuronal cell identity and type of axonal injury.SIGNIFICANCE STATEMENT The MAP3Ks DLK and LZK are damage sensors that promote diverse outcomes to neuronal injury, including axon regeneration. Understanding their context-specific functions is a prerequisite to considering these kinases as therapeutic targets. To investigate DLK and LZK cell-type-specific functions, we created zebrafish mutants in each gene. Using mosaic cell labeling and precise laser injury we found that both proteins were required for axon regeneration in motor neurons but, unexpectedly, were not required for axon regeneration in Rohon-Beard or DRG sensory neurons and negatively regulated sprouting in the spared axons of touch-sensing neurons. These findings emphasize that animals have evolved distinct mechanisms to regulate injury site regeneration and collateral sprouting, and identify differential roles for DLK and LZK in these processes.
Collapse
Affiliation(s)
- Kadidia Pemba Adula
- Molecular, Cell and Developmental Biology Department and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095
| | - Matthew Shorey
- Department of Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Vasudha Chauhan
- Molecular, Cell and Developmental Biology Department and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095
| | - Khaled Nassman
- Molecular, Cell and Developmental Biology Department and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095
| | - Shu-Fan Chen
- Molecular, Cell and Developmental Biology Department and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095
| | - Melissa M Rolls
- Department of Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Alvaro Sagasti
- Molecular, Cell and Developmental Biology Department and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095,
| |
Collapse
|
5
|
Involvement of Paired Immunoglobulin-like Receptor B in Diabetes-Associated Cognitive Dysfunction Through Modulation of Axon Outgrowth and Dendritic Remodeling. Mol Neurobiol 2022; 59:2563-2579. [PMID: 35091963 DOI: 10.1007/s12035-021-02679-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022]
Abstract
Type 2 diabetic patients have high risk of developing cognitive dysfunction, in which neural structural plasticity has played a pivotal role. Paired immunoglobulin-like receptor B (PirB), a receptor mainly expressed in neurons, acts as a critical inhibitor of neurite outgrowth and neural plasticity. However, the role of PirB in type 2 diabetes-associated cognitive dysfunction remains unknown. In this study, learning and memory impairment was observed in 24-week-old db/db mice by performing Morris water maze task, and the number of synapses along with the length of postsynaptic density by transmission electron microscopy were reduced in the hippocampus of db/db mice. Furthermore, PirB expression in the hippocampus of db/db mice was significantly upregulated using western blotting and immunofluorescence analysis. In cultured hippocampal neurons, high glucose treatment reduced the length of the longest neurite as well as axon initial segment (AIS), whereas silencing PirB expression rescued high glucose-induced neurite outgrowth inhibition, but not AIS. Additionally, cognitive deficits, dendrite morphology defects, and synapse-related proteins loss in db/db mice were alleviated when PirB knockdown was performed by adeno-associated virus injection. In conclusion, PirB is involved in diabetes-associated cognitive dysfunction through modulation of axon outgrowth and dendritic remodeling, providing a potential therapeutic target for diabetes-associated cognitive dysfunction.
Collapse
|
6
|
Wang YH, Ding ZY, Cheng YJ, Chien CT, Huang ML. An Efficient Screen for Cell-Intrinsic Factors Identifies the Chaperonin CCT and Multiple Conserved Mechanisms as Mediating Dendrite Morphogenesis. Front Cell Neurosci 2020; 14:577315. [PMID: 33100975 PMCID: PMC7546278 DOI: 10.3389/fncel.2020.577315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/02/2020] [Indexed: 12/25/2022] Open
Abstract
Dendritic morphology is inextricably linked to neuronal function. Systematic large-scale screens combined with genetic mapping have uncovered several mechanisms underlying dendrite morphogenesis. However, a comprehensive overview of participating molecular mechanisms is still lacking. Here, we conducted an efficient clonal screen using a collection of mapped P-element insertions that were previously shown to cause lethality and eye defects in Drosophila melanogaster. Of 280 mutants, 52 exhibited dendritic defects. Further database analyses, complementation tests, and RNA interference validations verified 40 P-element insertion genes as being responsible for the dendritic defects. Twenty-eight mutants presented severe arbor reduction, and the remainder displayed other abnormalities. The intrinsic regulators encoded by the identified genes participate in multiple conserved mechanisms and pathways, including the protein folding machinery and the chaperonin-containing TCP-1 (CCT) complex that facilitates tubulin folding. Mutant neurons in which expression of CCT4 or CCT5 was depleted exhibited severely retarded dendrite growth. We show that CCT localizes in dendrites and is required for dendritic microtubule organization and tubulin stability, suggesting that CCT-mediated tubulin folding occurs locally within dendrites. Our study also reveals novel mechanisms underlying dendrite morphogenesis. For example, we show that Drosophila Nogo signaling is required for dendrite development and that Mummy and Wech also regulate dendrite morphogenesis, potentially via Dpp- and integrin-independent pathways. Our methodology represents an efficient strategy for identifying intrinsic dendrite regulators, and provides insights into the plethora of molecular mechanisms underlying dendrite morphogenesis.
Collapse
Affiliation(s)
- Ying-Hsuan Wang
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan.,Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Zhao-Ying Ding
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Ying-Ju Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | | | - Min-Lang Huang
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan
| |
Collapse
|
7
|
Jin Y, Zheng B. Multitasking: Dual Leucine Zipper-Bearing Kinases in Neuronal Development and Stress Management. Annu Rev Cell Dev Biol 2020; 35:501-521. [PMID: 31590586 DOI: 10.1146/annurev-cellbio-100617-062644] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The dual leucine zipper-bearing kinase (DLK) and leucine zipper-bearing kinase (LZK) are evolutionarily conserved MAPKKKs of the mixed-lineage kinase family. Acting upstream of stress-responsive JNK and p38 MAP kinases, DLK and LZK have emerged as central players in neuronal responses to a variety of acute and traumatic injuries. Recent studies also implicate their function in astrocytes, microglia, and other nonneuronal cells, reflecting their expanding roles in the multicellular response to injury and in disease. Of particular note is the potential link of these kinases to neurodegenerative diseases and cancer. It is thus critical to understand the physiological contexts under which these kinases are activated, as well as the signal transduction mechanisms that mediate specific functional outcomes. In this review we first provide a historical overview of the biochemical and functional dissection of these kinases. We then discuss recent findings on regulating their activity to enhance cellular protection following injury and in disease, focusing on but not limited to the nervous system.
Collapse
Affiliation(s)
- Yishi Jin
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA; .,Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA;
| | - Binhai Zheng
- Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA; .,VA San Diego Healthcare System, San Diego, California 92161, USA
| |
Collapse
|
8
|
Yuan R, Yang M, Fan W, Lan J, Zhou YG. Paired Immunoglobulin-like Receptor B Inhibition in Müller Cells Promotes Neurite Regeneration After Retinal Ganglion Cell Injury in vitro. Neurosci Bull 2020; 36:972-984. [PMID: 32445021 DOI: 10.1007/s12264-020-00510-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/31/2020] [Indexed: 02/07/2023] Open
Abstract
In the central nervous system (CNS), three types of myelin-associated inhibitors (MAIs) have major inhibitory effects on nerve regeneration. They include Nogo-A, myelin-associated glycoprotein, and oligodendrocyte-myelin glycoprotein. MAIs possess two co-receptors, Nogo receptor (NgR) and paired immunoglobulin-like receptor B (PirB). Previous studies have confirmed that the inhibition of NgR only results in a modest increase in regeneration in the CNS; however, the inhibitory effects of PirB with regard to nerve regeneration after binding to MAIs remain controversial. In this study, we demonstrated that PirB is expressed in primary cultures of retinal ganglion cells (RGCs), and the inhibitory effects of the three MAIs on the growth of RGC neurites are not significantly decreased after direct PirB knockdown using adenovirus PirB shRNA. Interestingly, we found that retinal Müller cells expressed PirB and that its knockdown enhanced the regeneration of co-cultured RGC neurites. PirB knockdown also activated the JAK/Stat3 signaling pathway in Müller cells and upregulated ciliary neurotrophic factor levels. These findings indicate that PirB plays a novel role in retinal Müller cells and that its action in these cells may indirectly affect the growth of RGC neurites. The results also reveal that PirB in Müller cells affects RGC neurite regeneration. Our findings provide a novel basis for the use of PirB as a target molecule to promote nerve regeneration.
Collapse
Affiliation(s)
- Rongdi Yuan
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.,The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Mei Yang
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Wei Fan
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Jian Lan
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yuan-Guo Zhou
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
9
|
Yue J, Zhang C, Shi X, Wei Y, Liu L, Liu S, Yang H. Activation of leukocyte immunoglobulin-like receptor B2 signaling pathway in cortical lesions of pediatric patients with focal cortical dysplasia type IIb and tuberous sclerosis complex. Brain Dev 2019; 41:829-838. [PMID: 31495513 DOI: 10.1016/j.braindev.2019.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/24/2019] [Accepted: 08/13/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUNDS Focal cortical dysplasia type IIb (FCD IIb) and tuberous sclerosis complex (TSC) are very frequently associated with epilepsy in pediatric patients. Human leukocyte immunoglobulin-like receptor B2 (LILRB2) participates in the process of neurite growth, synaptic plasticity, and inflammatory reaction, suggesting a potential role of LILRB2 in epilepsy. However, little is known about the distribution and expression of LILRB2 in cortical lesions of FCD IIb and cortical tubers of TSC. METHODS In this study, we have described the distribution and expression of LILRB2 signaling pathway in cortical lesions of pediatric patients with FCD IIb (n = 15) and TSC (n = 12) relative to age-matched autopsy control samples (CTX, n = 10), respectively. The protein levels of LILRB2 pathway molecules were assessed by western blotting and immunohistochemistry. The expression pattern was investigated by immunohistochemistry and double labeling experiment. Spearman correlation analysis to explore the correlation between LILRB2 protein level and seizure frequency. RESULTS The protein levels of LILRB2 and its downstream molecules POSH, SHROOM3, ROCK1, ROCK2 were increased in cortices of patients compared to CTX. Protein levels of LILRB2 negatively correlated with the frequency of seizures in FCD IIb and TSC patients, respectively. Moreover, all LILRB2 pathway molecules were strongly expressed in dysmorphic neurons, balloon cells, and giant cells, LILRB2 co-localized with neuron marker and astrocyte marker. CONCLUSION Taken together, the special expression patterns of LILRB2 signaling pathway in cortical lesions of FCD IIb and TSC implies that it may be involved in the process of epilepsy.
Collapse
Affiliation(s)
- Jiong Yue
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chunqing Zhang
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xianjun Shi
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yujia Wei
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lihong Liu
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shiyong Liu
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hui Yang
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
10
|
Zhao X, Bai F, Zhang E, Zhou D, Jiang T, Zhou H, Wang Q. Electroacupuncture Improves Neurobehavioral Function Through Targeting of SOX2-Mediated Axonal Regeneration by MicroRNA-132 After Ischemic Stroke. Front Mol Neurosci 2018; 11:471. [PMID: 30618618 PMCID: PMC6306468 DOI: 10.3389/fnmol.2018.00471] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/04/2018] [Indexed: 11/14/2022] Open
Abstract
Our previous studies have shown that electroacupuncture (EA) enhances neurobehavioral functional recovery after ischemic stroke, however, the underlying regulatory mechanisms remain unclear. MicroRNAs (miRNAs) are abundant in the brain and are involved in post-transcriptional gene regulation. During cerebral ischemia reperfusion, miRNAs perform numerous biological functions in the central nervous system related to regeneration and repair of damaged nerves. Our previous studies also have shown that the expression of miRNA-132 (miR-132) is obviously down-regulated after stroke by middle cerebral artery occlusion (MCAO), which can be up-regulated by EA. This study aimed to identify whether up-regulation of miR-132 by EA improved the damaged nerves after stroke and to screen the potential target of miR-132. The results showed that EA up-regulated miR-132 thus suppressing SOX2 expression in vivo after MCAO, which obviously ameliorated neurobehavioral functional recovery. Moreover, our results also suggested that up-regulated miR-132 suppressed SOX2 in primary neurons after oxygen-glucose deprivation (OGD), which promoted neurite outgrowth. In conclusion, EA enhances neurobehavioral functional recovery against ischemic stroke through targeting of SOX2-mediated axonal regeneration by miR-132.
Collapse
Affiliation(s)
- Xiaoying Zhao
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, China.,Department of Anesthesiology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Fuhai Bai
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Erfei Zhang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, China.,Department of Anesthesiology, The Affiliated Hospital of Yan'an University, Yan'an, China
| | - Dandan Zhou
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, China.,Department of Anesthesiology, The Northwest Women's and Children's Hospital, Xi'an, China
| | - Tao Jiang
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Heng Zhou
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Qiang Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, China.,Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
11
|
West RJH, Ugbode C, Gao FB, Sweeney ST. The pro-apoptotic JNK scaffold POSH/SH3RF1 mediates CHMP2BIntron5-associated toxicity in animal models of frontotemporal dementia. Hum Mol Genet 2018; 27:1382-1395. [PMID: 29432529 PMCID: PMC6454437 DOI: 10.1093/hmg/ddy048] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 01/01/2023] Open
Abstract
Frontotemporal dementia (FTD) is one of the most prevalent forms of early-onset dementia. However, the pathological mechanisms driving neuronal atrophy in FTD remain poorly understood. Here we identify a conserved role for the novel pro-apoptotic protein plenty of SH3s (POSH)/SH3 domain containing ring finger 1 in mediating neuropathology in Drosophila and mammalian models of charged multivesicular body protein 2B (CHMP2BIntron5) associated FTD. Aberrant, AKT dependent, accumulation of POSH was observed throughout the nervous system of both Drosophila and mice expressing CHMP2BIntron5. Knockdown of POSH was shown to be neuroprotective and sufficient to alleviate aberrant neuronal morphology, behavioral deficits and premature-lethality in Drosophila models, as well as dendritic collapse and cell death in CHMP2BIntron5expressing rat primary neurons. POSH knockdown also ameliorated elevated markers of Jun N-terminal kinase and apoptotic cascades in both Drosophila and mammalian models. This study provides the first characterization of POSH as a potential component of an FTD neuropathology, identifying a novel apoptotic pathway with relevance to the FTD spectrum.
Collapse
Affiliation(s)
- Ryan J H West
- Department of Biology, University of York, York YO10 5DD, UK
| | - Chris Ugbode
- Department of Biology, University of York, York YO10 5DD, UK
| | - Fen-Biao Gao
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sean T Sweeney
- Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
12
|
Bi YY, Quan Y. PirB inhibits axonal outgrowth via the PI3K/Akt/mTOR signaling pathway. Mol Med Rep 2017; 17:1093-1098. [PMID: 29115495 DOI: 10.3892/mmr.2017.7930] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 09/22/2017] [Indexed: 11/05/2022] Open
Abstract
Accumulating data strongly suggests that leukocyte immunoglobulin like receptor B1 (PirB) inhibits axonal outgrowth. However, the underlying mechanisms remain unclear. In the present study, cortical neurons of newborn mice were cultured with Nogo‑66 (Nogo‑p4; 4 µmol/l; a PirB ligand) together with NEP1‑40 (Nogo inhibitory peptide) and/or anti‑PirB body (50 mg/ml). PirB mRNA and protein was higher in cultured neurons induced by Nogo‑66 compared with untreated cells. Neurite outgrowth assays demonstrated that the inhibitory effects of Nogo‑66 on axonal outgrowth were reversed by anti‑PirB body. Reverse transcription‑quantitative polymerase chain reaction and western blot assays demonstrated that anti‑PirB treatment led to reduced mRNA and protein expression of phosphoinositide 3‑kinase (PI3K), Akt serine/threonine kinase (Akt), mechanistic target of rapamycin kinase (mTOR), myosin IIA and cofilin, which are involved in axonal outgrowth. Furthermore, blockade of the PI3K/Akt/mTOR pathway using a PI3K inhibitor or an mTOR inhibitor diminished the stimulatory effect of anti‑PirB on axonal outgrowth, and the reduced effect of anti‑PirB on factors that were activation by anti‑PirB. In addition, blockade of PI3K/Akt/mTOR enhanced anti‑PirB‑induced gene and protein expression. These results revealed that PirB functions as a potential suppressor in axonal outgrowth via repressing PI3K/Akt/mTOR signaling pathway, and PirB/PI3K/Akt/mTOR may be a novel target for enhancing axonal outgrowth for developing rational therapeutic strategies.
Collapse
Affiliation(s)
- Yong-Yan Bi
- Department of Neurosurgery, Minhang Hospital, Fudan University, Shanghai 201199, P.R. China
| | - Yong Quan
- Department of Neurosurgery, Minhang Hospital, Fudan University, Shanghai 201199, P.R. China
| |
Collapse
|
13
|
Wang X, Tian X, Yang Y, Lu X, Li Y, Ma Y, Zhang Y, Zheng F, Lu S, Xu D, Xu X, Wang W, Wang X. POSH participates in epileptogenesis by increasing the surface expression of the NMDA receptor: a promising therapeutic target for epilepsy. Expert Opin Ther Targets 2017; 21:1083-1094. [PMID: 29057721 DOI: 10.1080/14728222.2017.1394456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xinshi Wang
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Xin Tian
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yong Yang
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xi Lu
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yun Li
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanlin Ma
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yanke Zhang
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fangshuo Zheng
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shanshan Lu
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Demei Xu
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Xu
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Wang
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuefeng Wang
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
14
|
Welsbie DS, Mitchell KL, Jaskula-Ranga V, Sluch VM, Yang Z, Kim J, Buehler E, Patel A, Martin SE, Zhang PW, Ge Y, Duan Y, Fuller J, Kim BJ, Hamed E, Chamling X, Lei L, Fraser IDC, Ronai ZA, Berlinicke CA, Zack DJ. Enhanced Functional Genomic Screening Identifies Novel Mediators of Dual Leucine Zipper Kinase-Dependent Injury Signaling in Neurons. Neuron 2017. [PMID: 28641113 DOI: 10.1016/j.neuron.2017.06.008] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dual leucine zipper kinase (DLK) has been implicated in cell death signaling secondary to axonal damage in retinal ganglion cells (RGCs) and other neurons. To better understand the pathway through which DLK acts, we developed enhanced functional genomic screens in primary RGCs, including use of arrayed, whole-genome, small interfering RNA libraries. Explaining why DLK inhibition is only partially protective, we identify leucine zipper kinase (LZK) as cooperating with DLK to activate downstream signaling and cell death in RGCs, including in a mouse model of optic nerve injury, and show that the same pathway is active in human stem cell-derived RGCs. Moreover, we identify four transcription factors, JUN, activating transcription factor 2 (ATF2), myocyte-specific enhancer factor 2A (MEF2A), and SRY-Box 11 (SOX11), as being the major downstream mediators through which DLK/LZK activation leads to RGC cell death. Increased understanding of the DLK pathway has implications for understanding and treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Derek S Welsbie
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Shiley Eye Institute, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Katherine L Mitchell
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Vinod Jaskula-Ranga
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Valentin M Sluch
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Zhiyong Yang
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Shiley Eye Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jessica Kim
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Eugen Buehler
- National Center for Advancing Translational Sciences, NIH, Bethesda, MD 20892, USA
| | - Amit Patel
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Shiley Eye Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Scott E Martin
- National Center for Advancing Translational Sciences, NIH, Bethesda, MD 20892, USA
| | - Ping-Wu Zhang
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Yan Ge
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Yukan Duan
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - John Fuller
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Byung-Jin Kim
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Eman Hamed
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Xitiz Chamling
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Lei Lei
- Department of Biology, University of New England, Biddeford, ME 04005, USA
| | - Iain D C Fraser
- Signaling Systems Unit, Laboratory of Systems Biology, National Institute for Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Ze'ev A Ronai
- Signal Transduction Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Cynthia A Berlinicke
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Donald J Zack
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Solomon H. Snyder Department of Neuroscience, Department of Molecular Biology and Genetics, Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
15
|
Zhao ZH, Deng B, Xu H, Zhang JF, Mi YJ, Meng XZ, Gou XC, Xu LX. PirB Overexpression Exacerbates Neuronal Apoptosis by Inhibiting TrkB and mTOR Phosphorylation After Oxygen and Glucose Deprivation Injury. Cell Mol Neurobiol 2017; 37:707-715. [PMID: 27443384 PMCID: PMC11482055 DOI: 10.1007/s10571-016-0406-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 07/08/2016] [Indexed: 11/24/2022]
Abstract
Previous studies have proven that paired immunoglobulin-like receptor B (PirB) plays a crucial suppressant role in neurite outgrowth and neuronal plasticity after central nervous system injury. However, the role of PirB in neuronal survival after cerebral ischemic injury and its mechanisms remains unclear. In the present study, the role of PirB is investigated in the survival and apoptosis of cerebral cortical neurons in cultured primary after oxygen and glucose deprivation (OGD)-induced injury. The results have shown that rebarbative PirB exacerbates early neuron apoptosis and survival. PirB gene silencing remarkably decreases early apoptosis and promotes neuronal survival after OGD. The expression of bcl-2 markedly increased and the expression of bax significantly decreased in PirB RNAi-treated neurons, as compared with the control- and control RNAi-treated ones. Further, phosphorylated TrkB and mTOR levels are significantly downregulated in the damaged neurons. However, the PirB silencing markedly upregulates phosphorylated TrkB and mTOR levels in the neurons after the OGD. Taken together, the overexpression of PirB inhibits the neuronal survival through increased neuron apoptosis. Importantly, the inhibition of the phosphorylation of TrkB and mTOR may be one of its mechanisms.
Collapse
Affiliation(s)
- Zhao-Hua Zhao
- Department of Anesthesiology, College of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
- Institute of Basic and Translational Medicine & School of Basic Medical Sciences, Xi'an Medical University, Xi'an, 710021, China
| | - Bin Deng
- Department of Anesthesiology, College of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Hao Xu
- Institute of Basic and Translational Medicine & School of Basic Medical Sciences, Xi'an Medical University, Xi'an, 710021, China
| | - Jun-Feng Zhang
- Institute of Basic and Translational Medicine & School of Basic Medical Sciences, Xi'an Medical University, Xi'an, 710021, China
| | - Ya-Jing Mi
- Institute of Basic and Translational Medicine & School of Basic Medical Sciences, Xi'an Medical University, Xi'an, 710021, China
| | - Xiang-Zhong Meng
- Department of Anesthesiology, College of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xing-Chun Gou
- Department of Anesthesiology, College of Stomatology, Fourth Military Medical University, Xi'an, 710032, China.
- Institute of Basic and Translational Medicine & School of Basic Medical Sciences, Xi'an Medical University, Xi'an, 710021, China.
| | - Li-Xian Xu
- Department of Anesthesiology, College of Stomatology, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
16
|
TAT-PEP, a novel blocker of PirB, enhances the recovery of cognitive function in mice after transient global cerebral ischemia. Behav Brain Res 2017; 326:322-330. [DOI: 10.1016/j.bbr.2017.03.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 12/13/2022]
|
17
|
de Bock CE, Hughes MR, Snyder K, Alley S, Sadeqzadeh E, Dun MD, McNagny KM, Molloy TJ, Hondermarck H, Thorne RF. Protein interaction screening identifies SH3RF1 as a new regulator of FAT1 protein levels. FEBS Lett 2017; 591:667-678. [PMID: 28129444 DOI: 10.1002/1873-3468.12569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 01/11/2017] [Accepted: 01/23/2017] [Indexed: 01/14/2023]
Abstract
Mutations and ectopic FAT1 cadherin expression are implicated in a broad spectrum of diseases ranging from developmental disorders to cancer. The regulation of FAT1 and its downstream signalling pathways remain incompletely understood. We hypothesized that identification of additional proteins interacting with the FAT1 cytoplasmic tail would further delineate its regulation and function. A yeast two-hybrid library screen carried out against the juxtamembrane region of the cytoplasmic tail of FAT1 identified the E3 ubiquitin-protein ligase SH3RF1 as the most frequently recovered protein-binding partner. Ablating SH3RF1 using siRNA increased cellular FAT1 protein levels and stabilized expression at the cell surface, while overexpression of SH3RF1 reduced FAT1 levels. We conclude that SH3RF1 acts as a negative post-translational regulator of FAT1 levels.
Collapse
Affiliation(s)
- Charles E de Bock
- VIB Center for the Biology of Disease, Leuven, Belgium.,Hunter Cancer Research Alliance, University of Newcastle, Callaghan, Australia
| | - Michael R Hughes
- The Biomedical Research Centre, University of British Columbia, Vancouver, Canada
| | - Kimberly Snyder
- The Biomedical Research Centre, University of British Columbia, Vancouver, Canada
| | - Steven Alley
- Hunter Cancer Research Alliance, University of Newcastle, Callaghan, Australia.,School of Environmental and Life Sciences, University of Newcastle, Callaghan, Australia
| | - Elham Sadeqzadeh
- Hunter Cancer Research Alliance, University of Newcastle, Callaghan, Australia.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia
| | - Matt D Dun
- Hunter Cancer Research Alliance, University of Newcastle, Callaghan, Australia.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia
| | - Kelly M McNagny
- The Biomedical Research Centre, University of British Columbia, Vancouver, Canada
| | - Timothy J Molloy
- The Kinghorn Cancer Centre and Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Hubert Hondermarck
- Hunter Cancer Research Alliance, University of Newcastle, Callaghan, Australia.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia
| | - Rick F Thorne
- Hunter Cancer Research Alliance, University of Newcastle, Callaghan, Australia.,School of Environmental and Life Sciences, University of Newcastle, Callaghan, Australia
| |
Collapse
|
18
|
Deng B, Li L, Gou X, Xu H, Zhao Z, Wang Q, Xu L. TAT-PEP Enhanced Neurobehavioral Functional Recovery by Facilitating Axonal Regeneration and Corticospinal Tract Projection After Stroke. Mol Neurobiol 2016; 55:652-667. [PMID: 27987133 DOI: 10.1007/s12035-016-0301-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 11/16/2016] [Indexed: 12/11/2022]
Abstract
Paired immunoglobulin-like receptor B (PirB) has been identified as a new receptor for myelin-associated inhibitory (MAI) proteins, which may play important role in axonal regeneration and corticospinal tract (CST) projection associated with neurobehavioral function recovery after stroke. Here, we found that the expression of PirB was increased in the cortical penumbra from 1 to 28 days after transient focal cerebral ischemic reperfusion of rats. Then, transactivator of transcription-PirB extracellular peptide (TAT-PEP) was generated that might block the interactions between MAIs and PirB. The results showed that TAT-PEP displayed high affinity for MAIs and ameliorated their inhibitory effect on neurite growth. Furthermore, TAT-PEP can widely distribute in the penumbra after intraperitoneal injection. Then, we found that TAT-PEP enhanced neurite growth and alleviated growth cone collapse after oxygen glucose deprivation (OGD) injury. In addition, TAT-PEP promoted long-term neurobehavioral functional recovery through enhancing axonal regeneration and CST projection. Finally, the observations demonstrated that POSH/RhoA/growth-associated protein 43 (GAP43) as PirB-associated downstream signaling molecules played important role in neurobehavioral functional recovery after stroke. Moreover, the underlying mechanism associated with TAT-PEP-mediated promoting axonal regeneration and CST projection was by intervening in the expression of POSH, RhoA, and GAP43. These studies suggest that TAT-PEP may represent an attractive therapeutic strategy against stroke.
Collapse
Affiliation(s)
- Bin Deng
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Oral Diseases, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, China.,Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Liya Li
- Department of Emergency, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116027, China
| | - Xingchun Gou
- The Laboratory of Cell Biology and Translational Medicine, Xi'an Medical University, Xi'an, 710021, China
| | - Hao Xu
- The Laboratory of Cell Biology and Translational Medicine, Xi'an Medical University, Xi'an, 710021, China
| | - Zhaohua Zhao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Oral Diseases, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, China
| | - Qiang Wang
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China.
| | - Lixian Xu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Oral Diseases, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, China.
| |
Collapse
|
19
|
Deng B, Bai F, Zhou H, Zhou D, Ma Z, Xiong L, Wang Q. Electroacupuncture enhances rehabilitation through miR-181b targeting PirB after ischemic stroke. Sci Rep 2016; 6:38997. [PMID: 27966582 PMCID: PMC5155251 DOI: 10.1038/srep38997] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/16/2016] [Indexed: 12/15/2022] Open
Abstract
Recent studies have demonstrated microRNAs (miRNAs) and proteins are beneficial to axon regeneration, which may be involved in Electroacupuncture (EA) therapy against stroke. In this study, we aimed to determine the pivotal role of PirB in EA-produced rehabilitation against ischemic stroke; and to screen and investigate the potential miRNAs directly regulating PirB expression. The results showed EA treatment enhanced axon regeneration and new projections from the corticospinal tract at 28 d after cerebral ischemic reperfusion injury of rats. Then, we found EA decreased pirb mRNA and PirB protein expression in the penumbra within 28 days after reperfusion. The reduction of PirB expression facilitated neurite outgrowth after oxygen-glucose deprivation injury. The miRNA microarray showed the level of twenty kinds of miRNAs changed in the penumbra after EA administration. The bioinformatics study and luciferase assay verified miR-181b directly regulated pirb mRNA expression. EA increased miR-181b levels in the penumbras, and improved neurobehavioral function rehabilitation through miR-181b direct targeting of pirb mRNA to regulate the expression of PirB, RhoA and GAP43. In conclusion, we provide the first evidence that EA enhances rehabilitation against stroke by regulating epigenetic changes to directly act on its targets, such as the miR-181b/PirB/RhoA/GAP43 axis, which is a novel mechanism of EA therapy.
Collapse
Affiliation(s)
- Bin Deng
- Department of Anesthesiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi’an 710032, China
| | - Fuhai Bai
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Heng Zhou
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Dandan Zhou
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Zhi Ma
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Lize Xiong
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Qiang Wang
- Department of Anesthesiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
20
|
Yue J, Li W, Liang C, Chen B, Chen X, Wang L, Zang Z, Yu S, Liu S, Li S, Yang H. Activation of LILRB2 signal pathway in temporal lobe epilepsy patients and in a pilocarpine induced epilepsy model. Exp Neurol 2016; 285:51-60. [DOI: 10.1016/j.expneurol.2016.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 08/23/2016] [Accepted: 09/12/2016] [Indexed: 12/23/2022]
|
21
|
Mixed – Lineage Protein kinases (MLKs) in inflammation, metabolism, and other disease states. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1581-6. [DOI: 10.1016/j.bbadis.2016.05.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 02/06/2023]
|
22
|
Leucine Zipper-bearing Kinase promotes axon growth in mammalian central nervous system neurons. Sci Rep 2016; 6:31482. [PMID: 27511108 PMCID: PMC4980599 DOI: 10.1038/srep31482] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 07/04/2016] [Indexed: 11/11/2022] Open
Abstract
Leucine Zipper-bearing Kinase (LZK/MAP3K13) is a member of the mixed lineage kinase family with high sequence identity to Dual Leucine Zipper Kinase (DLK/MAP3K12). While DLK is established as a key regulator of axonal responses to injury, the role of LZK in mammalian neurons is poorly understood. By gain- and loss-of-function analyses in neuronal cultures, we identify LZK as a novel positive regulator of axon growth. LZK signals specifically through MKK4 and JNKs among MAP2Ks and MAPKs respectively in neuronal cells, with JNK activity positively regulating LZK protein levels. Neuronal maturation or activity deprivation activates the LZK-MKK4-JNK pathway. LZK and DLK share commonalities in signaling, regulation, and effects on axon extension. Furthermore, LZK-dependent regulation of DLK protein expression and the lack of additive effects on axon growth upon co-manipulation suggest complex functional interaction and cross-regulation between these two kinases. Together, our data support the possibility for two structurally related MAP3Ks to work in concert to mediate axonal responses to external insult or injury in mammalian CNS neurons.
Collapse
|
23
|
Grill B, Murphey RK, Borgen MA. The PHR proteins: intracellular signaling hubs in neuronal development and axon degeneration. Neural Dev 2016; 11:8. [PMID: 27008623 PMCID: PMC4806438 DOI: 10.1186/s13064-016-0063-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/15/2016] [Indexed: 11/10/2022] Open
Abstract
During development, a coordinated and integrated series of events must be accomplished in order to generate functional neural circuits. Axons must navigate toward target cells, build synaptic connections, and terminate outgrowth. The PHR proteins (consisting of mammalian Phr1/MYCBP2, Drosophila Highwire and C. elegans RPM-1) function in each of these events in development. Here, we review PHR function across species, as well as the myriad of signaling pathways PHR proteins regulate. These findings collectively suggest that the PHR proteins are intracellular signaling hubs, a concept we explore in depth. Consistent with prominent developmental functions, genetic links have begun to emerge between PHR signaling networks and neurodevelopmental disorders, such as autism, schizophrenia and intellectual disability. Finally, we discuss the recent and important finding that PHR proteins regulate axon degeneration, which has further heightened interest in this fascinating group of molecules.
Collapse
Affiliation(s)
- Brock Grill
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, FL, 33458, USA.
| | - Rodney K Murphey
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL, 33458, USA
| | - Melissa A Borgen
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, FL, 33458, USA
| |
Collapse
|
24
|
Dickson HM, Wilbur A, Reinke AA, Young MA, Vojtek AB. Targeted inhibition of the Shroom3-Rho kinase protein-protein interaction circumvents Nogo66 to promote axon outgrowth. BMC Neurosci 2015; 16:34. [PMID: 26077244 PMCID: PMC4467669 DOI: 10.1186/s12868-015-0171-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 06/03/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Inhibitory molecules in the adult central nervous system, including NogoA, impede neural repair by blocking axon outgrowth. The actin-myosin regulatory protein Shroom3 directly interacts with Rho kinase and conveys axon outgrowth inhibitory signals from Nogo66, a C-terminal inhibitory domain of NogoA. The purpose of this study was to identify small molecules that block the Shroom3-Rho kinase protein-protein interaction as a means to modulate NogoA signaling and, in the longer term, enhance axon outgrowth during neural repair. RESULTS A high throughput screen for inhibitors of the Shroom3-Rho kinase protein-protein interaction identified CCG-17444 (Chem ID: 2816053). CCG-17444 inhibits the Shroom3-Rho kinase interaction in vitro with micromolar potency. This compound acts through an irreversible, covalent mechanism of action, targeting Shroom3 Cys1816 to inhibit the Shroom3-Rho kinase protein-protein interaction. Inhibition of the Shroom3-Rho kinase protein-protein interaction with CCG-17444 counteracts the inhibitory action of Nogo66 and enhances neurite outgrowth. CONCLUSIONS This study identifies a small molecule inhibitor of the Shroom3-Rho kinase protein-protein interaction that circumvents the inhibitory action of Nogo66 in neurons. Identification of a small molecule compound that blocks the Shroom3-Rho kinase protein-protein interaction provides a first step towards a potential new strategy for enhancing neural repair.
Collapse
Affiliation(s)
- Heather M Dickson
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Amanda Wilbur
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Ashley A Reinke
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Mathew A Young
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Anne B Vojtek
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
25
|
Xu YQ, Sun ZQ, Wang YT, Xiao F, Chen MW. Function of Nogo-A/Nogo-A receptor in Alzheimer's disease. CNS Neurosci Ther 2015; 21:479-85. [PMID: 25732725 DOI: 10.1111/cns.12387] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 01/01/2015] [Accepted: 01/02/2015] [Indexed: 12/11/2022] Open
Abstract
Nogo-A is a protein inhibiting axonal regeneration, which is considered a major obstacle to nerve regeneration after injury in mammals. Rapid progress has been achieved in new physiopathological function of Nogo-A in Alzheimer's disease in the past decade. Recent research shows that through binding to Nogo-A receptor, Nogo-A plays an important role in Alzheimer's disease (AD) pathogenesis. Particularly, Nogo-A/Nogo-A receptors modulate the generation of amyloid β-protein (Aβ), which is thought to be a major cause of AD. This review describes the recent development of Nogo-A, Nogo-A receptor, and downstream signaling involved in AD and pharmacological basis of therapeutic drugs. We concluded the Nogo-A/Nogo-A receptor provide new insight into potential mechanisms and promising therapy strategies in AD.
Collapse
Affiliation(s)
- Ying-Qi Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Zhong-Qing Sun
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Yi-Tao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Fei Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.,Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Mei-Wan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
26
|
Strong Reduction of Low-Density Lipoprotein Receptor/Apolipoprotein E Expressions by Telmisartan in Cerebral Cortex and Hippocampus of Stroke Resistant Spontaneously Hypertensive Rats. J Stroke Cerebrovasc Dis 2014; 23:2350-61. [DOI: 10.1016/j.jstrokecerebrovasdis.2014.05.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/30/2014] [Accepted: 05/07/2014] [Indexed: 12/23/2022] Open
|
27
|
Protein synthesis dependence of growth cone collapse induced by different Nogo-A-domains. PLoS One 2014; 9:e86820. [PMID: 24489789 PMCID: PMC3906062 DOI: 10.1371/journal.pone.0086820] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 12/13/2013] [Indexed: 12/31/2022] Open
Abstract
Background The protein Nogo-A regulates axon growth in the developing and mature nervous system, and this is carried out by two distinct domains in the protein, Nogo-A-Δ20 and Nogo-66. The differences in the signalling pathways engaged in axon growth cones by these domains are not well characterized, and have been investigated in this study. Methodology/Principal Findings We analyzed growth cone collapse induced by the Nogo-A domains Nogo-A-Δ20 and Nogo-66 using explanted chick dorsal root ganglion neurons growing on laminin/poly-lysine substratum. Collapse induced by purified Nogo-A-Δ20 peptide is dependent on protein synthesis whereas that induced by Nogo-66 peptide is not. Nogo-A-Δ20-induced collapse is accompanied by a protein synthesis-dependent rise in RhoA expression in the growth cone, but is unaffected by proteasomal catalytic site inhibition. Conversely Nogo-66-induced collapse is inhibited ∼50% by proteasomal catalytic site inhibition. Conclusion/Significance Growth cone collapse induced by the Nogo-A domains Nogo-A-Δ20 and Nogo-66 is mediated by signalling pathways with distinguishable characteristics concerning their dependence on protein synthesis and proteasomal function.
Collapse
|
28
|
Gou Z, Mi Y, Jiang F, Deng B, Yang J, Gou X. PirB is a novel potential therapeutic target for enhancing axonal regeneration and synaptic plasticity following CNS injury in mammals. J Drug Target 2014; 22:365-71. [PMID: 24405091 DOI: 10.3109/1061186x.2013.878939] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A major barrier to axonal regeneration in mammals is the unfavorable extracellular environment that develops following injury to the central nervous system (CNS). In particular, three myelin-associated inhibitory proteins (MAIs) - Nogo, myelin-associated glycoprotein (MAG) and oligodendrocyte myelin glycoprotein (OMgp) - are known to inhibit axonal regeneration and functional recovery. These MAIs share a common receptor, glycosylphosphatidylinositol-anchored Nogo receptor (NgR). However, paired immunoglobulin-like receptor B (PirB) - which was originally identified as a receptor for class I major histocompatibility complex (MHCI) in the immune system - is also expressed in neurones and plays a similarly inhibitory role in axonal regeneration and synaptic plasticity following CNS injury through its association with MAIs. Importantly, suppression of PirB activity through antibody antagonism or genetic means can partially relieve the inhibition of neurite outgrowth in vitro and in vivo. In this review, we present the molecular features, expression patterns and known signaling pathways of PirB, and we specifically focus on putative roles for PirB in the CNS and its potential as a target of molecular therapies for enhancing axonal regeneration and synaptic plasticity following CNS injury.
Collapse
Affiliation(s)
- Zhaoyu Gou
- College of Life Science, China West Normal University , Nanchong , China and
| | | | | | | | | | | |
Collapse
|
29
|
Yegla B, Parikh V. Effects of sustained proNGF blockade on attentional capacities in aged rats with compromised cholinergic system. Neuroscience 2013; 261:118-32. [PMID: 24374328 DOI: 10.1016/j.neuroscience.2013.12.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/05/2013] [Accepted: 12/19/2013] [Indexed: 01/14/2023]
Abstract
Disruption in nerve growth factor (NGF) signaling via tropomyosin-related kinase A (trkA) receptors compromises the integrity of the basal forebrain (BF) cholinergic system, yielding cognitive, specifically attentional, impairments in Alzheimer's disease (AD). Although normal aging is considered a risk factor for AD, the mechanisms underlying the selective vulnerability of the aging cholinergic system to trkA disruption is not clear. The levels of proNGF, a proneurotrophin that possesses higher affinity for p75 receptors, increase in aging. The present study was designed to test the hypothesis that cholinergic and attentional dysfunction in aged rats with reduced BF trkA receptors occurs due to the overactivation of endogenous proNGF signaling. We employed a viral vector that produced trkA shRNA to suppress trkA receptors in the corticopetal cholinergic neurons of aged rats. BF trkA suppression impaired animals' performance on signal trials in both the sustained attention task (SAT) and the cognitively taxing distractor version of SAT (dSAT) and these deficits were normalized by chronic intracerebroventricular administration of proNGF antibody. Moreover, depolarization-evoked acetylcholine (ACh) release and the density of cortical cholinergic fibers were partially restored in these animals. However, SAT/dSAT scores reflecting overall performance did not improve following proNGF blockade in trkA knockdown rats due to impaired performance in non-signal trials. Sustained proNGF blockade alone did not alter baseline attentional performance but produced moderate impairments during challenging conditions. Collectively, our findings indicate that barring proNGF-p75 signaling may exert some beneficial effects on attentional capacities specifically when BF trkA signaling is abrogated. However, endogenous proNGF may also possess neurotrophic effects and blockade of this proneurotrophin may not completely ameliorate attentional impairments in AD and potentially hinder performance during periods of high cognitive load in normal aging.
Collapse
Affiliation(s)
- B Yegla
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, United States
| | - V Parikh
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, United States.
| |
Collapse
|
30
|
Meyer MJ, Stanislaus AB, Lee J, Waak K, Ryan C, Saxena R, Ball S, Schmidt U, Poon T, Piva S, Walz M, Talmor DS, Blobner M, Latronico N, Eikermann M. Surgical Intensive Care Unit Optimal Mobilisation Score (SOMS) trial: a protocol for an international, multicentre, randomised controlled trial focused on goal-directed early mobilisation of surgical ICU patients. BMJ Open 2013; 3:e003262. [PMID: 23959756 PMCID: PMC3753523 DOI: 10.1136/bmjopen-2013-003262] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Immobilisation in the intensive care unit (ICU) leads to muscle weakness and is associated with increased costs and long-term functional disability. Previous studies showed early mobilisation of medical ICU patients improves clinical outcomes. The Surgical ICU Optimal Mobilisation Score (SOMS) trial aims to test whether a budget-neutral intervention to facilitate goal-directed early mobilisation in the surgical ICU improves participant mobilisation and associated clinical outcomes. METHODS AND ANALYSIS The SOMS trial is an international, multicentre, randomised clinical study being conducted in the USA and Europe. We are targeting 200 patients. The primary outcome is average daily SOMS level and key secondary outcomes are ICU length of stay until discharge readiness and 'mini' modified Functional Independence Measure (mmFIM) at hospital discharge. Additional secondary outcomes include quality of life assessed at 3 months after hospital discharge and global muscle strength at ICU discharge. Exploratory outcomes will include: ventilator-free days, ICU and hospital length of stay and 3-month mortality. We will explore genetic influences on the effectiveness of early mobilisation and centre-specific effects of early mobilisation on outcomes. ETHICS AND DISSEMINATION Following Institutional Review Board (IRB) approval in three institutions, we started study recruitment and plan to expand to additional centres in Germany and Italy. Safety monitoring will be the domain of the Data and Safety Monitoring Board (DSMB). The SOMS trial will also explore the feasibility of a transcontinental study on early mobilisation in the surgical ICU. RESULTS The results of this study, along with those of ancillary studies, will be made available in the form of manuscripts and presentations at national and international meetings. REGISTRATION This study has been registered at clinicaltrials.gov (NCT01363102).
Collapse
Affiliation(s)
- Matthew J Meyer
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Anne B Stanislaus
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jarone Lee
- Department of Surgery, Trauma, Emergency Surgery, Surgical Critical Care, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Karen Waak
- Department of Physical and Occupational Therapy, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Cheryl Ryan
- Department of Clinical Nursing Services, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Richa Saxena
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Stephanie Ball
- Department of Clinical Nursing Services, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ulrich Schmidt
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Trudy Poon
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Simone Piva
- Department of Anesthesia, Intensive Care and Perioperative Medicine, University of Brescia at Spedali Civili, Brescia, Italy
| | - Matthias Walz
- UMass Memorial Medical Center and UMass Medical School, Worcester, Massachusetts, USA
| | - Daniel S Talmor
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Manfred Blobner
- Klinik für Anaesthesiologie, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Nicola Latronico
- Department of Anesthesia, Intensive Care and Perioperative Medicine, University of Brescia at Spedali Civili, Brescia, Italy
| | - Matthias Eikermann
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Universitaet Duisburg-Essen, Germany
| |
Collapse
|
31
|
Yan D, Jin Y. Regulation of DLK-1 kinase activity by calcium-mediated dissociation from an inhibitory isoform. Neuron 2013; 76:534-48. [PMID: 23141066 DOI: 10.1016/j.neuron.2012.08.043] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2012] [Indexed: 01/19/2023]
Abstract
MAPKKK dual leucine zipper-bearing kinases (DLKs) are regulators of synaptic development and axon regeneration. The mechanisms underlying their activation are not fully understood. Here, we show that C. elegans DLK-1 is activated by a Ca(2+)-dependent switch from inactive heteromeric to active homomeric protein complexes. We identify a DLK-1 isoform, DLK-1S, that shares identical kinase and leucine zipper domains with the previously described long isoform DLK-1L but acts to inhibit DLK-1 function by binding to DLK-1L. The switch between homo- or heteromeric DLK-1 complexes is influenced by Ca(2+) concentration. A conserved hexapeptide in the DLK-1L C terminus is essential for DLK-1 activity and is required for Ca(2+) regulation. The mammalian DLK-1 homolog MAP3K13 contains an identical C-terminal hexapeptide and can functionally complement dlk-1 mutants, suggesting that the DLK activation mechanism is conserved. The DLK activation mechanism is ideally suited for rapid and spatially controlled signal transduction in response to axonal injury and synaptic activity.
Collapse
Affiliation(s)
- Dong Yan
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
32
|
Parikh V, Howe WM, Welchko RM, Naughton SX, D'Amore DE, Han DH, Deo M, Turner DL, Sarter M. Diminished trkA receptor signaling reveals cholinergic-attentional vulnerability of aging. Eur J Neurosci 2013; 37:278-93. [PMID: 23228124 PMCID: PMC3932048 DOI: 10.1111/ejn.12090] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 11/06/2012] [Indexed: 11/28/2022]
Abstract
The cellular mechanisms underlying the exceptional vulnerability of the basal forebrain (BF) cholinergic neurons during pathological aging have remained elusive. Here we employed an adeno-associated viral vector-based RNA interference (AAV-RNAi) strategy to suppress the expression of tropomyosin-related kinase A (trkA) receptors by cholinergic neurons in the nucleus basalis of Meynert/substantia innominata (nMB/SI) of adult and aged rats. Suppression of trkA receptor expression impaired attentional performance selectively in aged rats. Performance correlated with trkA levels in the nMB/SI. trkA knockdown neither affected nMB/SI cholinergic cell counts nor the decrease in cholinergic cell size observed in aged rats. However, trkA suppression augmented an age-related decrease in the density of cortical cholinergic processes and attenuated the capacity of cholinergic neurons to release acetylcholine (ACh). The capacity of cortical synapses to release ACh in vivo was also lower in aged/trkA-AAV-infused rats than in aged or young controls, and it correlated with their attentional performance. Furthermore, age-related increases in cortical proNGF and p75 receptor levels interacted with the vector-induced loss of trkA receptors to shift NGF signaling toward p75-mediated suppression of the cholinergic phenotype, thereby attenuating cholinergic function and impairing attentional performance. These effects model the abnormal trophic regulation of cholinergic neurons and cognitive impairments in patients with early Alzheimer's disease. This rat model is useful for identifying the mechanisms rendering aging cholinergic neurons vulnerable as well as for studying the neuropathological mechanisms that are triggered by disrupted trophic signaling.
Collapse
Affiliation(s)
- Vinay Parikh
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122
| | - William M. Howe
- Department of Psychology, University of Michigan, Ann Arbor, 48109
| | - Ryan M. Welchko
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, 48109
| | - Sean X. Naughton
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122
| | - Drew E. D'Amore
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122
| | - Daniel H. Han
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122
| | - Monika Deo
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, 48109
| | - David L. Turner
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, 48109
| | - Martin Sarter
- Department of Psychology, University of Michigan, Ann Arbor, 48109
| |
Collapse
|
33
|
Yang T, Sun Y, Zhang F, Zhu Y, Shi L, Li H, Xu Z. POSH localizes activated Rac1 to control the formation of cytoplasmic dilation of the leading process and neuronal migration. Cell Rep 2012; 2:640-51. [PMID: 22959435 DOI: 10.1016/j.celrep.2012.08.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 07/02/2012] [Accepted: 08/13/2012] [Indexed: 11/15/2022] Open
Abstract
The formation of proximal cytoplasmic dilation in the leading process (PCDLP) of migratory neocortical neurons is crucial for somal translocation and neuronal migration, processes that require the elaborate coordination of F-actin dynamics, centrosomal movement, and nucleokinesis. However, the underlying molecular mechanisms remain poorly understood. Here, we show that the Rac1-interacting scaffold protein POSH is essential for neuronal migration in vivo. We demonstrate that POSH is concentrated in the PCDLP and that knockdown of POSH impairs PCDLP formation, centrosome translocation, and nucleokinesis. Furthermore, POSH colocalizes with F-actin and the activated form of Rac1. Knockdown of POSH impairs F-actin assembly and delocalizes activated Rac1. Interference of Rac1 activity also disrupts F-actin assembly and PCDLP formation and perturbs neuronal migration. Thus, we have uncovered a mechanism by which POSH regulates the localization of activated Rac1 and F-actin assembly to control PCDLP formation and subsequent somal translocation of migratory neurons.
Collapse
Affiliation(s)
- Tao Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Pan CQ, Sudol M, Sheetz M, Low BC. Modularity and functional plasticity of scaffold proteins as p(l)acemakers in cell signaling. Cell Signal 2012; 24:2143-65. [PMID: 22743133 DOI: 10.1016/j.cellsig.2012.06.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 05/22/2012] [Accepted: 06/16/2012] [Indexed: 01/14/2023]
Abstract
Cells coordinate and integrate various functional modules that control their dynamics, intracellular trafficking, metabolism and gene expression. Such capacity is mediated by specific scaffold proteins that tether multiple components of signaling pathways at plasma membrane, Golgi apparatus, mitochondria, endoplasmic reticulum, nucleus and in more specialized subcellular structures such as focal adhesions, cell-cell junctions, endosomes, vesicles and synapses. Scaffold proteins act as "pacemakers" as well as "placemakers" that regulate the temporal, spatial and kinetic aspects of protein complex assembly by modulating the local concentrations, proximity, subcellular dispositions and biochemical properties of the target proteins through the intricate use of their modular protein domains. These regulatory mechanisms allow them to gate the specificity, integration and crosstalk of different signaling modules. In addition to acting as physical platforms for protein assembly, many professional scaffold proteins can also directly modify the properties of their targets while they themselves can be regulated by post-translational modifications and/or mechanical forces. Furthermore, multiple scaffold proteins can form alliances of higher-order regulatory networks. Here, we highlight the emerging themes of scaffold proteins by analyzing their common and distinctive mechanisms of action and regulation, which underlie their functional plasticity in cell signaling. Understanding these mechanisms in the context of space, time and force should have ramifications for human physiology and for developing new therapeutic approaches to control pathological states and diseases.
Collapse
Affiliation(s)
- Catherine Qiurong Pan
- Cell Signaling and Developmental Biology Laboratory, Department of Biological Sciences, National University of Singapore, Republic of Singapore.
| | | | | | | |
Collapse
|
35
|
Negative regulation of Yap during neuronal differentiation. Dev Biol 2011; 361:103-15. [PMID: 22037235 DOI: 10.1016/j.ydbio.2011.10.017] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 08/05/2011] [Accepted: 10/10/2011] [Indexed: 11/21/2022]
Abstract
Regulated proliferation and cell cycle exit are essential aspects of neurogenesis. The Yap transcriptional coactivator controls proliferation in a variety of tissues during development, and this activity is negatively regulated by kinases in the Hippo signaling pathway. We find that Yap is expressed in mitotic mouse retinal progenitors and it is downregulated during neuronal differentiation. Forced expression of Yap prolongs proliferation in the postnatal mouse retina, whereas inhibition of Yap by RNA interference (RNAi) decreases proliferation and increases differentiation. We show Yap is subject to post-translational inhibition in the retina, and also downregulated at the level of mRNA expression. Using a cell culture model, we find that expression of the proneural basic helix-loop-helix (bHLH) transcription factors Neurog2 or Ascl1 downregulates Yap mRNA levels, and simultaneously inhibits Yap protein via activation of the Lats1 and/or Lats2 kinases. Conversely, overexpression of Yap prevents proneural bHLH proteins from initiating cell cycle exit. We propose that mutual inhibition between proneural bHLH proteins and Yap is an important regulator of proliferation and cell cycle exit during mammalian neurogenesis.
Collapse
|
36
|
VanGuilder HD, Farley JA, Yan H, Van Kirk CA, Mitschelen M, Sonntag WE, Freeman WM. Hippocampal dysregulation of synaptic plasticity-associated proteins with age-related cognitive decline. Neurobiol Dis 2011; 43:201-12. [PMID: 21440628 PMCID: PMC3096728 DOI: 10.1016/j.nbd.2011.03.012] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 03/18/2011] [Indexed: 12/16/2022] Open
Abstract
Age-related cognitive decline occurs without frank neurodegeneration and is the most common cause of memory impairment in aging individuals. With increasing longevity, cognitive deficits, especially in hippocampus-dependent memory processes, are increasing in prevalence. Nevertheless, the neurobiological basis of age-related cognitive decline remains unknown. While concerted efforts have led to the identification of neurobiological changes with aging, few age-related alterations have been definitively correlated to behavioral measures of cognitive decline. In this work, adult (12 months) and aged (28 months) rats were categorized by Morris water maze performance as Adult cognitively Intact, Aged cognitively Intact or Aged cognitively Impaired, and protein expression was examined in hippocampal synaptosome preparations. Previously described differences in synaptic expression of neurotransmission-associated proteins (Dnm1, Hpca, Stx1, Syn1, Syn2, Syp, SNAP25, VAMP2 and 14-3-3 eta, gamma, and zeta) were confirmed between Adult and Aged rats, with no further dysregulation associated with cognitive impairment. Proteins related to synaptic structural stability (MAP2, drebrin, Nogo-A) and activity-dependent signaling (PSD-95, 14-3-3θ, CaMKIIα) were up- and down-regulated, respectively, with cognitive impairment but were not altered with increasing age. Localization of MAP2, PSD-95, and CaMKIIα demonstrated protein expression alterations throughout the hippocampus. The altered expression of activity- and structural stability-associated proteins suggests that impaired synaptic plasticity is a distinct phenomenon that occurs with age-related cognitive decline, and demonstrates that cognitive decline is not simply an exacerbation of the aging phenotype.
Collapse
Affiliation(s)
- Heather D. VanGuilder
- Penn State College of Medicine, Department of Pharmacology, Hershey Center for Applied Research, 500 University Drive, Hershey, PA, 17033, USA
| | - Julie A. Farley
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10 Street, BRC-1303, Oklahoma City, OK, 73104, USA
| | - Han Yan
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10 Street, BRC-1303, Oklahoma City, OK, 73104, USA
| | - Colleen A. Van Kirk
- Penn State College of Medicine, Department of Pharmacology, Hershey Center for Applied Research, 500 University Drive, Hershey, PA, 17033, USA
| | - Matthew Mitschelen
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10 Street, BRC-1303, Oklahoma City, OK, 73104, USA
| | - William E. Sonntag
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10 Street, BRC-1303, Oklahoma City, OK, 73104, USA
| | - Willard M. Freeman
- Penn State College of Medicine, Department of Pharmacology, Hershey Center for Applied Research, 500 University Drive, Hershey, PA, 17033, USA
| |
Collapse
|