2
|
Ye ZX, Bi J, Qiu LL, Chen XY, Li MC, Chen XY, Qiu YS, Yuan RY, Yu XT, Huang CY, Cheng B, Lin W, Chen WJ, Hu JP, Fu Y, Wang N, Gan SR. Cognitive impairment associated with cerebellar volume loss in spinocerebellar ataxia type 3. J Neurol 2024; 271:918-928. [PMID: 37848650 DOI: 10.1007/s00415-023-12042-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/15/2023] [Accepted: 10/01/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Many neuroscience and neurology studies have forced a reconsideration of the traditional motor-related scope of cerebellar function, which has now expanded to include various cognitive functions. Spinocerebellar ataxia type 3 (SCA3; the most common hereditary ataxia) is neuropathologically characterized by cerebellar atrophy and frequently presents with cognitive impairment. OBJECTIVE To characterize cognitive impairment in SCA3 and investigate the cerebellum-cognition associations. METHODS This prospective, cross-sectional cohort study recruited 126 SCA3 patients and 41 healthy control individuals (HCs). Participants underwent a brain 3D T1-weighted images as well as neuropsychological tests. Voxel-based morphometry (VBM) and region of interest (ROI) approaches were performed on the 3D T1-weighted images. CERES was used to automatically segment cerebellums. Patients were grouped into cognitively impaired (CI) and cognitively preserved (CP), and clinical and MRI parameters were compared. Multivariable regression models were fitted to examine associations between cerebellar microstructural alterations and cognitive domain impairments. RESULTS Compared to HCs, SCA3 patients showed cognitive domain impairments in information processing speed, verbal memory, executive function, and visuospatial perception. Between CI and CP subgroups, the CI subgroup was older and had lower education, as well as higher severity scores. VBM and ROI analyses revealed volume loss in cerebellar bilateral lobule VI, right lobule Crus I, and right lobule IV of the CI subgroup, and all these cerebellar lobules were associated with the above cognitive domain impairments. CONCLUSIONS Our findings demonstrate the multiple cognitive domain impairments in SCA3 patients and indicate the responsible cerebellar lobules for the impaired cognitive domain(s).
Collapse
Affiliation(s)
- Zhi-Xian Ye
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Jin Bi
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Liang-Liang Qiu
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Xuan-Yu Chen
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350005, China
| | - Meng-Cheng Li
- Department of Radiology of First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Xin-Yuan Chen
- Department of Rehabilitation Medicine of First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Yu-Sen Qiu
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Ru-Ying Yuan
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Xin-Tong Yu
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Chun-Yu Huang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Bi Cheng
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Wei Lin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Wan-Jin Chen
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Jian-Ping Hu
- Department of Radiology of First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Ying Fu
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China.
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350005, China.
| | - Ning Wang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China.
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
| | - Shi-Rui Gan
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China.
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
| |
Collapse
|
3
|
Lipponen J, Tiulpin A, Majamaa K, Rusanen H. Quantification of Upper Limb Movements in Patients with Hereditary or Idiopathic Ataxia. CEREBELLUM (LONDON, ENGLAND) 2023; 22:1182-1191. [PMID: 36269527 PMCID: PMC10657283 DOI: 10.1007/s12311-022-01485-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Assessment of ataxic movements is usually based on clinical judgment. Technical devices can be employed in the quantification of ataxic movements in addition to clinical evaluation. The effect of maximal speed in upper limb movements in ataxia patients has not been quantified. The aim was to quantify upper limb movements in patients with hereditary or idiopathic ataxia and to find features of movement that are characteristic for ataxia. We examined 19 patients with degenerative ataxia and 21 healthy controls. An ad hoc system comprising a touch screen, an accelerometer, and a gyroscope was used to measure speed, angular acceleration, consistency, and accuracy of upper limb movements. The movements were quantified during finger-to-nose test that the patients were asked to perform at their own pace and as fast as possible. Disease severity was estimated by using the Scale for the Assessment and Rating of Ataxia (SARA). The mean SARA score of the patients was 13.5. Compared to the controls the performance of the patients was slow (p < 0.001) and arrhythmic (p < 0.001), but end-point accuracy on the touch screen was intact. The SARA score correlated with the standard deviation of amplitude of angular acceleration in Z-axis (F(1,17) = 15.00, p < 0.001 with R2 = 0.47). Upper limb movements of the patients with degenerative ataxia were slower and more arrhythmic than those in the controls. The patients retained spatial end-point accuracy.
Collapse
Affiliation(s)
- Joonas Lipponen
- Research Unit of Clinical Neuroscience, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland.
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland.
- Department of Neurology, Oulu University Hospital, Oulu, Finland.
| | - Aleksei Tiulpin
- Physics and Technology, Research Unit of Medical Imaging, University of Oulu, Oulu, Finland
- Ailean Technologies Oy, Oulu, Finland
- Department of Electrical Engineering, KU Leuven, Louvain, Belgium
| | - Kari Majamaa
- Research Unit of Clinical Neuroscience, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
- Department of Neurology, Oulu University Hospital, Oulu, Finland
| | - Harri Rusanen
- Research Unit of Clinical Neuroscience, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
- Department of Neurology, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
4
|
Casamento-Moran A, Mooney RA, Chib VS, Celnik PA. Cerebellar Excitability Regulates Physical Fatigue Perception. J Neurosci 2023; 43:3094-3106. [PMID: 36914263 PMCID: PMC10146467 DOI: 10.1523/jneurosci.1406-22.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/10/2023] [Accepted: 02/22/2023] [Indexed: 03/14/2023] Open
Abstract
Fatigue is the subjective sensation of weariness, increased sense of effort, or exhaustion and is pervasive in neurologic illnesses. Despite its prevalence, we have a limited understanding of the neurophysiological mechanisms underlying fatigue. The cerebellum, known for its role in motor control and learning, is also involved in perceptual processes. However, the role of the cerebellum in fatigue remains largely unexplored. We performed two experiments to examine whether cerebellar excitability is affected after a fatiguing task and its association with fatigue. Using a crossover design, we assessed cerebellar inhibition (CBI) and perception of fatigue in humans before and after "fatigue" and "control" tasks. Thirty-three participants (16 males, 17 females) performed five isometric pinch trials with their thumb and index finger at 80% maximum voluntary capacity (MVC) until failure (force <40% MVC; fatigue) or at 5% MVC for 30 s (control). We found that reduced CBI after the fatigue task correlated with a milder perception of fatigue. In a follow-up experiment, we investigated the behavioral consequences of reduced CBI after fatigue. We measured CBI, perception of fatigue, and performance during a ballistic goal-directed task before and after the same fatigue and control tasks. We replicated the observation that reduced CBI after the fatigue task correlated with a milder perception of fatigue and found that greater endpoint variability after the fatigue task correlated with reduced CBI. The proportional relation between cerebellar excitability and fatigue indicates a role of the cerebellum in the perception of fatigue, which might come at the expense of motor control.SIGNIFICANCE STATEMENT Fatigue is one of the most common and debilitating symptoms in neurologic, neuropsychiatric, and chronic illnesses. Despite its epidemiological importance, there is a limited understanding of the neurophysiological mechanisms underlying fatigue. In a series of experiments, we demonstrate that decreased cerebellar excitability relates to lesser physical fatigue perception and worse motor control. These results showcase the role of the cerebellum in fatigue regulation and suggest that fatigue- and performance-related processes might compete for cerebellar resources.
Collapse
Affiliation(s)
- Agostina Casamento-Moran
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, Maryland 21287
| | - Ronan A Mooney
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, Maryland 21287
| | - Vikram S Chib
- Kennedy Krieger Institute, Baltimore, Maryland 21287
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21287
| | - Pablo A Celnik
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, Maryland 21287
- Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland 21287
| |
Collapse
|
5
|
Teaford M, Berg W, Billock VA, McMurray MS, Thomas R, Smart LJ. Muscle activity prior to experiencing the rubber hand illusion is associated with alterations in perceived hand location. PSYCHOLOGICAL RESEARCH 2023; 87:519-536. [PMID: 35249147 DOI: 10.1007/s00426-022-01665-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 02/17/2022] [Indexed: 11/28/2022]
Abstract
The rubber hand illusion (RHI) is a perceptual illusion in which one is made to feel that a hand-shaped object is part of their body. This illusion is believed to be the result of the integration of afferent information. However, there has been an increasing amount of evidence that suggests efferent information plays a role in this illusion as well. Previous research has found that individuals who are afflicted by pathological lack of movement experience the RHI more vividly than control participants. Whereas individuals who move their hands more than the general population (i.e. professional pianists) experience the RHI less vividly than control participants. Based upon the available evidence it would seem that muscle activity prior to experiencing the RHI should be associated with how vividly one experiences different indices of the illusion. In the present study we tested this possibility by having participants perform a maximum voluntary muscle contraction task prior to experiencing three variants of the RHI (moving active, moving passive and classic). It was found that electromyographic features known to be indicative of muscle fatigue exhibited a positive association with proprioceptive drift when stimulation was synchronous or visual movement only (with the exception of the passive moving RHI synchronous condition). More work is needed to better characterize the muscular processes associated with experiencing the RHI.
Collapse
Affiliation(s)
- Max Teaford
- Department of Otolaryngology, The Ohio State University, Columbus, OH, USA.
- Department of Psychology, Miami University, Oxford, OH, USA.
| | - William Berg
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, OH, USA
| | - Vincent A Billock
- Naval Aerospace Medical Research Laboratory, NAMRU-D, Wright Patterson AFB, OH, USA
| | | | - Robin Thomas
- Department of Psychology, Miami University, Oxford, OH, USA
| | - L James Smart
- Department of Psychology, Miami University, Oxford, OH, USA
| |
Collapse
|