1
|
Detka J, Płachtij N, Strzelec M, Manik A, Sałat K. p38α Mitogen-Activated Protein Kinase-An Emerging Drug Target for the Treatment of Alzheimer's Disease. Molecules 2024; 29:4354. [PMID: 39339348 PMCID: PMC11433989 DOI: 10.3390/molecules29184354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, characterized by the formation of amyloid β and tau protein aggregates in the brain, neuroinflammation, impaired cholinergic neurotransmission, and oxidative stress, resulting in the gradual loss of neurons and neuronal function, which leads to cognitive and memory deficits in AD patients. Chronic neuroinflammation plays a particularly important role in the progression of AD since the excessive release of proinflammatory cytokines from glial cells (microglia and astrocytes) induces neuronal damage, which subsequently causes microglial activation, thus facilitating further neurodegenerative changes. Mitogen-activated protein kinase (MAPK) p38α is one of the key enzymes involved in the control of innate immune response. The increased activation of the p38α MAPK pathway, observed in AD, has been for a long time associated not only with the maintenance of excessive inflammatory process but is also linked with pathophysiological hallmarks of this disease, and therefore is currently considered an attractive drug target for novel AD therapeutics. This review aims to summarize the current state of knowledge about the involvement of p38α MAPK in different aspects of AD pathophysiology and also provides insight into the possible therapeutic effects of novel p38α MAPK inhibitors, which are currently studied as potential drug candidates for AD treatment.
Collapse
Affiliation(s)
- Jan Detka
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland; (J.D.); (N.P.); (A.M.)
| | - Natalia Płachtij
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland; (J.D.); (N.P.); (A.M.)
| | - Martyna Strzelec
- Department of Transplantation, Institute of Pediatrics, Faculty of Medicine, Jagiellonian University Medical College, 265 Wielicka St., 30-663 Krakow, Poland;
| | - Aleksandra Manik
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland; (J.D.); (N.P.); (A.M.)
| | - Kinga Sałat
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland; (J.D.); (N.P.); (A.M.)
| |
Collapse
|
2
|
Wu S, Chen N, Wang C. Frontiers and hotspots evolution in anti-inflammatory studies for Alzheimer's disease. Behav Brain Res 2024; 472:115178. [PMID: 39098396 DOI: 10.1016/j.bbr.2024.115178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/24/2024] [Accepted: 08/02/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder that seriously affects the quality of the elderly's lives worldwide. The main pathological features of AD are amyloid plaques formed by β-amyloid (Aβ) and neuronal fibrillary tangls (NFTs) formed by hyperphosphorylated Tau protein. The formation process of these pathological features is closely related to inflammatory response, so anti-inflammatory treatment has become a potential treatment for AD. In recent years, more and more research has shown that the anti-inflammatory therapy can relieve the symptoms of AD and improve cognitive function, which provides a valuable research direction for the treatment of AD strategy. Therefore, a comprehensive understanding of the hotspots and development trends of AD anti-inflammatory research is important for promoting the further development of this field and improving the quality of life of patients. METHODS This study used bibliometric methods, with AD and anti-inflammatory as key words, collected 7638 AD anti-inflammatory studies collected in Web of Science Core Collection (WoSCC) literature database since 2000, and conducted an in-depth analysis of the research hotspots and potential trends in this field. RESULTS The depth and breadth of AD anti-inflammatory research are in the stage of rapid development, and the hot focus is on exploring the role of inflammation in the pathogenesis of AD, especially the interaction of microglia in the neuroinflammatory mechanism. Secondly, the treatment effect and potential risks of anti-inflammatory drugs such as non-steroidal anti-inflammatory drugs (NSAIDs) on AD are also the focus of research. Therefore, researchers have carried out a series of animal experiments and prospective clinical studies on anti-inflammatory drugs for the treatment of AD, forming a comprehensive research system from basic research to clinical research. As for the future development trend, we believe that the further exploration of inflammation in the pathogenesis of AD will still be one of the key directions, and the application of big data and artificial intelligence technology is expected to provide strong support for the association between inflammation and AD progression. Moreover, the development of novel anti-inflammatory drugs for the inflammatory mechanism of AD will be another major trend for future research. At the same time, personalized treatment strategies and alternative supplements of medicine will also become one of the hotspots of future research. Through the comprehensive use of anti-inflammatory drugs, nutritional supplements, lifestyle intervention and other means, more comprehensive and effective treatment plans for AD patients are expected. CONCLUSION This research analyzes the overall development trend of AD anti-inflammatory research field since 2000, and provides a comprehensive perspective for the progress of AD anti-inflammatory research. Overall, the field of AD anti-inflammatory research is facing a broad development prospect. In the future, with further research and technological advances, we have resason to expect more effective and safer treatment options for AD patients to help them improve their quality of life and delay disease progression.
Collapse
Affiliation(s)
- Shan Wu
- Guangdong-HongKong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Nanjie Chen
- Beijing University of Aeronautics and Astronautics, Beijing, China
| | - Chuanchi Wang
- Xin-Huangpu Joint Innovation Institute of Chinese Medicine, Guangzhou, China; Modern Traditional Chinese Medicine Haihe Laboratory, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
4
|
El Menuawy A, Brüning T, Eiriz I, Hähnel U, Marthe F, Möhle L, Górska AM, Santos-García I, Wangensteen H, Wu J, Pahnke J. Apolar Extracts of St. John's Wort Alleviate the Effects of β-Amyloid Toxicity in Early Alzheimer's Disease. Int J Mol Sci 2024; 25:1301. [PMID: 38279301 PMCID: PMC10816143 DOI: 10.3390/ijms25021301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024] Open
Abstract
Hypericum perforatum (St. John's wort) has been described to be beneficial for the treatment of Alzheimer's disease (AD). Different extractions have demonstrated efficiency in mice and humans, esp. extracts with a low hypericin and hyperforin content to reduce side effects such as phototoxicity. In order to systematically elucidate the therapeutic effects of H. perforatum extracts with different polarities, APP-transgenic mice were treated with a total ethanol extract (TE), a polar extract obtained from TE, and an apolar supercritical CO2 (scCO2) extract. The scCO2 extract was formulated with silicon dioxide (SiO2) for better oral application. APP-transgenic mice were treated with several extracts (total, polar, apolar) at different concentrations. We established an early treatment paradigm from the age of 40 days until the age of 80 days, starting before the onset of cerebral β-amyloid (Aβ) deposition at 45 days of age. Their effects on intracerebral soluble and insoluble Aβ were analyzed using biochemical analyses. Our study confirms that the scCO2H. perforatum formulation shows better biological activity against Aβ-related pathological effects than the TE or polar extracts. Clinically, the treatment resulted in a dose-dependent improvement in food intake with augmentation of the body weight, and, biochemically, it resulted in a significant reduction in both soluble and insoluble Aβ (-27% and -25%, respectively). We therefore recommend apolar H. perforatum extracts for the early oral treatment of patients with mild cognitive impairment or early AD.
Collapse
Affiliation(s)
- Ahmed El Menuawy
- Translational Neurodegeneration Research and Neuropathology Lab/Section of Neuropathology Research, Department of Pathology, Medical Faculty/KlinMED, University of Oslo (UiO) and Oslo University Hospital (OUS), Sognsvannsveien 20, 0372 Oslo, Norway
- Institute for Breeding Research on Horticultural Crops, Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, Erwin-Baur Straße 27, 06484 Quedlinburg, Germany
| | - Thomas Brüning
- Translational Neurodegeneration Research and Neuropathology Lab/Section of Neuropathology Research, Department of Pathology, Medical Faculty/KlinMED, University of Oslo (UiO) and Oslo University Hospital (OUS), Sognsvannsveien 20, 0372 Oslo, Norway
| | - Iván Eiriz
- Translational Neurodegeneration Research and Neuropathology Lab/Section of Neuropathology Research, Department of Pathology, Medical Faculty/KlinMED, University of Oslo (UiO) and Oslo University Hospital (OUS), Sognsvannsveien 20, 0372 Oslo, Norway
| | - Urs Hähnel
- Institute for Breeding Research on Horticultural Crops, Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, Erwin-Baur Straße 27, 06484 Quedlinburg, Germany
| | - Frank Marthe
- Institute for Breeding Research on Horticultural Crops, Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, Erwin-Baur Straße 27, 06484 Quedlinburg, Germany
| | - Luisa Möhle
- Translational Neurodegeneration Research and Neuropathology Lab/Section of Neuropathology Research, Department of Pathology, Medical Faculty/KlinMED, University of Oslo (UiO) and Oslo University Hospital (OUS), Sognsvannsveien 20, 0372 Oslo, Norway
| | - Anna Maria Górska
- Translational Neurodegeneration Research and Neuropathology Lab/Section of Neuropathology Research, Department of Pathology, Medical Faculty/KlinMED, University of Oslo (UiO) and Oslo University Hospital (OUS), Sognsvannsveien 20, 0372 Oslo, Norway
| | - Irene Santos-García
- Translational Neurodegeneration Research and Neuropathology Lab/Section of Neuropathology Research, Department of Pathology, Medical Faculty/KlinMED, University of Oslo (UiO) and Oslo University Hospital (OUS), Sognsvannsveien 20, 0372 Oslo, Norway
| | - Helle Wangensteen
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo (UiO), Sem Sælands vei 3, 0371 Oslo, Norway
| | - Jingyun Wu
- Translational Neurodegeneration Research and Neuropathology Lab/Section of Neuropathology Research, Department of Pathology, Medical Faculty/KlinMED, University of Oslo (UiO) and Oslo University Hospital (OUS), Sognsvannsveien 20, 0372 Oslo, Norway
| | - Jens Pahnke
- Translational Neurodegeneration Research and Neuropathology Lab/Section of Neuropathology Research, Department of Pathology, Medical Faculty/KlinMED, University of Oslo (UiO) and Oslo University Hospital (OUS), Sognsvannsveien 20, 0372 Oslo, Norway
- Institute of Nutritional Medicine (INUM) and Lübeck Institute of Dermatology (LIED), University of Lübeck (UzL) and University Medical Center Schleswig-Holstein (UKSH), Ratzeburger Allee 160, 23538 Lübeck, Germany
- Department of Pharmacology, Faculty of Medicine, University of Latvia, Jelgavas iela 3, 1004 Rīga, Latvia
- Department of Neurobiology, School of Neuroscience, Biochemistry and Biophysics, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|