1
|
Jurgens JA, Matos Ruiz PM, King J, Foster EE, Berube L, Chan WM, Barry BJ, Jeong R, Rothman E, Whitman MC, MacKinnon S, Rivera-Quiles C, Pratt BM, Easterbrooks T, Mensching FM, Di Gioia SA, Pais L, England EM, de Berardinis T, Magli A, Koc F, Asakawa K, Kawakami K, O'Donnell-Luria A, Hunter DG, Robson CD, Bulyk ML, Engle EC. Gene Identification for Ocular Congenital Cranial Motor Neuron Disorders Using Human Sequencing, Zebrafish Screening, and Protein Binding Microarrays. Invest Ophthalmol Vis Sci 2025; 66:62. [PMID: 40162949 PMCID: PMC11956743 DOI: 10.1167/iovs.66.3.62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
Purpose To functionally evaluate novel human sequence-derived candidate genes and variants for unsolved ocular congenital cranial dysinnervation disorders (oCCDDs). Methods Through exome and genome sequencing of a genetically unsolved human oCCDD cohort, we previously reported the identification of variants in many candidate genes. Here, we describe a parallel study that prioritized a subset of these genes (43 human genes, 57 zebrafish genes) using a G0 CRISPR/Cas9-based knockout assay in zebrafish and generated F2 germline mutants for 17. We tested the functionality of variants of uncertain significance in known and novel candidate transcription factor-encoding genes through protein binding microarrays. Results We first demonstrated the feasibility of the G0 screen by targeting known oCCDD genes phox2a and mafba. Approximately 70% to 90% of gene-targeted G0 zebrafish embryos recapitulated germline homozygous null-equivalent phenotypes. Using this approach, we then identified three novel candidate oCCDD genes (SEMA3F, OLIG2, and FRMD4B) with putative contributions to human and zebrafish cranial motor development. In addition, protein binding microarrays demonstrated reduced or abolished DNA binding of human variants of uncertain significance in known and novel sequence-derived transcription factors PHOX2A (p.(Trp137Cys)), MAFB (p.(Glu223Lys)), and OLIG2 (p.(Arg156Leu)). Conclusions This study nominates three strong novel candidate oCCDD genes (SEMA3F, OLIG2, and FRMD4B) and supports the functionality and putative pathogenicity of transcription factor candidate variants PHOX2A p.(Trp137Cys), MAFB p.(Glu223Lys), and OLIG2 p.(Arg156Leu). Our findings support that G0 loss-of-function screening in zebrafish can be coupled with human sequence analysis and protein binding microarrays to aid in prioritizing oCCDD candidate genes/variants.
Collapse
Affiliation(s)
- Julie A. Jurgens
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts, United States
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, United States
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States
| | - Paola M. Matos Ruiz
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Jessica King
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Emma E. Foster
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Lindsay Berube
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Wai-Man Chan
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts, United States
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, United States
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States
| | - Brenda J. Barry
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts, United States
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, United States
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States
| | - Raehoon Jeong
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States
- Bioinformatics and Integrative Genomics Graduate Program, Harvard University, Cambridge, Massachusetts, United States
| | - Elisabeth Rothman
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Mary C. Whitman
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts, United States
- Department of Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, United States
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Sarah MacKinnon
- Department of Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, United States
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Cristina Rivera-Quiles
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Brandon M. Pratt
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Teresa Easterbrooks
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Fiona M. Mensching
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Silvio Alessandro Di Gioia
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts, United States
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, United States
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States
- Regeneron Pharmaceuticals, Tarrytown, New York, United States
| | - Lynn Pais
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Eleina M. England
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Teresa de Berardinis
- Department of Ophthalmologic Sciences, Faculty of Medicine and Surgery, University “Federico II”, Naples, Italy
| | - Adriano Magli
- Department of Ophthalmologic Sciences, Faculty of Medicine and Surgery, University “Federico II”, Naples, Italy
| | - Feray Koc
- Department of Ophthalmology, Faculty of Medicine, Izmir Katip Celebi University, Izmır, Turkey
| | - Kazuhide Asakawa
- Neurobiology and Pathology Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics; Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka, Japan
| | - Anne O'Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - David G. Hunter
- Department of Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, United States
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Caroline D. Robson
- Division of Neuroradiology, Department of Radiology, Boston Children's Hospital, Boston, Massachusetts, United States
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, United States
| | - Martha L. Bulyk
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States
- Bioinformatics and Integrative Genomics Graduate Program, Harvard University, Cambridge, Massachusetts, United States
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Elizabeth C. Engle
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts, United States
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, United States
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States
- Department of Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, United States
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
2
|
Leary P, Bellegarda C, Quainoo C, Goldblatt D, Rosti B, Schoppik D. Sensation is dispensable for the maturation of the vestibulo-ocular reflex. Science 2025; 387:85-90. [PMID: 39745953 DOI: 10.1126/science.adr9982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/06/2024] [Indexed: 01/04/2025]
Abstract
Vertebrates stabilize gaze using a neural circuit that transforms sensed instability into compensatory counterrotation of the eyes. Sensory feedback tunes this vestibulo-ocular reflex throughout life. We studied the functional development of vestibulo-ocular reflex circuit components in the larval zebrafish, with and without sensation. Blind fish stabilize gaze normally, and neural responses to body tilts mature before behavior. In contrast, synapses between motor neurons and the eye muscles mature with a time course similar to behavioral maturation. Larvae without vestibular sensory experience, but with mature neuromuscular junctions, had a strong vestibulo-ocular reflex. Development of the neuromuscular junction, and not sensory experience, therefore determines the rate of maturation of an ancient behavior.
Collapse
Affiliation(s)
- Paige Leary
- Department of Otolaryngology, Department of Neuroscience and Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA
| | - Celine Bellegarda
- Department of Otolaryngology, Department of Neuroscience and Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA
| | - Cheryl Quainoo
- Department of Otolaryngology, Department of Neuroscience and Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA
| | - Dena Goldblatt
- Department of Otolaryngology, Department of Neuroscience and Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Başak Rosti
- Department of Otolaryngology, Department of Neuroscience and Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA
| | - David Schoppik
- Department of Otolaryngology, Department of Neuroscience and Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
3
|
Goldblatt D, Rosti B, Hamling KR, Leary P, Panchal H, Li M, Gelnaw H, Huang S, Quainoo C, Schoppik D. Motor neurons are dispensable for the assembly of a sensorimotor circuit for gaze stabilization. eLife 2024; 13:RP96893. [PMID: 39565353 DOI: 10.7554/elife.96893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
Sensorimotor reflex circuits engage distinct neuronal subtypes, defined by precise connectivity, to transform sensation into compensatory behavior. Whether and how motor neuron populations specify the subtype fate and/or sensory connectivity of their pre-motor partners remains controversial. Here, we discovered that motor neurons are dispensable for proper connectivity in the vestibular reflex circuit that stabilizes gaze. We first measured activity following vestibular sensation in pre-motor projection neurons after constitutive loss of their extraocular motor neuron partners. We observed normal responses and topography indicative of unchanged functional connectivity between sensory neurons and projection neurons. Next, we show that projection neurons remain anatomically and molecularly poised to connect appropriately with their downstream partners. Lastly, we show that the transcriptional signatures that typify projection neurons develop independently of motor partners. Our findings comprehensively overturn a long-standing model: that connectivity in the circuit for gaze stabilization is retrogradely determined by motor partner-derived signals. By defining the contribution of motor neurons to specification of an archetypal sensorimotor circuit, our work speaks to comparable processes in the spinal cord and advances our understanding of principles of neural development.
Collapse
Affiliation(s)
- Dena Goldblatt
- Department of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine, New York, United States
- Center for Neural Science, New York University, New York, United States
| | - Basak Rosti
- Department of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine, New York, United States
| | - Kyla Rose Hamling
- Department of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine, New York, United States
| | - Paige Leary
- Department of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine, New York, United States
| | - Harsh Panchal
- Department of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine, New York, United States
| | - Marlyn Li
- Department of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine, New York, United States
- Center for Neural Science, New York University, New York, United States
| | - Hannah Gelnaw
- Department of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine, New York, United States
| | - Stephanie Huang
- Department of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine, New York, United States
- Center for Neural Science, New York University, New York, United States
| | - Cheryl Quainoo
- Department of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine, New York, United States
| | - David Schoppik
- Department of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine, New York, United States
| |
Collapse
|
4
|
Jurgens JA, Matos Ruiz PM, King J, Foster EE, Berube L, Chan WM, Barry BJ, Jeong R, Rothman E, Whitman MC, MacKinnon S, Rivera-Quiles C, Pratt BM, Easterbrooks T, Mensching FM, Di Gioia SA, Pais L, England EM, de Berardinis T, Magli A, Koc F, Asakawa K, Kawakami K, O’Donnell-Luria A, Hunter DG, Robson CD, Bulyk ML, Engle EC. Gene identification for ocular congenital cranial motor neuron disorders using human sequencing, zebrafish screening, and protein binding microarrays. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612713. [PMID: 39314366 PMCID: PMC11419015 DOI: 10.1101/2024.09.12.612713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Purpose To functionally evaluate novel human sequence-derived candidate genes and variants for unsolved ocular congenital cranial dysinnervation disorders (oCCDDs). Methods Through exome and genome sequencing of a genetically unsolved human oCCDD cohort, we previously identified variants in 80 strong candidate genes. Here, we further prioritized a subset of these (43 human genes, 57 zebrafish genes) using a G0 CRISPR/Cas9-based knockout assay in zebrafish and generated F2 germline mutants for seventeen. We tested the functionality of variants of uncertain significance in known and novel candidate transcription factor-encoding genes through protein binding microarrays. Results We first demonstrated the feasibility of the G0 screen by targeting known oCCDD genes phox2a and mafba. 70-90% of gene-targeted G0 zebrafish embryos recapitulated germline homozygous null-equivalent phenotypes. Using this approach, we then identified three novel candidate oCCDD genes (SEMA3F, OLIG2, and FRMD4B) with putative contributions to human and zebrafish cranial motor development. In addition, protein binding microarrays demonstrated reduced or abolished DNA binding of human variants of uncertain significance in known and novel sequence-derived transcription factors PHOX2A (p.(Trp137Cys)), MAFB (p.(Glu223Lys)), and OLIG2 (p.(Arg156Leu)). Conclusions This study nominates three strong novel candidate oCCDD genes (SEMA3F, OLIG2, and FRMD4B) and supports the functionality and putative pathogenicity of transcription factor candidate variants PHOX2A p.(Trp137Cys), MAFB p.(Glu223Lys), and OLIG2 p.(Arg156Leu). Our findings support that G0 loss-of-function screening in zebrafish can be coupled with human sequence analysis and protein binding microarrays to aid in prioritizing oCCDD candidate genes/variants.
Collapse
Affiliation(s)
- Julie A. Jurgens
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Jessica King
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Emma E. Foster
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
| | - Lindsay Berube
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
| | - Wai-Man Chan
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Brenda J. Barry
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Raehoon Jeong
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Bioinformatics and Integrative Genomics Graduate Program, Harvard University, Cambridge, MA 02138, USA
| | - Elisabeth Rothman
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Mary C. Whitman
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Ophthalmology, Boston Children’s Hospital, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Sarah MacKinnon
- Department of Ophthalmology, Boston Children’s Hospital, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | | | - Brandon M. Pratt
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
| | | | | | - Silvio Alessandro Di Gioia
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Lynn Pais
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Eleina M. England
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Teresa de Berardinis
- Department of Ophthalmologic Sciences, Faculty of Medicine and Surgery, University “Federico II”, Naples, Italy
| | - Adriano Magli
- Department of Ophthalmologic Sciences, Faculty of Medicine and Surgery, University “Federico II”, Naples, Italy
| | - Feray Koc
- Department of Ophthalmology, Faculty of Medicine, Izmir Katip Celebi University, Izmir, Turkey
| | - Kazuhide Asakawa
- Neurobiology and Pathology Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics; Department of Genetics, Graduate University for Advanced Studies (SOKENDAI)
| | - Anne O’Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - David G. Hunter
- Department of Ophthalmology, Boston Children’s Hospital, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Caroline D. Robson
- Division of Neuroradiology, Department of Radiology, Boston Children’s Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Martha L. Bulyk
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Bioinformatics and Integrative Genomics Graduate Program, Harvard University, Cambridge, MA 02138, USA
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Elizabeth C. Engle
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Ophthalmology, Boston Children’s Hospital, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Fritzsch B. Evolution and development of extraocular motor neurons, nerves and muscles in vertebrates. Ann Anat 2024; 253:152225. [PMID: 38346566 PMCID: PMC11786961 DOI: 10.1016/j.aanat.2024.152225] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
The purpose of this review is to analyze the origin of ocular motor neurons, define the pattern of innervation of nerve fibers that project to the extraocular eye muscles (EOMs), describe congenital disorders that alter the development of ocular motor neurons, and provide an overview of vestibular pathway inputs to ocular motor nuclei. Six eye muscles are innervated by axons of three ocular motor neurons, the oculomotor (CNIII), trochlear (CNIV), and abducens (CNVI) neurons. Ocular motor neurons (CNIII) originate in the midbrain and innervate the ipsilateral orbit, except for the superior rectus and the levator palpebrae, which are contralaterally innervated. Trochlear motor neurons (CNIV) originate at the midbrain-hindbrain junction and innervate the contralateral superior oblique muscle. Abducens motor neurons (CNVI) originate variously in the hindbrain of rhombomeres r4-6 that innervate the posterior (or lateral) rectus muscle and innervate the retractor bulbi. Genes allow a distinction between special somatic (CNIII, IV) and somatic (CNVI) ocular motor neurons. Development of ocular motor neurons and their axonal projections to the EOMs may be derailed by various genetic causes, resulting in the congenital cranial dysinnervation disorders. The ocular motor neurons innervate EOMs while the vestibular nuclei connect with the midbrain-brainstem motor neurons.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Department of Neurological Sciences, University of Nebraska Medical Center, NE, USA.
| |
Collapse
|
6
|
Goldblatt D, Rosti B, Hamling KR, Leary P, Panchal H, Li M, Gelnaw H, Huang S, Quainoo C, Schoppik D. Motor neurons are dispensable for the assembly of a sensorimotor circuit for gaze stabilization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577261. [PMID: 38328255 PMCID: PMC10849732 DOI: 10.1101/2024.01.25.577261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Sensorimotor reflex circuits engage distinct neuronal subtypes, defined by precise connectivity, to transform sensation into compensatory behavior. Whether and how motor neuron populations specify the subtype fate and/or sensory connectivity of their pre-motor partners remains controversial. Here, we discovered that motor neurons are dispensable for proper connectivity in the vestibular reflex circuit that stabilizes gaze. We first measured activity following vestibular sensation in pre-motor projection neurons after constitutive loss of their extraocular motor neuron partners. We observed normal responses and topography indicative of unchanged functional connectivity between sensory neurons and projection neurons. Next, we show that projection neurons remain anatomically and molecularly poised to connect appropriately with their downstream partners. Lastly, we show that the transcriptional signatures that typify projection neurons develop independently of motor partners. Our findings comprehensively overturn a long-standing model: that connectivity in the circuit for gaze stabilization is retrogradely determined by motor partner-derived signals. By defining the contribution of motor neurons to specification of an archetypal sensorimotor circuit, our work speaks to comparable processes in the spinal cord and advances our understanding of general principles of neural development.
Collapse
Affiliation(s)
- Dena Goldblatt
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Langone Health
- Center for Neural Science, New York University
| | - Başak Rosti
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Langone Health
| | - Kyla R Hamling
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Langone Health
| | - Paige Leary
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Langone Health
| | - Harsh Panchal
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Langone Health
| | - Marlyn Li
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Langone Health
- Center for Neural Science, New York University
| | - Hannah Gelnaw
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Langone Health
| | - Stephanie Huang
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Langone Health
- Center for Neural Science, New York University
| | - Cheryl Quainoo
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Langone Health
| | - David Schoppik
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Langone Health
- Lead Contact
| |
Collapse
|
7
|
Zhang R, Jia H, Chang Q, Zhang Z, Peng C, Ma Q, Liang Y, Yang S, Jiao Y. Two novel CHN1 variants identified in Duane retraction syndrome pedigrees disrupt development of ocular motor nerves in zebrafish. J Hum Genet 2024; 69:33-39. [PMID: 37853116 DOI: 10.1038/s10038-023-01201-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023]
Abstract
Duane retraction syndrome (DRS) is a rare congenital eye movement disorder causing by the dysplasia of abducens nerve, and has highly variable phenotype. MRI can reveal the endophenotype of DRS. Most DRS cases are sporadical and isolated, while some are familial or accompanied by other ocular disorders and systemic congenital abnormalities. CHN1 was the most common causative gene for familial DRS. Until now, 13 missense variants of CHN1 have been reported. In this study, we enrolled two unrelated pedigrees with DRS. Detailed clinical examinations, MRI, and the whole exome sequencing (WES) were performed to reveal their clinical and genetic characteristics. Patients from pedigree-1 presented with isolated DRS, and a novel heterozygous variant c.650 A > G, p. His217Arg was identified in CHN1 gene. Patients from pedigree-2 presented with classic DRS and abnormalities in auricle morphology, and the pedigree segregated another novel heterozygous CHN1 variant c.637 T > C, p. Phe213Leu. A variety of bioinformatics software predicted that the two variants had deleterious or disease-causing effects. After injecting of two mutant CHN1 mRNAs into zebrafish embryos, the dysplasia of ocular motor nerves (OMN) was observed. Our present findings expanded the phenotypic and genotypic spectrum of CHN1 related DRS, as well as provided new insights into the role of CHN1 in OMN development. Genetic testing is strongly recommended for patients with a DRS family history or accompanying systemic congenital abnormalities.
Collapse
Affiliation(s)
- Ranran Zhang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
- Beijing Ophthalmology and Visual Science Key Lab, 100730, Beijing, China
| | - Hongyan Jia
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
- Beijing Ophthalmology and Visual Science Key Lab, 100730, Beijing, China
| | - Qinglin Chang
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
| | - Zongrui Zhang
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
| | - Chuzhi Peng
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
- Beijing Ophthalmology and Visual Science Key Lab, 100730, Beijing, China
| | - Qian Ma
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
- Beijing Ophthalmology and Visual Science Key Lab, 100730, Beijing, China
| | - Yi Liang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
- Beijing Ophthalmology and Visual Science Key Lab, 100730, Beijing, China
| | - Shuyan Yang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, 100020, Beijing, China.
| | - Yonghong Jiao
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China.
- Beijing Ophthalmology and Visual Science Key Lab, 100730, Beijing, China.
| |
Collapse
|
8
|
Goldblatt D, Huang S, Greaney MR, Hamling KR, Voleti V, Perez-Campos C, Patel KB, Li W, Hillman EMC, Bagnall MW, Schoppik D. Neuronal birthdate reveals topography in a vestibular brainstem circuit for gaze stabilization. Curr Biol 2023; 33:1265-1281.e7. [PMID: 36924768 PMCID: PMC10089979 DOI: 10.1016/j.cub.2023.02.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/03/2023] [Accepted: 02/15/2023] [Indexed: 03/17/2023]
Abstract
Across the nervous system, neurons with similar attributes are topographically organized. This topography reflects developmental pressures. Oddly, vestibular (balance) nuclei are thought to be disorganized. By measuring activity in birthdated neurons, we revealed a functional map within the central vestibular projection nucleus that stabilizes gaze in the larval zebrafish. We first discovered that both somatic position and stimulus selectivity follow projection neuron birthdate. Next, with electron microscopy and loss-of-function assays, we found that patterns of peripheral innervation to projection neurons were similarly organized by birthdate. Finally, birthdate revealed spatial patterns of axonal arborization and synapse formation to projection neuron outputs. Collectively, we find that development reveals previously hidden organization to the input, processing, and output layers of a highly conserved vertebrate sensorimotor circuit. The spatial and temporal attributes we uncover constrain the developmental mechanisms that may specify the fate, function, and organization of vestibulo-ocular reflex neurons. More broadly, our data suggest that, like invertebrates, temporal mechanisms may assemble vertebrate sensorimotor architecture.
Collapse
Affiliation(s)
- Dena Goldblatt
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10004, USA
| | - Stephanie Huang
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10004, USA
| | - Marie R Greaney
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; University of Chicago, Chicago, IL 60637, USA
| | - Kyla R Hamling
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Venkatakaushik Voleti
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Citlali Perez-Campos
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Kripa B Patel
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Wenze Li
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Elizabeth M C Hillman
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Martha W Bagnall
- Department of Neuroscience, Washington University, St. Louis, MO 63130, USA
| | - David Schoppik
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
9
|
Carretero-Rodriguez L, Guðjónsdóttir R, Poparic I, Reilly ML, Chol M, Bianco IH, Chiapello M, Feret R, Deery MJ, Guthrie S. The Rac-GAP alpha2-Chimaerin Signals via CRMP2 and Stathmins in the Development of the Ocular Motor System. J Neurosci 2021; 41:6652-6672. [PMID: 34168008 PMCID: PMC8336708 DOI: 10.1523/jneurosci.0983-19.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 11/21/2022] Open
Abstract
A precise sequence of axon guidance events is required for the development of the ocular motor system. Three cranial nerves grow toward, and connect with, six extraocular muscles in a stereotyped pattern, to control eye movements. The signaling protein alpha2-chimaerin (α2-CHN) plays a pivotal role in the formation of the ocular motor system; mutations in CHN1, encoding α2-CHN, cause the human eye movement disorder Duane Retraction Syndrome (DRS). Our research has demonstrated that the manipulation of α2-chn signaling in the zebrafish embryo leads to ocular motor axon wiring defects, although the signaling cascades regulated by α2-chn remain poorly understood. Here, we demonstrate that several cytoskeletal regulatory proteins-collapsin response mediator protein 2 (CRMP2; encoded by the gene dpysl2), stathmin1, and stathmin 2-bind to α2-CHN. dpysl2, stathmin1, and especially stathmin2 are expressed by ocular motor neurons. We find that the manipulation of dpysl2 and of stathmins in zebrafish larvae leads to defects in both the axon wiring of the ocular motor system and the optokinetic reflex, impairing horizontal eye movements. Knockdowns of these molecules in zebrafish larvae of either sex caused axon guidance phenotypes that included defasciculation and ectopic branching; in some cases, these phenotypes were reminiscent of DRS. chn1 knock-down phenotypes were rescued by the overexpression of CRMP2 and STMN1, suggesting that these proteins act in the same signaling pathway. These findings suggest that CRMP2 and stathmins signal downstream of α2-CHN to orchestrate ocular motor axon guidance and to control eye movements.SIGNIFICANCE STATEMENT The precise control of eye movements is crucial for the life of vertebrate animals, including humans. In humans, this control depends on the arrangement of nerve wiring of the ocular motor system, composed of three nerves and six muscles, a system that is conserved across vertebrate phyla. Mutations in the protein alpha2-chimaerin have previously been shown to cause eye movement disorders (squint) and axon wiring defects in humans. Our recent work has unraveled how alpha2-chimaerin coordinates axon guidance of the ocular motor system in animal models. In this article, we demonstrate key roles for the proteins CRMP2 and stathmin 1/2 in the signaling pathway orchestrated by alpha2-chimaerin, potentially giving insight into the etiology of eye movement disorders in humans.
Collapse
Affiliation(s)
| | | | - Ivana Poparic
- Department of Developmental Neurobiology, King's College London, London SE1 1UL, United Kingdom
| | | | - Mary Chol
- Department of Developmental Neurobiology, King's College London, London SE1 1UL, United Kingdom
| | - Isaac H Bianco
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Marco Chiapello
- Cambridge Centre for Proteomics, Cambridge Systems Biology Centre, Department of Biochemistry, University of Cambridge, Cambridge CB2 1QR, United Kingdom
| | - Renata Feret
- Institute for Sustainable Plant Protection, National Research Council, 10135 Torino, Italy
| | - Michael J Deery
- Institute for Sustainable Plant Protection, National Research Council, 10135 Torino, Italy
| | - Sarah Guthrie
- School of Life Sciences, University of Sussex, Brighton BN7 9QG, United Kingdom
| |
Collapse
|
10
|
Bjorke B, Weller KG, Jones LE, Robinson GE, Vesser M, Chen L, Gage PJ, Gould TW, Mastick GS. Oculomotor nerve guidance and terminal branching requires interactions with differentiating extraocular muscles. Dev Biol 2021; 476:272-281. [PMID: 33905720 PMCID: PMC8284410 DOI: 10.1016/j.ydbio.2021.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 11/25/2022]
Abstract
Muscle function is dependent on innervation by the correct motor nerves. Motor nerves are composed of motor axons which extend through peripheral tissues as a compact bundle, then diverge to create terminal nerve branches to specific muscle targets. As motor nerves approach their targets, they undergo a transition where the fasciculated nerve halts further growth then after a pause, the nerve later initiates branching to muscles. This transition point is potentially an intermediate target or guidepost to present specific cellular and molecular signals for navigation. Here we describe the navigation of the oculomotor nerve and its association with developing muscles in mouse embryos. We found that the oculomotor nerve initially grew to the eye three days prior to the appearance of any extraocular muscles. The oculomotor axons spread to form a plexus within a mass of cells, which included precursors of extraocular muscles and other orbital tissues and expressed the transcription factor Pitx2. The nerve growth paused in the plexus for more than two days, persisting during primary extraocular myogenesis, with a subsequent phase in which the nerve branched out to specific muscles. To test the functional significance of the nerve contact with Pitx2+ cells in the plexus, we used two strategies to genetically ablate Pitx2+ cells or muscle precursors early in nerve development. The first strategy used Myf5-Cre-mediated expression of diphtheria toxin A to ablate muscle precursors, leading to loss of extraocular muscles. The oculomotor axons navigated to the eye to form the main nerve, but subsequently largely failed to initiate terminal branches. The second strategy studied Pitx2 homozygous mutants, which have early apoptosis of Pitx2-expressing precursor cells, including precursors for extraocular muscles and other orbital tissues. Oculomotor nerve fibers also grew to the eye, but failed to stop to form the plexus, instead grew long ectopic projections. These results show that neither Pitx2 function nor Myf5-expressing cells are required for oculomotor nerve navigation to the eye. However, Pitx2 function is required for oculomotor axons to pause growth in the plexus, while Myf5-expressing cells are required for terminal branch initiation.
Collapse
Affiliation(s)
- Brielle Bjorke
- Department of Biology, University of Nevada, Reno, NV, 89557, USA
| | | | - Lauren E Jones
- Department of Biology, University of Nevada, Reno, NV, 89557, USA
| | - G Eric Robinson
- Department of Biology, University of Nevada, Reno, NV, 89557, USA
| | - Michelle Vesser
- Department of Biology, University of Nevada, Reno, NV, 89557, USA
| | - Lisheng Chen
- Department of Ophthalmology & Visual Science, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Philip J Gage
- Department of Ophthalmology & Visual Science, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Thomas W Gould
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, United States
| | - Grant S Mastick
- Department of Biology, University of Nevada, Reno, NV, 89557, USA.
| |
Collapse
|
11
|
Zhao H, Wang L, Wang S, Chen X, Liang M, Zhang X, Wang J, Xu X. CHN1 promotes epithelial-mesenchymal transition via the Akt/GSK-3β/Snail pathway in cervical carcinoma. J Transl Med 2021; 19:295. [PMID: 34238315 PMCID: PMC8264971 DOI: 10.1186/s12967-021-02963-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/25/2021] [Indexed: 12/02/2022] Open
Abstract
Background Metastasis and invasion are crucial in determining the mortality of cervical carcinoma (CC) patients. The epithelial–mesenchymal transition (EMT) is now a universal explanation for the mechanisms of tumor metastasis. Α-chimeric protein (α-chimaerin, CHN1) plays an important role in the regulation of signal transduction and development. However, the molecular regulatory relationships between CHN1 and CC progression in relation to EMT have not yet been identified. Methods The expression of CHN1 in CC tissues, adjacent tissues, and lymph node metastases from CC patients was detected by immunohistochemistry. Upregulation and knockdown of CHN1 were achieved by transfection of CC cells. The effect of CHN1 on cell proliferation was determined by CCK-8 and plate clone formation assays. Changes in migration and invasion capabilities were evaluated using scratch migration and transwell invasion assays. The effect of CHN1 overexpression and interference on xenograft tumor growth was determined by tumor weight and pathological analyses. The expression of EMT-related mRNAs was measured by qRT-PCR in transfected CC cells. EMT-related proteins and Akt/GSK-3β/Snail signaling pathway-related proteins were also evaluated by western blotting. Results CHN1 was overexpressed in CC tissues and was associated with lymph node metastasis and low survival in CC patients. Overexpression of CHN1 promoted cell proliferation, migration, and invasion in CC cells. In contrast, silencing of CHN1 inhibited these phenomena. Overexpression of CHN1 promoted tumor formation in an in vivo xenograft tumor mouse model, with increased tumor volumes and weights. In addition, CHN1 induced the expression of EMT-related transcription factors, accompanied by the decreased expression of epithelial markers and increased expression of mesenchymal markers. The Akt/GSK-3β/Snail signaling pathway was activated by overexpression of CHN1 in vitro, and activation of this pathway was inhibited by the signaling pathway inhibitor LY294002. Conclusion These results suggest that CHN1 promotes the development and progression of cervical carcinoma via the Akt/GSK-3β/Snail pathway by inducing EMT. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02963-7.
Collapse
Affiliation(s)
- Haoqi Zhao
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.,Reproductive Physiology Laboratory, National Research Institute for Family Planning, Beijing, 100081, China.,National Engineering and Research Center of Continuous Casting Technology, China Iron and Steel Research Institute Group, Beijing, 100081, China
| | - Lan Wang
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215126, Jiangsu, China
| | - Shufang Wang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.,Reproductive Physiology Laboratory, National Research Institute for Family Planning, Beijing, 100081, China.,Department of Forensic Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Xihua Chen
- Reproductive Physiology Laboratory, National Research Institute for Family Planning, Beijing, 100081, China
| | - Min Liang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.,Reproductive Physiology Laboratory, National Research Institute for Family Planning, Beijing, 100081, China
| | - Xin Zhang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.,Reproductive Physiology Laboratory, National Research Institute for Family Planning, Beijing, 100081, China
| | - Jiedong Wang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.,Reproductive Physiology Laboratory, National Research Institute for Family Planning, Beijing, 100081, China
| | - Xiangbo Xu
- Reproductive Physiology Laboratory, National Research Institute for Family Planning, Beijing, 100081, China.
| |
Collapse
|
12
|
Wu MY, Carbo-Tano M, Mirat O, Lejeune FX, Roussel J, Quan FB, Fidelin K, Wyart C. Spinal sensory neurons project onto the hindbrain to stabilize posture and enhance locomotor speed. Curr Biol 2021; 31:3315-3329.e5. [PMID: 34146485 DOI: 10.1016/j.cub.2021.05.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 03/12/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022]
Abstract
In the spinal cord, cerebrospinal fluid-contacting neurons (CSF-cNs) are GABAergic interoceptive sensory neurons that detect spinal curvature via a functional coupling with the Reissner fiber. This mechanosensory system has recently been found to be involved in spine morphogenesis and postural control but the underlying mechanisms are not fully understood. In zebrafish, CSF-cNs project an ascending and ipsilateral axon reaching two to six segments away. Rostralmost CSF-cNs send their axons ipsilaterally into the hindbrain, a brain region containing motor nuclei and reticulospinal neurons (RSNs), which send descending motor commands to spinal circuits. Until now, the synaptic connectivity of CSF-cNs has only been investigated in the spinal cord, where they synapse onto motor neurons and premotor excitatory interneurons. The identity of CSF-cN targets in the hindbrain and the behavioral relevance of these sensory projections from the spinal cord to the hindbrain are unknown. Here, we provide anatomical and molecular evidence that rostralmost CSF-cNs synapse onto the axons of large RSNs including Mauthner cells and V2a neurons. Functional anatomy and optogenetically assisted mapping reveal that rostral CSF-cNs also synapse onto the soma and dendrites of cranial motor neurons innervating hypobranchial muscles. During acousto-vestibular evoked escape responses, ablation of rostralmost CSF-cNs results in a weaker escape response with a decreased C-bend amplitude, lower speed, and deficient postural control. Our study demonstrates that spinal sensory feedback enhances speed and stabilizes posture, and reveals a novel spinal gating mechanism acting on the output of descending commands sent from the hindbrain to the spinal cord.
Collapse
Affiliation(s)
- Ming-Yue Wu
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France
| | - Martin Carbo-Tano
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France.
| | - Olivier Mirat
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France
| | - Francois-Xavier Lejeune
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France
| | - Julian Roussel
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France
| | - Feng B Quan
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France
| | - Kevin Fidelin
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France
| | - Claire Wyart
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France.
| |
Collapse
|
13
|
Abstract
Abnormalities in cranial motor nerve development cause paralytic strabismus syndromes, collectively referred to as congenital cranial dysinnervation disorders, in which patients cannot fully move their eyes. These disorders can arise through one of two mechanisms: (a) defective motor neuron specification, usually by loss of a transcription factor necessary for brainstem patterning, or (b) axon growth and guidance abnormalities of the oculomotor, trochlear, and abducens nerves. This review focuses on our current understanding of axon guidance mechanisms in the cranial motor nerves and how disease-causing mutations disrupt axon targeting. Abnormalities of axon growth and guidance are often limited to a single nerve or subdivision, even when the causative gene is ubiquitously expressed. Additionally, when one nerve is absent, its normal target muscles attract other motor neurons. Study of these disorders highlights the complexities of axon guidance and how each population of neurons uses a unique but overlapping set of axon guidance pathways. Expected final online publication date for the Annual Review of Vision Science, Volume 7 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Mary C Whitman
- Department of Ophthalmology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA;
| |
Collapse
|
14
|
Sun J, Zhu X, Zhao Y, Zhou Q, Qi R, Liu H. CHN1 is a Novel Prognostic Marker for Diffuse Large B-Cell Lymphoma. Pharmgenomics Pers Med 2021; 14:397-408. [PMID: 33833551 PMCID: PMC8021264 DOI: 10.2147/pgpm.s301718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Diffuse large B-cell lymphoma (DLBCL) is the most common B-cell malignancy. Thirty to forty percent of DLBCL patients still experience relapse or develop refractory disease even with standard immunochemotherapy, leading to a poor prognosis. Currently, although several gene-based classification methods can be used to predict the prognosis of DLBCL, some patients are still unable to be classified. This study was performed to identify a novel prognostic biomarker for DLBCL. PATIENTS AND METHODS A total of 1850 B-cell non-Hodgkin lymphoma (B-NHL) patients in 8 independent datasets with microarray gene expression profiles were retrieved from the Gene Expression Omnibus (GEO) database and Lymphoma/Leukemia Molecular Profiling Project (LLMPP). The candidate genes were selected through three filters in a strict pipeline. Survival analysis was performed in two independent datasets of patients with both gene expression data and clinical information. Gene set enrichment analysis (GSEA) and the CIBERSORT algorithm were used to explore the biological functions of the genes. RESULTS We identified 6 candidate genes associated with the clinical outcome of DLBCL patients: CHN1, CD3D, CLU, ICOS, KLRB1 and LAT. Unlike the other five genes, CHN1 has not been previously reported to be implicated in lymphoma. We also observed that CHN1 had prognostic significance in important clinical subgroups; in particular, high CHN1 expression was significantly related to good outcomes in DLBCL patients with the germinal center B-cell-like (GCB) subtype, stage III-IV, or an International Prognostic Index (IPI) score > 2. Multivariate Cox regression analysis of the two datasets showed that CHN1 was an independent prognostic factor for DLBCL. Additionally, GSEA and CIBERSORT indicated that CHN1 was correlated with cell adhesion and T cell immune infiltration. CONCLUSION Our data indicate for the first time that high CHN1 expression is associated with favorable outcomes in DLBCL patients, suggesting its potential utility as a prognostic marker in DLBCL.
Collapse
Affiliation(s)
- Jie Sun
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Xiaoquan Zhu
- The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Yanyang Zhao
- The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Qi Zhou
- The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Ruomei Qi
- The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Hui Liu
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
15
|
Lysosomal Function and Axon Guidance: Is There a Meaningful Liaison? Biomolecules 2021; 11:biom11020191. [PMID: 33573025 PMCID: PMC7911486 DOI: 10.3390/biom11020191] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 01/25/2023] Open
Abstract
Axonal trajectories and neural circuit activities strongly rely on a complex system of molecular cues that finely orchestrate the patterning of neural commissures. Several of these axon guidance molecules undergo continuous recycling during brain development, according to incompletely understood intracellular mechanisms, that in part rely on endocytic and autophagic cascades. Based on their pivotal role in both pathways, lysosomes are emerging as a key hub in the sophisticated regulation of axonal guidance cue delivery, localization, and function. In this review, we will attempt to collect some of the most relevant research on the tight connection between lysosomal function and axon guidance regulation, providing some proof of concepts that may be helpful to understanding the relation between lysosomal storage disorders and neurodegenerative diseases.
Collapse
|
16
|
Knüfer A, Diana G, Walsh GS, Clarke JD, Guthrie S. Cadherins regulate nuclear topography and function of developing ocular motor circuitry. eLife 2020; 9:56725. [PMID: 33001027 PMCID: PMC7599068 DOI: 10.7554/elife.56725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 09/30/2020] [Indexed: 12/30/2022] Open
Abstract
In the vertebrate central nervous system, groups of functionally related neurons, including cranial motor neurons of the brainstem, are frequently organised as nuclei. The molecular mechanisms governing the emergence of nuclear topography and circuit function are poorly understood. Here we investigate the role of cadherin-mediated adhesion in the development of zebrafish ocular motor (sub)nuclei. We find that developing ocular motor (sub)nuclei differentially express classical cadherins. Perturbing cadherin function in these neurons results in distinct defects in neuronal positioning, including scattering of dorsal cells and defective contralateral migration of ventral subnuclei. In addition, we show that cadherin-mediated interactions between adjacent subnuclei are critical for subnucleus position. We also find that disrupting cadherin adhesivity in dorsal oculomotor neurons impairs the larval optokinetic reflex, suggesting that neuronal clustering is important for co-ordinating circuit function. Our findings reveal that cadherins regulate distinct aspects of cranial motor neuron positioning and establish subnuclear topography and motor function.
Collapse
Affiliation(s)
- Athene Knüfer
- Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| | - Giovanni Diana
- Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| | - Gregory S Walsh
- Department of Biology, Virginia Commonwealth University, Richmond, United States
| | - Jonathan Dw Clarke
- Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| | - Sarah Guthrie
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
17
|
Protocadherin-Mediated Cell Repulsion Controls the Central Topography and Efferent Projections of the Abducens Nucleus. Cell Rep 2020; 24:1562-1572. [PMID: 30089266 DOI: 10.1016/j.celrep.2018.07.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/31/2018] [Accepted: 07/06/2018] [Indexed: 11/21/2022] Open
Abstract
Cranial motor nuclei in the brainstem innervate diverse types of head and neck muscles. Failure in establishing these neuromuscular connections causes congenital cranial dysinnervation disorders (CCDDs) characterized by abnormal craniofacial movements. However, mechanisms that link cranial motor nuclei to target muscles are poorly understood at the molecular level. Here, we report that protocadherin-mediated repulsion mediates neuromuscular connection in the ocular motor system in zebrafish. We identify pools of abducens motor neurons that are topographically arranged according to soma size and convergently innervate a single muscle. Disruptions of Duane retraction syndrome-associated transcription factors reveal that these neurons require Mafba/MAFB, but not Sall4/SALL4, for differentiation. Furthermore, genetic perturbations of Pcdh17/protocadherin-17 result in defective axon growth and soma clumping, thereby abolishing neuromuscular connectivity. Our results suggest that protocadherin-mediated repulsion forms the central topography and efferent projection pattern of the abducens nucleus following Mafba-dependent specification and imply potential involvement of protocadherins in CCDD etiology.
Collapse
|
18
|
Fujiki R, Lee JY, Jurgens JA, Whitman MC, Engle EC. Isolation and Culture of Oculomotor, Trochlear, and Spinal Motor Neurons from Prenatal Islmn:GFP Transgenic Mice. J Vis Exp 2019:10.3791/60440. [PMID: 31789317 PMCID: PMC7036286 DOI: 10.3791/60440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Oculomotor neurons (CN3s) and trochlear neurons (CN4s) exhibit remarkable resistance to degenerative motor neuron diseases such as amyotrophic lateral sclerosis (ALS) when compared to spinal motor neurons (SMNs). The ability to isolate and culture primary mouse CN3s, CN4s, and SMNs would provide an approach to study mechanisms underlying this selective vulnerability. To date, most protocols use heterogeneous cell cultures, which can confound the interpretation of experimental outcomes. To minimize the problems associated with mixed-cell populations, pure cultures are indispensable. Here, the first protocol describes in detail how to efficiently purify and cultivate CN3s/CN4s alongside SMNs counterparts from the same embryos using embryonic day 11.5 (E11.5) IslMN:GFP transgenic mouse embryos. The protocol provides details on the tissue dissection and dissociation, FACS-based cell isolation, and in vitro cultivation of cells from CN3/CN4 and SMN nuclei. This protocol adds a novel in vitro CN3/CN4 culture system to existing protocols and simultaneously provides a pure species- and age-matched SMN culture for comparison. Analyses focusing on the morphological, cellular, molecular, and electrophysiological characteristics of motor neurons are feasible in this culture system. This protocol will enable research into the mechanisms that define motor neuron development, selective vulnerability, and disease.
Collapse
Affiliation(s)
- Ryosuke Fujiki
- Department of Neurology, Boston Children's Hospital; FM Kirby Neurobiology Center, Boston Children's Hospital; Department of Neurology, Harvard Medical School; Medical Genetics Training Program, Harvard Medical School; Department of Neurology, Kokura Memorial Hospital
| | - Joun Y Lee
- Department of Neurology, Boston Children's Hospital; FM Kirby Neurobiology Center, Boston Children's Hospital; Department of Genetics, Albert Einstein College of Medicine
| | - Julie A Jurgens
- Department of Neurology, Boston Children's Hospital; FM Kirby Neurobiology Center, Boston Children's Hospital; Department of Neurology, Harvard Medical School; Broad Institute of M.I.T. and Harvard
| | - Mary C Whitman
- FM Kirby Neurobiology Center, Boston Children's Hospital; Department of Ophthalmology, Boston Children's Hospital; Department of Ophthalmology, Harvard Medical School
| | - Elizabeth C Engle
- Department of Neurology, Boston Children's Hospital; FM Kirby Neurobiology Center, Boston Children's Hospital; Department of Neurology, Harvard Medical School; Medical Genetics Training Program, Harvard Medical School; Department of Ophthalmology, Boston Children's Hospital; Department of Ophthalmology, Harvard Medical School; Broad Institute of M.I.T. and Harvard; Howard Hughes Medical Institute;
| |
Collapse
|
19
|
Whitman MC, Bell JL, Nguyen EH, Engle EC. Ex Vivo Oculomotor Slice Culture from Embryonic GFP-Expressing Mice for Time-Lapse Imaging of Oculomotor Nerve Outgrowth. J Vis Exp 2019. [PMID: 31380850 DOI: 10.3791/59911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Accurate eye movements are crucial for vision, but the development of the ocular motor system, especially the molecular pathways controlling axon guidance, has not been fully elucidated. This is partly due to technical limitations of traditional axon guidance assays. To identify additional axon guidance cues influencing the oculomotor nerve, an ex vivo slice assay to image the oculomotor nerve in real-time as it grows towards the eye was developed. E10.5 IslMN-GFP embryos are used to generate ex vivo slices by embedding them in agarose, slicing on a vibratome, then growing them in a microscope stage-top incubator with time-lapse photomicroscopy for 24-72 h. Control slices recapitulate the in vivo timing of outgrowth of axons from the nucleus to the orbit. Small molecule inhibitors or recombinant proteins can be added to the culture media to assess the role of different axon guidance pathways. This method has the advantages of maintaining more of the local microenvironment through which axons traverse, not axotomizing the growing axons, and assessing the axons at multiple points along their trajectory. It can also identify effects on specific subsets of axons. For example, inhibition of CXCR4 causes axons still within the midbrain to grow dorsally rather than ventrally, but axons that have already exited ventrally are not affected.
Collapse
Affiliation(s)
- Mary C Whitman
- Department of Ophthalmology, Boston Children's Hospital; Department of Ophthalmology, Harvard Medical School; F.M. Kirby Neurobiology Center, Boston Children's Hospital;
| | - Jessica L Bell
- Department of Ophthalmology, Boston Children's Hospital; F.M. Kirby Neurobiology Center, Boston Children's Hospital
| | - Elaine H Nguyen
- Department of Ophthalmology, Boston Children's Hospital; F.M. Kirby Neurobiology Center, Boston Children's Hospital
| | - Elizabeth C Engle
- Department of Ophthalmology, Boston Children's Hospital; Department of Ophthalmology, Harvard Medical School; F.M. Kirby Neurobiology Center, Boston Children's Hospital; Department of Neurology, Boston Children's Hospital; Department of Neurology, Harvard Medical School; Howard Hughes Medical Institute
| |
Collapse
|
20
|
Whitman MC, Engle EC. Ocular congenital cranial dysinnervation disorders (CCDDs): insights into axon growth and guidance. Hum Mol Genet 2017; 26:R37-R44. [PMID: 28459979 DOI: 10.1093/hmg/ddx168] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 04/27/2017] [Indexed: 12/11/2022] Open
Abstract
Unraveling the genetics of the paralytic strabismus syndromes known as congenital cranial dysinnervation disorders (CCDDs) is both informing physicians and their patients and broadening our understanding of development of the ocular motor system. Genetic mutations underlying ocular CCDDs alter either motor neuron specification or motor nerve development, and highlight the importance of modulations of cell signaling, cytoskeletal transport, and microtubule dynamics for axon growth and guidance. Here we review recent advances in our understanding of two CCDDs, congenital fibrosis of the extraocular muscles (CFEOM) and Duane retraction syndrome (DRS), and discuss what they have taught us about mechanisms of axon guidance and selective vulnerability. CFEOM presents with congenital ptosis and restricted eye movements, and can be caused by heterozygous missense mutations in the kinesin motor protein KIF21A or in the β-tubulin isotypes TUBB3 or TUBB2B. CFEOM-causing mutations in these genes alter protein function and result in axon growth and guidance defects. DRS presents with inability to abduct one or both eyes. It can be caused by decreased function of several transcription factors critical for abducens motor neuron identity, including MAFB, or by heterozygous missense mutations in CHN1, which encodes α2-chimaerin, a Rac-GAP GTPase that affects cytoskeletal dynamics. Examination of the orbital innervation in mice lacking Mafb has established that the stereotypical misinnervation of the lateral rectus by fibers of the oculomotor nerve in DRS is secondary to absence of the abducens nerve. Studies of a CHN1 mouse model have begun to elucidate mechanisms of selective vulnerability in the nervous system.
Collapse
Affiliation(s)
- Mary C Whitman
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Ophthalmology, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| | - Elizabeth C Engle
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Ophthalmology, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA.,Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
21
|
Katori S, Noguchi-Katori Y, Itohara S, Iwasato T. Spinal RacGAP α-Chimaerin Is Required to Establish the Midline Barrier for Proper Corticospinal Axon Guidance. J Neurosci 2017; 37:7682-7699. [PMID: 28747385 PMCID: PMC6596649 DOI: 10.1523/jneurosci.3123-16.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 05/11/2017] [Accepted: 06/27/2017] [Indexed: 12/17/2022] Open
Abstract
In the developing CNS, the midline barrier, which comprises guidance molecule-expressing midline glial somata and processes, plays a pivotal role in midline axon guidance. Accumulating evidence has revealed the molecular mechanisms by which the midline barrier ensures proper midline guidance for axons. In contrast, the mechanisms for establishing the midline barrier remain obscure. Here, we report that Rac-specific GTPase-activating protein (RacGAP) α-chimaerin is required for both axonal repulsion at and establishment of the midline barrier in the spinal cord. We generated cortex-specific and spinal-cord-specific α-chimaerin gene (Chn1) knock-out mice (Cx-Chn1KO and Sp-Chn1KO mice, respectively) and found that both showed aberrant corticospinal tract (CST) axon midline crossing in the spinal cord. Strikingly, Sp-Chn1KO mice had breaks (holes) in the ephrinB3(+) spinal midline barrier and EphA4(+) CST axons aberrantly crossed the midline through these holes. During normal embryonic development, EphA4(+) spinal cells are located in juxta-midline areas but are excluded from the midline. In contrast, in Chn1KO embryos, several EphA4(+) cells were aberrantly relocated into the midline and the midline barrier was broken around these cells. Similarly, the spinal cord midline of Epha4KO mice was invaded by juxta-midline EphA4 cells (i.e., Epha4 promoter-active cells) during the embryonic stage and holes were formed in the midline barrier. Juxta-midline EphA4 cells in the spinal cord expressed α-chimaerin. We propose that spinal α-chimaerin aids in establishing an intact spinal midline barrier by mediating juxta-midline EphA4(+) cell repulsion, thus preventing these cells from breaking into the ephrinB3(+) midline barrier.SIGNIFICANCE STATEMENT The midline barrier plays a critical role in midline axon guidance, which is fundamental to the formation of neural circuits that are responsible for proper left-right coordination of the body. Studies have revealed some of the mechanisms underlying how the midline barrier navigates axons. In contrast, the establishment of the midline barrier during embryonic development remains unclear. In this study, we determined that α-chimaerin is required for the formation of an intact midline barrier. Spinal-cord-specific α-chimaerin knock-out mice had spinal midline barriers with numerous breaks (holes), through which corticospinal axons aberrantly crossed the midline. We propose that α-chimaerin protects the midline barrier by mediating cell-repulsive signaling in juxta-midline cells, which prevents these cells from invading the midline.
Collapse
Affiliation(s)
- Shota Katori
- Division of Neurogenetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Yukiko Noguchi-Katori
- Division of Neurogenetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Shigeyoshi Itohara
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan, and
| | - Takuji Iwasato
- Division of Neurogenetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan,
- Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
22
|
Michalak SM, Whitman MC, Park JG, Tischfield MA, Nguyen EH, Engle EC. Ocular Motor Nerve Development in the Presence and Absence of Extraocular Muscle. Invest Ophthalmol Vis Sci 2017; 58:2388-2396. [PMID: 28437527 PMCID: PMC5403115 DOI: 10.1167/iovs.16-21268] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Purpose To spatially and temporally define ocular motor nerve development in the presence and absence of extraocular muscles (EOMs). Methods Myf5cre mice, which in the homozygous state lack EOMs, were crossed to an IslMN:GFP reporter line to fluorescently label motor neuron cell bodies and axons. Embryonic day (E) 11.5 to E15.5 wild-type and Myf5cre/cre:IslMN:GFP whole mount embryos and dissected orbits were imaged by confocal microscopy to visualize the developing oculomotor, trochlear, and abducens nerves in the presence and absence of EOMs. E11.5 and E18.5 brainstems were serially sectioned and stained for Islet1 to determine the fate of ocular motor neurons. Results At E11.5, all three ocular motor nerves in mutant embryos approached the orbit with a trajectory similar to that of wild-type. Subsequently, while wild-type nerves send terminal branches that contact target EOMs in a stereotypical pattern, the Myf5cre/cre ocular motor nerves failed to form terminal branches, regressed, and by E18.5 two-thirds of their corresponding motor neurons died. Comparisons between mutant and wild-type embryos revealed novel aspects of trochlear and oculomotor nerve development. Conclusions We delineated mouse ocular motor nerve spatial and temporal development in unprecedented detail. Moreover, we found that EOMs are not necessary for initial outgrowth and guidance of ocular motor axons from the brainstem to the orbit but are required for their terminal branching and survival. These data suggest that intermediate targets in the mesenchyme provide cues necessary for appropriate targeting of ocular motor axons to the orbit, while EOM cues are responsible for terminal branching and motor neuron survival.
Collapse
Affiliation(s)
- Suzanne M Michalak
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, United States 2F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts, United States 3Department of Neurology, Harvard Medical School, Boston, Massachusetts, United States 4University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States 5Howard Hughes Medical Institute, Chevy Chase, Maryland, United States
| | - Mary C Whitman
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts, United States 6Department of Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, United States 7Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Jong G Park
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, United States 2F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts, United States 3Department of Neurology, Harvard Medical School, Boston, Massachusetts, United States 5Howard Hughes Medical Institute, Chevy Chase, Maryland, United States 8Duke University School of Medicine, Durham, North Carolina, United States
| | - Max A Tischfield
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts, United States 3Department of Neurology, Harvard Medical School, Boston, Massachusetts, United States
| | - Elaine H Nguyen
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts, United States 6Department of Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Elizabeth C Engle
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, United States 2F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts, United States 3Department of Neurology, Harvard Medical School, Boston, Massachusetts, United States 5Howard Hughes Medical Institute, Chevy Chase, Maryland, United States 6Department of Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, United States 7Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
23
|
Chilton JK, Guthrie S. Axons get ahead: Insights into axon guidance and congenital cranial dysinnervation disorders. Dev Neurobiol 2017; 77:861-875. [DOI: 10.1002/dneu.22477] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 12/07/2016] [Accepted: 12/07/2016] [Indexed: 11/12/2022]
Affiliation(s)
- John K. Chilton
- Wellcome Wolfson Centre for Medical Research; University of Exeter Medical School, Wellcome-Wolfson Centre for Medical Research; Exeter EX2 5DW United Kingdom
| | - Sarah Guthrie
- School of Life Sciences; University of Sussex; Falmer Brighton, BN1 9QG
| |
Collapse
|
24
|
Nugent AA, Park JG, Wei Y, Tenney AP, Gilette NM, DeLisle MM, Chan WM, Cheng L, Engle EC. Mutant α2-chimaerin signals via bidirectional ephrin pathways in Duane retraction syndrome. J Clin Invest 2017; 127:1664-1682. [PMID: 28346224 DOI: 10.1172/jci88502] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 02/02/2017] [Indexed: 01/18/2023] Open
Abstract
Duane retraction syndrome (DRS) is the most common form of congenital paralytic strabismus in humans and can result from α2-chimaerin (CHN1) missense mutations. We report a knockin α2-chimaerin mouse (Chn1KI/KI) that models DRS. Whole embryo imaging of Chn1KI/KI mice revealed stalled abducens nerve growth and selective trochlear and first cervical spinal nerve guidance abnormalities. Stalled abducens nerve bundles did not reach the orbit, resulting in secondary aberrant misinnervation of the lateral rectus muscle by the oculomotor nerve. By contrast, Chn1KO/KO mice did not have DRS, and embryos displayed abducens nerve wandering distinct from the Chn1KI/KI phenotype. Murine embryos lacking EPH receptor A4 (Epha4KO/KO), which is upstream of α2-chimaerin in corticospinal neurons, exhibited similar abducens wandering that paralleled previously reported gait alterations in Chn1KO/KO and Epha4KO/KO adult mice. Findings from Chn1KI/KI Epha4KO/KO mice demonstrated that mutant α2-chimaerin and EphA4 have different genetic interactions in distinct motor neuron pools: abducens neurons use bidirectional ephrin signaling via mutant α2-chimaerin to direct growth, while cervical spinal neurons use only ephrin forward signaling, and trochlear neurons do not use ephrin signaling. These findings reveal a role for ephrin bidirectional signaling upstream of mutant α2-chimaerin in DRS, which may contribute to the selective vulnerability of abducens motor neurons in this disorder.
Collapse
|
25
|
Valdez CM, Murphy GG, Beg AA. The Rac-GAP alpha2-chimaerin regulates hippocampal dendrite and spine morphogenesis. Mol Cell Neurosci 2016; 75:14-26. [PMID: 27297944 DOI: 10.1016/j.mcn.2016.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/09/2016] [Accepted: 06/07/2016] [Indexed: 12/01/2022] Open
Abstract
Dendritic spines are fine neuronal processes where spatially restricted input can induce activity-dependent changes in one spine, while leaving neighboring spines unmodified. Morphological spine plasticity is critical for synaptic transmission and is thought to underlie processes like learning and memory. Significantly, defects in dendritic spine stability and morphology are common pathogenic features found in several neurodevelopmental and neuropsychiatric disorders. The remodeling of spines relies on proteins that modulate the underlying cytoskeleton, which is primarily composed of filamentous (F)-actin. The Rho-GTPase Rac1 is a major regulator of F-actin and is essential for the development and plasticity of dendrites and spines. However, the key molecules and mechanisms that regulate Rac1-dependent pathways at spines and synapses are not well understood. We have identified the Rac1-GTPase activating protein, α2-chimaerin, as a critical negative regulator of Rac1 in hippocampal neurons. The loss of α2-chimaerin significantly increases the levels of active Rac1 and induces the formation of aberrant polymorphic dendritic spines. Further, disruption of α2-chimaerin signaling simplifies dendritic arbor complexity and increases the presence of dendritic spines that appear poly-innervated. Our data suggests that α2-chimaerin serves as a "brake" to constrain Rac1-dependent signaling to ensure that the mature morphology of spines is maintained in response to network activity.
Collapse
Affiliation(s)
- Chris M Valdez
- Interdepartmental Program in Neuroscience, University of Michigan, Ann Arbor, MI 48109, United States
| | - Geoffrey G Murphy
- Interdepartmental Program in Neuroscience, University of Michigan, Ann Arbor, MI 48109, United States; Molecular and Behavioral Neuroscience Institute, Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Asim A Beg
- Interdepartmental Program in Neuroscience, University of Michigan, Ann Arbor, MI 48109, United States; Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
26
|
Greaney MR, Privorotskiy AE, D'Elia KP, Schoppik D. Extraocular motoneuron pools develop along a dorsoventral axis in zebrafish, Danio rerio. J Comp Neurol 2016; 525:65-78. [PMID: 27197595 PMCID: PMC5116274 DOI: 10.1002/cne.24042] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 12/24/2022]
Abstract
Both spatial and temporal cues determine the fate of immature neurons. A major challenge at the interface of developmental and systems neuroscience is to relate this spatiotemporal trajectory of maturation to circuit-level functional organization. This study examined the development of two extraocular motor nuclei (nIII and nIV), structures in which a motoneuron's identity, or choice of muscle partner, defines its behavioral role. We used retro-orbital dye fills, in combination with fluorescent markers for motoneuron location and birthdate, to probe spatial and temporal organization of the oculomotor (nIII) and trochlear (nIV) nuclei in the larval zebrafish. We describe a dorsoventral organization of the four nIII motoneuron pools, in which inferior and medial rectus motoneurons occupy dorsal nIII, while inferior oblique and superior rectus motoneurons occupy distinct divisions of ventral nIII. Dorsal nIII motoneurons are, moreover, born before motoneurons of ventral nIII and nIV. The order of neurogenesis can therefore account for the dorsoventral organization of nIII and may play a primary role in determining motoneuron identity. We propose that the temporal development of extraocular motoneurons plays a key role in assembling a functional oculomotor circuit. J. Comp. Neurol. 525:65-78, 2017. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marie R Greaney
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute New York University Langone School of Medicine, New York, New York, USA
| | - Ann E Privorotskiy
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute New York University Langone School of Medicine, New York, New York, USA
| | - Kristen P D'Elia
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute New York University Langone School of Medicine, New York, New York, USA
| | - David Schoppik
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute New York University Langone School of Medicine, New York, New York, USA
| |
Collapse
|
27
|
Couch G, Redman JE, Wernisch L, Newton R, Malhotra S, Dawsey SM, Lao-Sirieix P, Fitzgerald RC. The Discovery and Validation of Biomarkers for the Diagnosis of Esophageal Squamous Dysplasia and Squamous Cell Carcinoma. Cancer Prev Res (Phila) 2016; 9:558-66. [PMID: 27072986 DOI: 10.1158/1940-6207.capr-15-0379] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/11/2016] [Indexed: 02/07/2023]
Abstract
The 5-year survival rate of esophageal cancer is less than 10% in developing countries, where more than 90% of these cancers are esophageal squamous cell carcinomas (ESCC). Endoscopic screening is undertaken in high incidence areas. Biomarker analysis could reduce the subjectivity associated with histologic assessment of dysplasia and thus improve diagnostic accuracy. The aims of this study were therefore to identify biomarkers for esophageal squamous dysplasia and carcinoma. A publicly available dataset was used to identify genes with differential expression in ESCC compared with normal esophagus. Each gene was ranked by a support vector machine separation score. Expression profiles were examined, before validation by qPCR and IHC. We found that 800 genes were overexpressed in ESCC compared with normal esophagus (P < 10(-5)). Of the top 50 genes, 33 were expressed in ESCC epithelium and not in normal esophagus epithelium or stroma using the Protein Atlas website. These were taken to qPCR validation, and 20 genes were significantly overexpressed in ESCC compared with normal esophagus (P < 0.05). TNFAIP3 and CHN1 showed differential expression with IHC. TNFAIP3 expression increased gradually through normal esophagus, mild, moderate and severe dysplasia, and SCC (P < 0.0001). CHN1 staining was rarely present in the top third of normal esophagus epithelium and extended progressively towards the surface in mild, moderate, and severe dysplasia, and SCC (P < 0.0001). Two novel promising biomarkers for ESCC were identified, TNFAIP3 and CHN1. CHN1 and TNFAIP3 may improve diagnostic accuracy of screening methods for ESCC. Cancer Prev Res; 9(7); 558-66. ©2016 AACR.
Collapse
Affiliation(s)
- George Couch
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - James E Redman
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Lorenz Wernisch
- MRC Biostatistics Unit, Robinson Way, Cambridge, United Kingdom
| | - Richard Newton
- MRC Biostatistics Unit, Robinson Way, Cambridge, United Kingdom
| | - Shalini Malhotra
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Sanford M Dawsey
- Division of Cancer Epidemiology & Genetics, NCI, Bethesda, Maryland
| | - Pierre Lao-Sirieix
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Rebecca C Fitzgerald
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
28
|
α2-chimaerin is required for Eph receptor-class-specific spinal motor axon guidance and coordinate activation of antagonistic muscles. J Neurosci 2015; 35:2344-57. [PMID: 25673830 DOI: 10.1523/jneurosci.4151-14.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Axonal guidance involves extrinsic molecular cues that bind growth cone receptors and signal to the cytoskeleton through divergent pathways. Some signaling intermediates are deployed downstream of molecularly distinct axon guidance receptor families, but the scope of this overlap is unclear, as is the impact of embryonic axon guidance fidelity on adult nervous system function. Here, we demonstrate that the Rho-GTPase-activating protein α2-chimaerin is specifically required for EphA and not EphB receptor signaling in mouse and chick spinal motor axons. Reflecting this specificity, the loss of α2-chimaerin function disrupts the limb trajectory of extensor-muscle-innervating motor axons the guidance of which depends on EphA signaling. These embryonic defects affect coordinated contraction of antagonistic flexor-extensor muscles in the adult, indicating that accurate embryonic motor axon guidance is critical for optimal neuromuscular function. Together, our observations provide the first functional evidence of an Eph receptor-class-specific intracellular signaling protein that is required for appropriate neuromuscular connectivity.
Collapse
|