1
|
Moya-Díaz J, Simões P, Lagnado L. Substance P and dopamine form a "push-pull" system that diurnally regulates retinal gain. Curr Biol 2024; 34:5028-5039.e3. [PMID: 39419032 DOI: 10.1016/j.cub.2024.09.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/07/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024]
Abstract
The operation of the retina, like other brain circuits, is under modulatory control. One coordinator of changes in retinal function is dopamine, a neuromodulator released in a light-dependent way to adjust vision on a diurnal cycle. Here, we demonstrate that substance P is a similarly powerful retinal modulator that interacts with the dopamine system. By imaging glutamatergic synaptic transmission in larval zebrafish, we find that substance P decreases the contrast sensitivity of ON and OFF visual channels up to 8-fold, with suppression of visual signals being strongest through the "transient" pathway responding to higher frequencies. These actions are exerted in the morning, in large part by suppressing the amplification of visual signals by dopamine, but substance P is almost completely inactive in the afternoon. Modulation of retinal gain is accompanied by changes in patterns of vesicle release at the synapses of bipolar cells: increased gain shifts coding of stimulus strength from the rate of release events to their amplitude generated by a process of multivesicular release (MVR). Together, these actions of substance P reduce the flow of visual information, measured in bits, ∼3-fold. Thus, whereas dopamine "pushes" the retina to transmit information at higher rates in the afternoon, substance P acts in antiphase to suppress dopamine signaling and "pull down" information transmission in the morning.
Collapse
Affiliation(s)
- José Moya-Díaz
- Neuroscience, School of Life Sciences, University of Sussex, Sussex, Brighton BN19QG, UK
| | - Patrício Simões
- Neuroscience, School of Life Sciences, University of Sussex, Sussex, Brighton BN19QG, UK
| | - Leon Lagnado
- Neuroscience, School of Life Sciences, University of Sussex, Sussex, Brighton BN19QG, UK.
| |
Collapse
|
2
|
Lu Y, Tong M. Impact of red and blue monochromatic light on the visual system and dopamine pathways in juvenile zebrafish. BMC Ophthalmol 2024; 24:475. [PMID: 39482637 PMCID: PMC11529001 DOI: 10.1186/s12886-024-03742-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND The development of the zebrafish visual system is significantly influenced by exposure to monochromatic light, yet investigations into its effects during juvenile stages are lacking. This study evaluated the impacts of varying intensities and durations of red and blue monochromatic light on the visual system and dopamine pathways in juvenile zebrafish. METHODS Juvenile zebrafish were exposed to red (650 nm) and blue (440 nm, 460 nm) monochromatic lights over four days at intensities ranging from 500 to 10,000 lx, for durations of 6, 10, and 14 h daily. A control group was maintained under standard laboratory conditions. Post-exposure assessments included the optokinetic response (OKR), retinal structural analysis, ocular dopamine levels, and the expression of genes related to dopamine pathways (Th, Dat, and Mao). RESULTS (1) OKR enhancement was observed with increased 440 nm light intensity, while 460 nm and 650 nm light exposures showed initial improvements followed by declines at higher intensities. (2) Retinal thinning in the outer nuclear layer was observed under the most intense (10,000 lx for 14 h) light conditions in the 440 nm and 650 nm groups, while the 460 nm group remained unaffected. (3) Dopamine levels increased with higher intensities in the 440 nm group, whereas the 460 nm group exhibited initial increases followed by decreases. The 650 nm group displayed similar trends but were statistically insignificant compared to the control group. (4) Th expression increased with light intensity in the 440 nm group. Dat showed a rising and then declining pattern, and Mao expression significantly decreased. The 460 nm group exhibited similar patterns for Th and Dat to the behavioral observations, but an inverse pattern for Mao. The 650 nm group presented significant fluctuations in Th and Dat expressions, with pronounced variations in Mao. CONCLUSIONS Specific red and blue monochromatic light conditions promote visual system development in juvenile zebrafish. However, exceeding these optimal conditions may impair visual function, highlighting the critical role of dopamine pathway in modulating light-induced effects on the visual system.
Collapse
Affiliation(s)
- Yan Lu
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123 Tianfei Street, Nanjing, 210004, China
- Department of Pediatrics, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, 71 Hexi Street, Nanjing, 210019, China
| | - Meiling Tong
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123 Tianfei Street, Nanjing, 210004, China.
| |
Collapse
|
3
|
DeOliveira-Mello L, Baronio D, Panula P. Zebrafish embryonically exposed to valproic acid present impaired retinal development and sleep behavior. Autism Res 2023; 16:1877-1890. [PMID: 37638671 DOI: 10.1002/aur.3010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/23/2023] [Indexed: 08/29/2023]
Abstract
Prenatal exposure to valproic acid (VPA), a drug widely used to treat epilepsy and bipolar disorder, is an environmental risk factor for autism spectrum disorder (ASD). VPA has been used to reproduce the core symptoms of ASD in animal model organisms, including zebrafish. Visual system functioning is essential in the interpretation of social conditions and plays an important role of several behavioral responses. We hypothesized that behavioral deficits displayed by ASD patients may involve impaired visual processing. We used zebrafish as model organism to investigate the visual system after embryonic exposure to VPA using histological, behavioral and gene expression analysis. We analyzed the pineal gland of zebrafish and sleep-like behavior to study how VPA exposure alters photo-sensibility of zebrafish. VPA-exposed zebrafish showed a delay in the development of the retina and optic nerve, which normalized at five days post fertilization. At larval stage, VPA-exposed zebrafish showed sleep disturbances associated with a reduced number of serotonin-producing cells of the pineal gland. In addition, the number of hypocretin/orexin (hcrt) expressing neurons in the rostral hypothalamus at 6 and 14 days post fertilization was reduced. In conclusion, we demonstrated that although VPA exposure leads to a delay in visual system development, it does not affect larval visual function. The novel finding that VPA alters significantly cells involved in sleep regulation and the sleep-like state itself may be relevant for understanding sleep disturbances in ASD patients.
Collapse
Affiliation(s)
| | - Diego Baronio
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pertti Panula
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Bhoi JD, Goel M, Ribelayga CP, Mangel SC. Circadian clock organization in the retina: From clock components to rod and cone pathways and visual function. Prog Retin Eye Res 2023; 94:101119. [PMID: 36503722 PMCID: PMC10164718 DOI: 10.1016/j.preteyeres.2022.101119] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 12/13/2022]
Abstract
Circadian (24-h) clocks are cell-autonomous biological oscillators that orchestrate many aspects of our physiology on a daily basis. Numerous circadian rhythms in mammalian and non-mammalian retinas have been observed and the presence of an endogenous circadian clock has been demonstrated. However, how the clock and associated rhythms assemble into pathways that support and control retina function remains largely unknown. Our goal here is to review the current status of our knowledge and evaluate recent advances. We describe many previously-observed retinal rhythms, including circadian rhythms of morphology, biochemistry, physiology, and gene expression. We evaluate evidence concerning the location and molecular machinery of the retinal circadian clock, as well as consider findings that suggest the presence of multiple clocks. Our primary focus though is to describe in depth circadian rhythms in the light responses of retinal neurons with an emphasis on clock control of rod and cone pathways. We examine evidence that specific biochemical mechanisms produce these daily light response changes. We also discuss evidence for the presence of multiple circadian retinal pathways involving rhythms in neurotransmitter activity, transmitter receptors, metabolism, and pH. We focus on distinct actions of two dopamine receptor systems in the outer retina, a dopamine D4 receptor system that mediates circadian control of rod/cone gap junction coupling and a dopamine D1 receptor system that mediates non-circadian, light/dark adaptive regulation of gap junction coupling between horizontal cells. Finally, we evaluate the role of circadian rhythmicity in retinal degeneration and suggest future directions for the field of retinal circadian biology.
Collapse
Affiliation(s)
- Jacob D Bhoi
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA; Neuroscience Honors Research Program, William Marsh Rice University, Houston, TX, USA
| | - Manvi Goel
- Department of Neuroscience, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Christophe P Ribelayga
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA; Neuroscience Honors Research Program, William Marsh Rice University, Houston, TX, USA.
| | - Stuart C Mangel
- Department of Neuroscience, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
5
|
Brown-Panton CA, Sabour S, Zoidl GSO, Zoidl C, Tabatabaei N, Zoidl GR. Gap junction Delta-2b ( gjd2b/Cx35.1) depletion causes hyperopia and visual-motor deficiencies in the zebrafish. Front Cell Dev Biol 2023; 11:1150273. [PMID: 36936688 PMCID: PMC10017553 DOI: 10.3389/fcell.2023.1150273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
The zebrafish is a powerful model to investigate the developmental roles of electrical synapses because many signaling pathways that regulate the development of the nervous system are highly conserved from fish to humans. Here, we provide evidence linking the mammalian connexin-36 (Cx36) ortholog gjd2b/Cx35.1, a major component of electrical synapses in the zebrafish, with a refractive error in the context of morphological, molecular, and behavioral changes of zebrafish larvae. Two abnormalities were identified. The optical coherence tomography analysis of the adult retina confirmed changes to the refractive properties caused by eye axial length reduction, leading to hyperopic shifts. The gjd2b/Cx35.1 depletion was also correlated with morphological changes to the head and body ratios in larvae. The differential expression of Wnt/ß-catenin signaling genes, connexins, and dopamine receptors suggested a contribution to the observed phenotypic differences. The alteration of visual-motor behavioral responses to abrupt light transitions was aggravated in larvae, providing evidence that cone photoreceptor cell activity was enhanced when gjd2b/Cx35.1 was depleted. The visual disturbances were reversed under low light conditions in gjd2b -/- /Cx35.1-/- larvae. Since qRT-PCR data demonstrated that two rhodopsin genes were downregulated, we speculated that rod photoreceptor cells in gjd2b/Cx35.1-/- larvae were less sensitive to bright light transitions, thus providing additional evidence that a cone-mediated process caused the VMR light-ON hyperactivity after losing Cx35.1 expression. Together, this study provides evidence for the role of gjd2b/Cx35.1 in the development of the visual system and visually guided behaviors.
Collapse
Affiliation(s)
- Cherie A. Brown-Panton
- Department of Biology, York University, Toronto, ON, Canada
- Center for Vision Research, York University, Toronto, ON, Canada
- *Correspondence: Cherie A. Brown-Panton, ; Georg R. Zoidl,
| | - Shiva Sabour
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| | - Georg S. O. Zoidl
- Department of Biology, York University, Toronto, ON, Canada
- Center for Vision Research, York University, Toronto, ON, Canada
| | - Christiane Zoidl
- Department of Biology, York University, Toronto, ON, Canada
- Center for Vision Research, York University, Toronto, ON, Canada
| | - Nima Tabatabaei
- Center for Vision Research, York University, Toronto, ON, Canada
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| | - Georg R. Zoidl
- Department of Biology, York University, Toronto, ON, Canada
- Center for Vision Research, York University, Toronto, ON, Canada
- Department of Psychology, York University, Toronto, ON, Canada
- *Correspondence: Cherie A. Brown-Panton, ; Georg R. Zoidl,
| |
Collapse
|
6
|
Zheng X, Zhang K, Zhao Y, Fent K. Environmental chemicals affect circadian rhythms: An underexplored effect influencing health and fitness in animals and humans. ENVIRONMENT INTERNATIONAL 2021; 149:106159. [PMID: 33508534 DOI: 10.1016/j.envint.2020.106159] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 06/12/2023]
Abstract
Circadian rhythms control the life of virtually all organisms. They regulate numerous aspects ranging from cellular processes to reproduction and behavior. Besides the light-dark cycle, there are additional environmental factors that regulate the circadian rhythms in animals as well as humans. Here, we outline the circadian rhythm system and considers zebrafish (Danio rerio) as a representative vertebrate organism. We characterize multiple physiological processes, which are affected by circadian rhythm disrupting compounds (circadian disrupters). We focus on and summarize 40 natural and anthropogenic environmental circadian disrupters in fish. They can be divided into six major categories: steroid hormones, metals, pesticides and biocides, polychlorinated biphenyls, neuroactive drugs and other compounds such as cyanobacterial toxins and bisphenol A. Steroid hormones as well as metals are most studied. Especially for progestins and glucocorticoids, circadian dysregulation was demonstrated in zebrafish on the molecular and physiological level, which comprise mainly behavioral alterations. Our review summarizes the current state of knowledge on circadian disrupters, highlights their risks to fish and identifies knowledge gaps in animals and humans. While most studies focus on transcriptional and behavioral alterations, additional effects and consequences are underexplored. Forthcoming studies should explore, which additional environmental circadian disrupters exist. They should clarify the underlying molecular mechanisms and aim to better understand the consequences for physiological processes.
Collapse
Affiliation(s)
- Xuehan Zheng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Kun Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yanbin Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Hofackerstrasse 30, CH-4132 Muttenz, Switzerland; ETH Zürich, Institute of Biogeochemistry and Pollution Dynamics, Department of Environmental Systems Science, CH-8092 Zürich, Switzerland.
| |
Collapse
|
7
|
Santhanam A, Shihabeddin E, Atkinson JA, Nguyen D, Lin YP, O’Brien J. A Zebrafish Model of Retinitis Pigmentosa Shows Continuous Degeneration and Regeneration of Rod Photoreceptors. Cells 2020; 9:E2242. [PMID: 33036185 PMCID: PMC7599532 DOI: 10.3390/cells9102242] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/25/2020] [Accepted: 10/02/2020] [Indexed: 01/17/2023] Open
Abstract
More than 1.5 million people suffer from Retinitis Pigmentosa, with many experiencing partial to complete vision loss. Regenerative therapies offer some hope, but their development is challenged by the limited regenerative capacity of mammalian model systems. As a step toward investigating regenerative therapies, we developed a zebrafish model of Retinitis Pigmentosa that displays ongoing regeneration. We used Tol2 transgenesis to express mouse rhodopsin carrying the P23H mutation and an epitope tag in zebrafish rod photoreceptors. Adult and juvenile fish were examined by immunofluorescence, TUNEL and BrdU incorporation assays. P23H transgenic fish expressed the transgene in rods from 3 days post fertilization onward. Rods expressing the mutant rhodopsin formed very small or no outer segments and the mutant protein was delocalized over the entire cell. Adult fish displayed thinning of the outer nuclear layer (ONL) and loss of rod outer segments, but retained a single, sparse row of rods. Adult fish displayed ongoing apoptotic cell death in the ONL and an abundance of proliferating cells, predominantly in the ONL. There was a modest remodeling of bipolar and Müller glial cells. This transgenic fish will provide a useful model system to study rod photoreceptor regeneration and integration.
Collapse
Affiliation(s)
- Abirami Santhanam
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.S.); (J.A.A.); (D.N.); (Y.-P.L.)
| | - Eyad Shihabeddin
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.S.); (J.A.A.); (D.N.); (Y.-P.L.)
- The MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Joshua A. Atkinson
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.S.); (J.A.A.); (D.N.); (Y.-P.L.)
| | - Duc Nguyen
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.S.); (J.A.A.); (D.N.); (Y.-P.L.)
| | - Ya-Ping Lin
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.S.); (J.A.A.); (D.N.); (Y.-P.L.)
| | - John O’Brien
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.S.); (J.A.A.); (D.N.); (Y.-P.L.)
- The MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
8
|
Wang Q, Banerjee S, So C, Qiu C, Lam HIC, Tse D, Völgyi B, Pan F. Unmasking inhibition prolongs neuronal function in retinal degeneration mouse model. FASEB J 2020; 34:15282-15299. [PMID: 32985731 DOI: 10.1096/fj.202001315rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/25/2020] [Accepted: 09/08/2020] [Indexed: 11/11/2022]
Abstract
All neurodegenerative diseases involve a relatively long period of timeframe from the onset of the disease to complete loss of functions. Extending this timeframe, even at a reduced level of function, would improve the quality of life of patients with these devastating diseases. The retina, as the part of the central nervous system and a frequent site of many distressing neurodegenerative disease, provides an ideal model to investigate the feasibility of extending the functional timeframe through pharmacologic intervention. Retinitis Pigmentosa (RP) is a group of blinding diseases. Although the rate of progression and degree of visual loss varies, there is usually a prolonged time before patients totally lose their photoreceptors and vision. It is believed that inhibitory mechanisms are still intact and may become relatively strong after the gradual loss of photoreceptors in RP patients. Therefore, it is possible that light-evoked responses of retinal ganglion cells and visual information processes in retinal circuits could be "unmasked" by blocking these inhibitory mechanisms restoring some level of visual function. Our results indicate that if the inhibition in the inner retina was unmasked in the retina of the rd10 mouse (the well-characterized RP mimicking, clinically relevant mouse model), the light-evoked responses of many retinal ganglion cells can be induced and restore their normal light sensitivity. GABA A receptor plays a major role in this masking inhibition. ERG b-wave and behavioral tests of spatial vision partly recovered after the application of PTX. Hence, removing retinal inhibition unmasks signalling mediated by surviving cones, thereby restoring some degree of visual function. These results may offer a novel strategy to restore the visual function with the surviving cones in RP patients and other gradual and progressive neurodegenerative diseases.
Collapse
Affiliation(s)
- Qin Wang
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Seema Banerjee
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Chunghim So
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Chunting Qiu
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Hang-I Christie Lam
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Dennis Tse
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Béla Völgyi
- Department of Experimental Zoology and Neurobiology, Szentágothai Research Centre, MTA NAP Retinal Electrical Synapses Research Group, University of Pécs, Pécs, Hungary
| | - Feng Pan
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong.,The Centre for Eye and Vision Research, Hong Kong
| |
Collapse
|
9
|
Visuomotor deficiency in panx1a knockout zebrafish is linked to dopaminergic signaling. Sci Rep 2020; 10:9538. [PMID: 32533080 PMCID: PMC7293225 DOI: 10.1038/s41598-020-66378-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/15/2020] [Indexed: 12/23/2022] Open
Abstract
Pannexin 1 (Panx1) forms ATP-permeable membrane channels that play roles in the nervous system. The analysis of roles in both standard and pathological conditions benefits from a model organism with rapid development and early onset of behaviors. Such a model was developed by ablating the zebrafish panx1a gene using TALEN technology. Here, RNA-seq analysis of 6 days post fertilization larvae were confirmed by Real-Time PCR and paired with testing visual-motor behavior and in vivo electrophysiology. Results demonstrated that loss of panx1a specifically affected the expression of gene classes representing the development of the visual system and visual processing. Abnormal swimming behavior in the dark and the expression regulation of pre-and postsynaptic biomarkers suggested changes in dopaminergic signaling. Indeed, altered visuomotor behavior in the absence of functional Panx1a was evoked through D1/D2-like receptor agonist treatment and rescued with the D2-like receptor antagonist Haloperidol. Local field potentials recorded from superficial areas of the optic tectum receiving input from the retina confirmed abnormal responses to visual stimuli, which resembled treatments with a dopamine receptor agonist or pharmacological blocking of Panx1a. We conclude that Panx1a functions are relevant at a time point when neuronal networks supporting visual-motor functions undergo modifications preparing for complex behaviors of freely swimming fish.
Collapse
|
10
|
Abstract
In humans, various genetic defects or age-related diseases, such as diabetic retinopathies, glaucoma, and macular degeneration, cause the death of retinal neurons and profound vision loss. One approach to treating these diseases is to utilize stem and progenitor cells to replace neurons in situ, with the expectation that new neurons will create new synaptic circuits or integrate into existing ones. Reprogramming non-neuronal cells in vivo into stem or progenitor cells is one strategy for replacing lost neurons. Zebrafish have become a valuable model for investigating cellular reprogramming and retinal regeneration. This review summarizes our current knowledge regarding spontaneous reprogramming of Müller glia in zebrafish and compares this knowledge to research efforts directed toward reprogramming Müller glia in mammals. Intensive research using these animal models has revealed shared molecular mechanisms that make Müller glia attractive targets for cellular reprogramming and highlighted the potential for curing degenerative retinal diseases from intrinsic cellular sources.
Collapse
Affiliation(s)
- Manuela Lahne
- Center for Zebrafish Research, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA; , .,Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Mikiko Nagashima
- Department of Ophthalmology and Visual Sciences, University of Michigan School of Medicine, Ann Arbor, Michigan 48105, USA; ,
| | - David R Hyde
- Center for Zebrafish Research, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA; , .,Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Peter F Hitchcock
- Department of Ophthalmology and Visual Sciences, University of Michigan School of Medicine, Ann Arbor, Michigan 48105, USA; , .,Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, Michigan 48105, USA
| |
Collapse
|
11
|
Wang F, Ren D, Liang X, Ke S, Zhang B, Hu B, Song X, Wang X. A long noncoding RNA cluster-based genomic locus maintains proper development and visual function. Nucleic Acids Res 2020; 47:6315-6329. [PMID: 31127312 PMCID: PMC6614851 DOI: 10.1093/nar/gkz444] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 04/29/2019] [Accepted: 05/10/2019] [Indexed: 01/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) represent a group of regulatory RNAs that play critical roles in numerous cellular events, but their functional importance in development remains largely unexplored. Here, we discovered a series of previously unidentified gene clusters harboring conserved lncRNAs at the nonimprinting regions in brain (CNIBs). Among the seven identified CNIBs, human CNIB1 locus is located at Chr 9q33.3 and conserved from Danio rerio to Homo sapiens. Chr 9q33.3-9q34.11 microdeletion has previously been linked to human nail-patella syndrome (NPS) which is frequently accompanied by developmental and visual deficiencies. By generating CNIB1 deletion alleles in zebrafish, we demonstrated the requirement of CNIB1 for proper growth and development, and visual activities. Furthermore, we found that the role of CNIB1 on visual activity is mediated through a regulator of ocular development-lmx1bb. Collectively, our study shows that CNIB1 lncRNAs are important for zebrafish development and provides an lncRNA cluster-mediated pathophysiological mechanism for human Chr 9q33.3-9q34.11 microdeletion syndrome.
Collapse
Affiliation(s)
- Fei Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Dalong Ren
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaolin Liang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shengwei Ke
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bowen Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bing Hu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaoyuan Song
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiangting Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
12
|
Syambani Ulhaq Z. Dopamine D2 receptor influences eye development and function in Zebrafish. ACTA ACUST UNITED AC 2020; 95:84-89. [PMID: 31955999 DOI: 10.1016/j.oftal.2019.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 10/25/2022]
Abstract
Dopamine is synthesized by tyrosine hydroxylase and is considered as a major catecholamine in the vertebrate retina, including zebrafish. However, little is known about the role of dopamine D2 receptor (DRD2) in retinal physiology. Therefore, to elucidate the role of DRD2 in the eye development and function in zebrafish, fish were exposed to fluphenazine, quinpirole, or combination of both. Subsequently, the eye size, optic nerve diameter (ONd), and visual background adaptation were evaluated. The results showed that fluphenazine (fluphenazine, DRD2 antagonist) decreased eye size and optic nerve diameter followed by disruption of visual function. The addition of Quinpirole (quinpirole, DRD2 agonist) reversed the effects caused by fluphenazine, implying that DRD2 is necessary for normal eye development and function in zebrafish. Considering the role of dopaminergic neurons in retinal development and function, dysfunction of dopaminergic neuron signaling pathways in the retina may cause visual abnormalities, particularly in the involvement of dopamine in regulating light response.
Collapse
Affiliation(s)
- Z Syambani Ulhaq
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Maulana Malik Ibrahim Islamic State University, Batu, East Java, Indonesia.
| |
Collapse
|
13
|
Li L. Circadian Vision in Zebrafish: From Molecule to Cell and from Neural Network to Behavior. J Biol Rhythms 2019; 34:451-462. [DOI: 10.1177/0748730419863917] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Most visual system functions, such as opsin gene expression, retinal neural transmission, light perception, and visual sensitivity, display robust day-night rhythms. The rhythms persist in constant lighting conditions, suggesting the involvement of endogenous circadian clocks. While the circadian pacemakers that control the rhythms of animal behaviors are mostly found in the forebrain and midbrain, self-sustained circadian oscillators are also present in the neural retina, where they play important roles in the regulation of circadian vision. This review highlights some of the correlative studies of the circadian control of visual system functions in zebrafish. Because zebrafish maintain a high evolutionary proximity to mammals, the findings from zebrafish research may provide insights for a better understanding of the mechanisms of circadian vision in other vertebrate species including humans.
Collapse
Affiliation(s)
- Lei Li
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana
| |
Collapse
|
14
|
STIL: a multi-function protein required for dopaminergic neural proliferation, protection, and regeneration. Cell Death Discov 2019; 5:90. [PMID: 31044090 PMCID: PMC6484007 DOI: 10.1038/s41420-019-0172-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 03/18/2019] [Indexed: 01/10/2023] Open
Abstract
Degeneration of dopaminergic (DA) neurons in the brain is the major cause for Parkinson’s disease (PD). While genetic loci and cellular pathways involved in DA neuron proliferation have been well documented, the genetic and molecular and cellular basis of DA cell survival remains to be elucidated. Recently, studies aimed to uncover the mechanisms of DA neural protection and regeneration have been reported. One of the most recent discoveries, i.e., multi-function of human oncogene SCL/TAL interrupting locus (Stil) in DA cell proliferation, neural protection, and regeneration, created a new field for studying DA cells and possible treatment of PD. In DA neurons, Stil functions through the Sonic hedgehog (Shh) pathway by releasing the inhibition of SUFU to GLI1, and thereby enhances Shh-target gene transcription required for neural proliferation, protection, and regeneration. In this review article, we will highlight some of the new findings from researches relate to Stil in DA cells using zebrafish models and cultured mammalian PC12 cells. The findings may provide the proof-of-concept for the development of Stil as a tool for diagnosis and/or treatment of human diseases, particularly those caused by DA neural degeneration.
Collapse
|
15
|
'Central' Actions of Corticosteroid Signaling Suggested by Constitutive Knockout of Corticosteroid Receptors in Small Fish. Nutrients 2019; 11:nu11030611. [PMID: 30871191 PMCID: PMC6470806 DOI: 10.3390/nu11030611] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/02/2019] [Accepted: 03/11/2019] [Indexed: 01/24/2023] Open
Abstract
This review highlights recent studies of the functional implications of corticosteroids in some important behaviors of model fish, which are also relevant to human nutrition homeostasis. The primary actions of corticosteroids are mediated by glucocorticoid receptor (GR) and mineralocorticoid receptor (MR), which are transcription factors. Zebrafish and medaka models of GR- and MR-knockout are the first constitutive corticosteroid receptor-knockout animals that are viable in adulthood. Similar receptor knockouts in mice are lethal. In this review, we describe the physiological and behavioral changes following disruption of the corticosteroid receptors in these models. The GR null model has peripheral changes in nutrition metabolism that do not occur in a mutant harboring a point mutation in the GR DNA-binding domain. This suggests that these are not “intrinsic” activities of GR. On the other hand, we propose that integration of visual responses and brain behavior by corticosteroid receptors is a possible “intrinsic”/principal function potentially conserved in vertebrates.
Collapse
|
16
|
Sakamoto T, Hyodo S, Takagi W. A possible principal function of corticosteroid signaling that is conserved in vertebrate evolution: Lessons from receptor-knockout small fish. J Steroid Biochem Mol Biol 2018; 184:57-61. [PMID: 29481854 DOI: 10.1016/j.jsbmb.2018.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 02/12/2018] [Accepted: 02/20/2018] [Indexed: 11/16/2022]
Abstract
Corticosteroid receptors are critical for homeostasis maintenance, but understanding of the principal roles of the glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) throughout vertebrates is limited. Lines of constitutive GR-knockout zebrafish and MR-knockout medaka have recently been generated as the first adult-viable corticosteroid receptor-knockout animals, in contrast to the lethality of these receptor knockouts in mice. Here, we describe behavioral and physiological modifications following disruption of corticosteroid receptor function in these animal models. We suggest these data point toward a potentially conserved function of corticosteroid receptors in integrating brain-behavior and visual responses in vertebrates. Finally, we discuss how future work in cartilaginous fishes (Chondrichthyes) will further advance understanding of the unity and diversity of corticosteroid receptor function, since distinct orthologs of GR and MR derived from an ancestral corticoid receptor appear in these basal jawed vertebrates.
Collapse
Affiliation(s)
- Tatsuya Sakamoto
- Ushimado Marine Institute, Faculty of Science, Okayama University, 130-17, Kashino, Ushimado, Setouchi 701-4303, Japan.
| | - Susumu Hyodo
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-8564, Japan
| | - Wataru Takagi
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-8564, Japan
| |
Collapse
|
17
|
Meier A, Nelson R, Connaughton VP. Color Processing in Zebrafish Retina. Front Cell Neurosci 2018; 12:327. [PMID: 30337857 PMCID: PMC6178926 DOI: 10.3389/fncel.2018.00327] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/10/2018] [Indexed: 11/13/2022] Open
Abstract
Zebrafish (Danio rerio) is a model organism for vertebrate developmental processes and, through a variety of mutant and transgenic lines, various diseases and their complications. Some of these diseases relate to proper function of the visual system. In the US, the National Eye Institute indicates >140 million people over the age of 40 have some form of visual impairment. The causes of the impairments range from refractive error to cataract, diabetic retinopathy and glaucoma, plus heritable diseases such as retinitis pigmentosa and color vision deficits. Most impairments directly affect the retina, the nervous tissue at the back of the eye. Zebrafish with long or short-wavelength color blindness, altered retinal anatomy due to hyperglycemia, high intraocular pressure, and reduced pigment epithelium are all used, and directly applicable, to study how these symptoms affect visual function. However, many published reports describe only molecular/anatomical/structural changes or behavioral deficits. Recent work in zebrafish has documented physiological responses of the different cell types to colored (spectral) light stimuli, indicating a complex level of information processing and color vision in this species. The purpose of this review article is to consolidate published morphological and physiological data from different cells to describe how zebrafish retina is capable of complex visual processing. This information is compared to findings in other vertebrates and relevance to disorders affecting color processing is discussed.
Collapse
Affiliation(s)
- April Meier
- Zebrafish Ecotoxicology, Neuropharmacology, and Vision Lab, Department of Biology, and Center for Behavioral Neuroscience, American University, Washington, DC, United States
| | - Ralph Nelson
- Neural Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD, United States
| | - Victoria P Connaughton
- Zebrafish Ecotoxicology, Neuropharmacology, and Vision Lab, Department of Biology, and Center for Behavioral Neuroscience, American University, Washington, DC, United States
| |
Collapse
|
18
|
Shontz EC, Souders CL, Schmidt JT, Martyniuk CJ. Domperidone upregulates dopamine receptor expression and stimulates locomotor activity in larval zebrafish (Danio rerio
). GENES BRAIN AND BEHAVIOR 2018; 17:e12460. [DOI: 10.1111/gbb.12460] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/28/2017] [Accepted: 01/23/2018] [Indexed: 12/27/2022]
Affiliation(s)
- E. C. Shontz
- Department of Physiological Sciences and Center for Environmental and Human Toxicology; University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida; Gainesville Florida
| | - C. L. Souders
- Department of Physiological Sciences and Center for Environmental and Human Toxicology; University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida; Gainesville Florida
| | - J. T. Schmidt
- Department of Physiological Sciences and Center for Environmental and Human Toxicology; University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida; Gainesville Florida
| | - C. J. Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology; University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida; Gainesville Florida
| |
Collapse
|
19
|
Ramasamy S, Sharma S, Iyengar BR, Vellarikkal SK, Sivasubbu S, Maiti S, Pillai B. Identification of novel circadian transcripts in the zebrafish retina. J Exp Biol 2018; 222:jeb.192195. [DOI: 10.1242/jeb.192195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/07/2018] [Indexed: 01/04/2023]
Abstract
High fecundity, transparent embryos for monitoring the rapid development of organs and the availability of a well-annotated genome has made zebrafish a model organism of choice for developmental biology and neurobiology. This vertebrate model, a favourite in chronobiology studies, shows striking circadian rhythmicity in behaviour. Here, we identify novel genes in the zebrafish genome, which are expressed in the zebrafish retina. We further resolve the expression pattern over time and tentatively assign specific novel transcripts to retinal bipolar cells of the inner nuclear layer. Using chemical ablation and free run experiments we segregate the transcripts that are rhythmic when entrained by light from those that show sustained oscillations in the absence of external cues. The transcripts reported here with rigorous annotation and specific functions in circadian biology provide the groundwork for functional characterisation of novel players in the zebrafish retinal clock.
Collapse
Affiliation(s)
- Soundhar Ramasamy
- CSIR-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Surbhi Sharma
- CSIR-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Bharat Ravi Iyengar
- CSIR-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi, India
| | - Shamsudheen Karuthedath Vellarikkal
- CSIR-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Sridhar Sivasubbu
- CSIR-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Souvik Maiti
- CSIR-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Beena Pillai
- CSIR-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| |
Collapse
|
20
|
Nie K, Wang K, Huang DF, Huang YB, Yin W, Ren DL, Wang H, Hu B. Effects of circadian clock protein Per1b on zebrafish visual functions. Chronobiol Int 2017; 35:160-168. [DOI: 10.1080/07420528.2017.1391276] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ke Nie
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, P. R. China
| | - Kun Wang
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, P. R. China
| | - Deng-feng Huang
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, P. R. China
| | - Yu-bin Huang
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, P. R. China
| | - Wu Yin
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, P. R. China
| | - Da-long Ren
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, P. R. China
| | - Han Wang
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, China
- School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Bing Hu
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, P. R. China
| |
Collapse
|
21
|
Zhao X, Wong KY, Zhang DQ. Mapping physiological inputs from multiple photoreceptor systems to dopaminergic amacrine cells in the mouse retina. Sci Rep 2017; 7:7920. [PMID: 28801634 PMCID: PMC5554153 DOI: 10.1038/s41598-017-08172-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/07/2017] [Indexed: 01/28/2023] Open
Abstract
In the vertebrate retina, dopamine is synthesized and released by a specialized type of amacrine cell, the dopaminergic amacrine cell (DAC). DAC activity is stimulated by rods, cones, and melanopsin-expressing intrinsically photosensitive retinal ganglion cells upon illumination. However, the relative contributions of these three photoreceptor systems to the DAC light-induced response are unknown. Here we found that rods excite dark-adapted DACs across a wide range of stimulation intensities, primarily through connexin-36-dependent rod pathways. Similar rod-driven responses were observed in both ventral and dorsal DACs. We further found that in the dorsal retina, M-cones and melanopsin contribute to dark-adapted DAC responses with a similar threshold intensity. In the ventral retina, however, the threshold intensity for M-cone-driven responses was two log units greater than that observed in dorsal DACs, and melanopsin-driven responses were almost undetectable. We also examined the DAC response to prolonged adapting light and found such responses to be mediated by rods under dim lighting conditions, rods/M-cones/melanopsin under intermediate lighting conditions, and cones and melanopsin under bright lighting conditions. Our results elucidate the relative contributions of the three photoreceptor systems to DACs under different lighting conditions, furthering our understanding of the role these cells play in the visual system.
Collapse
Affiliation(s)
- Xiwu Zhao
- Eye Research Institute, Oakland University, Rochester, MI, United States.,Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Kwoon Y Wong
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States.,Department of Molecular, Cellular & Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Dao-Qi Zhang
- Eye Research Institute, Oakland University, Rochester, MI, United States.
| |
Collapse
|
22
|
Abstract
The zebrafish (Danio rerio) possesses a vertebrate-type retina that is extraordinarily conserved in evolution. This well-organized and anatomically easily accessible part of the central nervous system has been widely investigated in zebrafish, promoting general understanding of retinal development, morphology, function and associated diseases. Over the recent years, genome and protein engineering as well as imaging techniques have experienced revolutionary advances and innovations, creating new possibilities and methods to study zebrafish development and function. In this review, we focus on some of these emerging technologies and how they may impact retinal research in the future. We place an emphasis on genetic techniques, such as transgenic approaches and the revolutionizing new possibilities in genome editing.
Collapse
Affiliation(s)
- Stephanie Niklaus
- a Institute of Molecular Life Sciences , University of Zurich , Zurich , Switzerland.,b Life Science Zurich Graduate Program - Neuroscience , Zurich , Switzerland
| | - Stephan C F Neuhauss
- a Institute of Molecular Life Sciences , University of Zurich , Zurich , Switzerland
| |
Collapse
|
23
|
Li L, Wojtowicz JL, Malin JH, Huang T, Lee EB, Chen Z. GnRH-mediated olfactory and visual inputs promote mating-like behaviors in male zebrafish. PLoS One 2017; 12:e0174143. [PMID: 28329004 PMCID: PMC5362193 DOI: 10.1371/journal.pone.0174143] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 03/03/2017] [Indexed: 01/13/2023] Open
Abstract
The engagement of sexual behaviors is regulated by a number of factors which include gene expression, hormone circulation, and multi-sensory information integration. In zebrafish, when a male and a female are placed in the same container, they show mating-like behaviors regardless of whether they are kept together or separated by a net. No mating-like behaviors are observed when same-sex animals are put together. Through the olfacto-visual centrifugal pathway, activation of the terminalis nerve in the olfactory bulb increases GnRH signaling in the brain and triggers mating-like behaviors between males. In zebrafish mutants or wild-type fish in which the olfacto-visual centrifugal pathway is impaired or chemically ablated, in response to odor stimulation the mating-like behaviors between males are no longer evident. Together, the data suggest that the combination of olfactory and visual signals alter male zebrafish's mating-like behaviors via GnRH signaling.
Collapse
Affiliation(s)
- Lei Li
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
- * E-mail:
| | - Jennifer L. Wojtowicz
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
| | - John H. Malin
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
| | - Tao Huang
- Center for Reproductive Medicine, Shandong University, Jinan,China
| | - Eric B. Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
| | - Zijiang Chen
- Center for Reproductive Medicine, Shandong University, Jinan,China
| |
Collapse
|
24
|
Ophthalmologic Baseline Characteristics and 2-Year Ophthalmologic Safety Profile of Pramipexole IR Compared with Ropinirole IR in Patients with Early Parkinson's Disease. PARKINSONS DISEASE 2017; 2016:8298503. [PMID: 28078162 PMCID: PMC5203898 DOI: 10.1155/2016/8298503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/06/2016] [Accepted: 10/31/2016] [Indexed: 12/20/2022]
Abstract
Background. Parkinson's disease (PD) progressively affects dopaminergic neurotransmission and may affect retinal dopaminergic functions and structures. Objective. This 2-year randomized, open-label, parallel-group, flexible-dose study, NCT00144300, evaluated ophthalmologic safety profiles of immediate-release (IR) pramipexole and ropinirole in patients with early idiopathic PD with ≤6 months' prior dopamine agonist exposure and without preexisting major eye disorders. Methods. Patients received labeled IR regimens of pramipexole (n = 121) or ropinirole (n = 125) for 2 years. Comprehensive ophthalmologic assessments (COA) included corrected acuity, Roth 28-color test, slit-lamp biomicroscopy, intraocular pressure, computerized visual field test, fundus photography, and electroretinography. Results. At baseline, we observed retinal pigmentary epithelium (RPE) hypopigmentation not previously reported in PD patients. The estimated relative risk of 2-year COA worsening with pramipexole versus ropinirole was 1.07 (95% CI: 0.71–1.60). Mean changes from baseline in Unified Parkinson's Disease Rating System parts II+III total scores (pramipexole: 1 year, −4.1 ± 8.9, and 2 years, −0.7 ± 10.1, and ropinirole: 1 year, −3.7 ± 8.2, and 2 years, −1.7 ± 10.5) and Hoehn–Yahr stage distribution showed therapeutic effects on PD symptoms. Safety profiles were consistent with labeling. Conclusions. The risk of retinal deterioration did not differ in early idiopathic PD patients receiving pramipexole versus ropinirole. RPE hypopigmentation at baseline was not previously reported in this population. This trial is registered with NCT00144300.
Collapse
|
25
|
Pan F, Toychiev A, Zhang Y, Atlasz T, Ramakrishnan H, Roy K, Völgyi B, Akopian A, Bloomfield SA. Inhibitory masking controls the threshold sensitivity of retinal ganglion cells. J Physiol 2016; 594:6679-6699. [PMID: 27350405 DOI: 10.1113/jp272267] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/23/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Retinal ganglion cells (RGCs) in dark-adapted retinas show a range of threshold sensitivities spanning ∼3 log units of illuminance. Here, we show that the different threshold sensitivities of RGCs reflect an inhibitory mechanism that masks inputs from certain rod pathways. The masking inhibition is subserved by GABAC receptors, probably on bipolar cell axon terminals. The GABAergic masking inhibition appears independent of dopaminergic circuitry that has been shown also to affect RGC sensitivity. The results indicate a novel mechanism whereby inhibition controls the sensitivity of different cohorts of RGCs. This can limit and thereby ensure that appropriate signals are carried centrally in scotopic conditions when sensitivity rather than acuity is crucial. ABSTRACT The responses of rod photoreceptors, which subserve dim light vision, are carried through the retina by three independent pathways. These pathways carry signals with largely different sensitivities. Retinal ganglion cells (RGCs), the output neurons of the retina, show a wide range of sensitivities in the same dark-adapted conditions, suggesting a divergence of the rod pathways. However, this organization is not supported by the known synaptic morphology of the retina. Here, we tested an alternative idea that the rod pathways converge onto single RGCs, but inhibitory circuits selectively mask signals so that one pathway predominates. Indeed, we found that application of GABA receptor blockers increased the sensitivity of most RGCs by unmasking rod signals, which were suppressed. Our results indicate that inhibition controls the threshold responses of RGCs under dim ambient light. This mechanism can ensure that appropriate signals cross the bottleneck of the optic nerve in changing stimulus conditions.
Collapse
Affiliation(s)
- Feng Pan
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, NY, USA.,Current address: School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Abduqodir Toychiev
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, NY, USA
| | - Yi Zhang
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tamas Atlasz
- Department of Sport Biology, Janos Szentagothai Research Center, University of Pécs, Pécs, Hungary
| | | | - Kaushambi Roy
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, NY, USA
| | - Béla Völgyi
- Department of Sport Biology, Janos Szentagothai Research Center, University of Pécs, Pécs, Hungary.,Department of Experimental Zoology and Neurobiology, Janos Szentagothai Research Center, University of Pécs, Pécs, Hungary
| | - Abram Akopian
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, NY, USA
| | - Stewart A Bloomfield
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, NY, USA
| |
Collapse
|
26
|
Connaughton VP, Wetzell B, Arneson LS, DeLucia V, L. Riley A. Elevated dopamine concentration in light-adapted zebrafish retinas is correlated with increased dopamine synthesis and metabolism. J Neurochem 2015. [DOI: 10.1111/jnc.13264] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Bradley Wetzell
- Department of Psychology; American University; Washington District of Columbia USA
| | - Lynne S. Arneson
- Department of Biology; American University; Washington District of Columbia USA
| | - Vittoria DeLucia
- Department of Biology; American University; Washington District of Columbia USA
| | - Anthony L. Riley
- Department of Psychology; American University; Washington District of Columbia USA
| |
Collapse
|
27
|
Godoy R, Noble S, Yoon K, Anisman H, Ekker M. Chemogenetic ablation of dopaminergic neurons leads to transient locomotor impairments in zebrafish larvae. J Neurochem 2015; 135:249-60. [PMID: 26118896 DOI: 10.1111/jnc.13214] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/20/2015] [Accepted: 05/26/2015] [Indexed: 12/13/2022]
Abstract
To determine the impact of a controlled loss of dopaminergic neurons on locomotor function, we generated transgenic zebrafish, Tg(dat:CFP-NTR), expressing a cyan fluorescent protein-nitroreductase fusion protein (CFP-NTR) under the control of dopamine transporter (dat) cis-regulatory elements. Embryonic and larval zebrafish express the transgene in several groups of dopaminergic neurons, notably in the olfactory bulb, telencephalon, diencephalon and caudal hypothalamus. Administration of the pro-drug metronidazole (Mtz) resulted in activation of caspase 3 in CFP-positive neurons and in a reduction in dat-positive cells by 5 days post-fertilization (dpf). Loss of neurons coincided with impairments in global locomotor parameters such as swimming distance, percentage of time spent moving, as well as changes in tail bend parameters such as time to maximal bend and angular velocity. Dopamine levels were transiently decreased following Mtz administration. Recovery of some of the locomotor parameters was observed by 7 dpf. However, the total numbers of dat-expressing neurons were still decreased at 7, 12, or 14 dpf, even though there was evidence for production of new dat-expressing cells. Tg(dat:CFP-NTR) zebrafish provide a model to correlate altered dopaminergic neuron numbers with locomotor function and to investigate factors influencing regeneration of dopaminergic neurons.
Collapse
Affiliation(s)
- Rafael Godoy
- Center for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, K1N-6N5, Canada
| | - Sandra Noble
- Center for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, K1N-6N5, Canada
| | - Kevin Yoon
- Center for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, K1N-6N5, Canada
| | - Hymie Anisman
- Department of Neuroscience, Carleton University, Ottawa, K1S-5B6, Canada
| | - Marc Ekker
- Center for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, K1N-6N5, Canada
| |
Collapse
|
28
|
Phytochemical analysis and effects of Pteris vittata extract on visual processes. J Nat Med 2015; 70:8-17. [DOI: 10.1007/s11418-015-0930-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 07/19/2015] [Indexed: 10/23/2022]
|
29
|
Xiao L, Zhang PM, Gong HQ, Liang PJ. Effects of dopamine on response properties of ON-OFF RGCs in encoding stimulus durations. Front Neural Circuits 2014; 8:72. [PMID: 25071453 PMCID: PMC4074994 DOI: 10.3389/fncir.2014.00072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 06/12/2014] [Indexed: 11/13/2022] Open
Abstract
Single retinal ganglion cell's (RGCs) response properties, such as spike count and response latency, are known to encode some features of visual stimuli. On the other hand, neuronal response can be modulated by dopamine (DA), an important endogenous neuromodulator in the retina. In the present study, we investigated the effects of DA on the spike count and the response latency of bullfrog ON-OFF RGCs during exposure to different stimulus durations. We found that neuronal spike count and response latency were both changed with stimulus durations, and exogenous DA (10 μM) obviously attenuated the stimulus-duration-dependent response latency change. Information analysis showed that the information about light ON duration was mainly carried by the OFF response and vice versa, and the stimulation information was carried by both spike count and response latency. However, during DA application, the information carried by the response latency was greatly decreased, which suggests that dopaminergic pathway is involved in modulating the role of response latency in encoding the information about stimulus durations.
Collapse
Affiliation(s)
- Lei Xiao
- Department of Biomedical Engineering, School of Biomedical Engineering, Shanghai Jiao Tong University Shanghai, China
| | - Pu-Ming Zhang
- Department of Biomedical Engineering, School of Biomedical Engineering, Shanghai Jiao Tong University Shanghai, China
| | - Hai-Qing Gong
- Department of Biomedical Engineering, School of Biomedical Engineering, Shanghai Jiao Tong University Shanghai, China
| | - Pei-Ji Liang
- Department of Biomedical Engineering, School of Biomedical Engineering, Shanghai Jiao Tong University Shanghai, China
| |
Collapse
|
30
|
Popova E. Role of dopamine in distal retina. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 200:333-58. [PMID: 24728309 DOI: 10.1007/s00359-014-0906-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 01/11/2023]
Abstract
Dopamine is the most abundant catecholamine in the vertebrate retina. Despite the description of retinal dopaminergic cells three decades ago, many aspects of their function in the retina remain unclear. There is no consensus among the authors about the stimulus conditions for dopamine release (darkness, steady or flickering light) as well as about its action upon the various types of retinal cells. Many contradictory results exist concerning the dopamine effect on the gross electrical activity of the retina [reflected in electroretinogram (ERG)] and the receptors involved in its action. This review summarized current knowledge about the types of the dopaminergic neurons and receptors in the retina as well as the effects of dopamine receptor agonists and antagonists on the light responses of photoreceptors, horizontal and bipolar cells in both nonmammalian and mammalian retina. Special focus of interest concerns their effects upon the diffuse ERG as a useful tool for assessment of the overall function of the distal retina. An attempt is made to reveal some differences between the dopamine actions upon the activity of the ON versus OFF channel in the distal retina. The author has included her own results demonstrating such differences.
Collapse
Affiliation(s)
- E Popova
- Department of Physiology, Medical Faculty, Medical University, 1431, Sofia, Bulgaria,
| |
Collapse
|
31
|
Sun L, Li P, Carr AL, Gorsuch R, Yarka C, Li J, Bartlett M, Pfister D, Hyde DR, Li L. Transcription of the SCL/TAL1 interrupting Locus (Stil) is required for cell proliferation in adult Zebrafish Retinas. J Biol Chem 2014; 289:6934-6940. [PMID: 24469449 DOI: 10.1074/jbc.m113.506295] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human oncogene SCL/TAL1 interrupting locus (Stil) is highly conserved in vertebrate species. Previously, we identified a homolog of the Stil gene in zebrafish mutant (night blindness b, nbb), which showed neural defects in the retina (e.g. dopaminergic cell degeneration and/or lack of regeneration). In this research, we examined the roles of Stil in cell proliferation after degeneration in adult zebrafish retinas. We demonstrated that knockdown of Stil gene expression or inhibition of Sonic hedgehog (Shh) signaling transduction decreases the rate of cell proliferation. In contrast, activation of Shh signal transduction promotes cell proliferation. In nbb(+/-) retinas, inhibition of SUFU (a repressor in the Shh pathway) rescues the defects in cell proliferation due to down-regulation of Stil gene expression. The latter data suggest that Stil play a role in cell proliferation through the Shh signal transduction pathway.
Collapse
Affiliation(s)
- Lei Sun
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556; Department of Physiology, Nankai University, Tianjin, China 370001
| | - Ping Li
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
| | - Aprell L Carr
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556; Center for Zebrafish Research, University of Notre Dame, Notre Dame, Indiana 46556
| | - Ryne Gorsuch
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556; Center for Zebrafish Research, University of Notre Dame, Notre Dame, Indiana 46556
| | - Clare Yarka
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
| | - Jingling Li
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556; Center for Zebrafish Research, University of Notre Dame, Notre Dame, Indiana 46556
| | - Michael Bartlett
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
| | - Delaney Pfister
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
| | - David R Hyde
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556; Center for Zebrafish Research, University of Notre Dame, Notre Dame, Indiana 46556
| | - Lei Li
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556; Center for Zebrafish Research, University of Notre Dame, Notre Dame, Indiana 46556.
| |
Collapse
|
32
|
Emran F, Dowling JE. Circadian Rhythms and Vision in Zebrafish. THE RETINA AND CIRCADIAN RHYTHMS 2014:171-193. [DOI: 10.1007/978-1-4614-9613-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
33
|
Effects of strobe light stimulation on postnatal developing rat retina. Exp Brain Res 2013; 232:765-73. [PMID: 24292518 PMCID: PMC3931939 DOI: 10.1007/s00221-013-3786-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 11/18/2013] [Indexed: 11/06/2022]
Abstract
The nature and intensity of visual stimuli have changed in recent years because of television and other dynamic light sources. Although light stimuli accompanied by contrast and strength changes are thought to have an influence on visual system development, little information is available on the effects of dynamic light stimuli such as a strobe light on visual system development. Thus, this study was designed to evaluate changes caused by dynamic light stimuli during retinal development. This study used 80 Sprague-Dawley rats. From eye opening (postnatal day 14), half of the rats were maintained on a daily 12-h light/dark cycle (control group) and the remaining animals were raised under a 12-h strobe light (2 Hz)/dark cycle (strobe light-reared group). Morphological analyses and electroretinogram (ERG) were performed at postnatal weeks 3, 4, 6, 8, and 10. Among retinal neurons, tyrosine hydroxylase-immunoreactive (TH-IR, dopaminergic amacrine cells) cells showed marked plastic changes, such as variations in numbers and soma sizes. In whole-mount preparations at 6, 8, and 10 weeks, type I TH-IR cells showed a decreased number and larger somata, while type II TH-IR cells showed an increased number in strobe-reared animals. Functional assessment by scotopic ERG showed that a-wave and b-wave amplitudes increased at 6 and 8 weeks in strobe-reared animals. These results show that exposure to a strobe light during development causes changes in TH-IR cell number and morphology, leading to a disturbance in normal visual functions.
Collapse
|
34
|
Effects of dopamine receptor blockade on the intensity-response function of electroretinographic b- and d-waves in light-adapted eyes. J Neural Transm (Vienna) 2013; 121:233-44. [PMID: 24150276 DOI: 10.1007/s00702-013-1103-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 10/11/2013] [Indexed: 01/11/2023]
Abstract
The effects of dopamine receptor blockade by sulpiride (D2-class antagonist) and sulpiride plus SCH 23390 (D1-class antagonist) on the V - log I function of the electroretinographic (ERG) b- and d-waves were investigated in light-adapted frog eyes. Sulpiride significantly decreased the absolute sensitivity of the b- and d-waves. The amplitude of the both waves was diminished over the whole intensity range studied. A similar effect on the b-, but not d-wave amplitude was seen during the perfusion with sulpiride plus SCH 23390. The effect on the d-wave amplitude depended on stimulus intensity. The threshold of the d-wave was not significantly altered. The suprathreshold d-wave amplitude was enhanced at the lower stimulus intensities and remained unchanged at the higher ones. The results obtained indicate that the action of endogenous dopamine on the photopic ERG shows clear ON-OFF asymmetry. Participation of different classes of dopamine receptors is probably responsible for this difference.
Collapse
|
35
|
Esposti F, Johnston J, Rosa JM, Leung KM, Lagnado L. Olfactory stimulation selectively modulates the OFF pathway in the retina of zebrafish. Neuron 2013; 79:97-110. [PMID: 23849198 PMCID: PMC3710973 DOI: 10.1016/j.neuron.2013.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2013] [Indexed: 01/11/2023]
Abstract
Cross-modal regulation of visual performance by olfactory stimuli begins in the retina, where dopaminergic interneurons receive projections from the olfactory bulb. However, we do not understand how olfactory stimuli alter the processing of visual signals within the retina. We investigated this question by in vivo imaging activity in transgenic zebrafish expressing SyGCaMP2 in bipolar cell terminals and GCaMP3.5 in ganglion cells. The food-related amino acid methionine reduced the gain and increased sensitivity of responses to luminance and contrast transmitted through OFF bipolar cells but not ON. The effects of olfactory stimulus were blocked by inhibiting dopamine uptake and release. Activation of dopamine receptors increased the gain of synaptic transmission in vivo and potentiated synaptic calcium currents in isolated bipolar cells. These results indicate that olfactory stimuli alter the sensitivity of the retina through the dopaminergic regulation of presynaptic calcium channels that control the gain of synaptic transmission through OFF bipolar cells. Olfactory stimuli regulate transmission of signals through retinal bipolar cells Modulation of synaptic gain and sensitivity occur in OFF bipolar cells but not ON An inhibitor of dopamine uptake blocks odor-induced changes in synaptic gain Dopamine potentiates presynaptic calcium channels in isolated bipolar cells
Collapse
Affiliation(s)
- Federico Esposti
- Laboratory of Molecular Biology, Medical Research Council, Cambridge CB2 0QH, UK
| | | | | | | | | |
Collapse
|
36
|
Popova E, Kupenova P. Effects of dopamine receptor blockade on the intensity-response function of ERG b- and d-waves in dark adapted eyes. Vision Res 2013; 88:22-9. [PMID: 23810982 DOI: 10.1016/j.visres.2013.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/26/2013] [Accepted: 06/15/2013] [Indexed: 01/11/2023]
Abstract
The effects of dopamine receptor blockade by sulpiride (D2-class antagonist) and sulpiride plus SCH 23390 (D1-class antagonist) on the V - log I function of the ERG b- and d-waves were investigated in dark adapted frog eyes. We observed that sulpiride enhanced the amplitude of the suprathreshold b- and d-waves in the lower intensity range, where the responses were mediated by rods, but diminished it in the higher intensity range, where the responses were mediated by cones. A similar effect on the b-, but not d-wave amplitude was seen during the perfusion with sulpiride plus SCH 23390. The d-wave amplitude was enhanced over the whole intensity range with the exception of the highest intensities during the combined D1 and D2 receptor blockade. The results obtained indicate that the endogenous dopamine has an overall inhibitory action on the suprathreshold rod-mediated ON and OFF responses, while its action on the cone-mediated responses shows clear ON-OFF asymmetry. It is excitatory upon the ON responses, but inhibitory upon the OFF responses except for those in the highest intensity range. Participation of different types of dopamine receptors (predominantly D2 for the ON versus D1 for the OFF response) is probably responsible for this difference.
Collapse
Affiliation(s)
- E Popova
- Department of Physiology, Medical Faculty, Medical University of Sofia, 1431 Sofia, Bulgaria.
| | | |
Collapse
|
37
|
Huang H, Wang Z, Weng SJ, Sun XH, Yang XL. Neuromodulatory role of melatonin in retinal information processing. Prog Retin Eye Res 2013; 32:64-87. [PMID: 22986412 DOI: 10.1016/j.preteyeres.2012.07.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/24/2012] [Accepted: 07/25/2012] [Indexed: 12/15/2022]
Affiliation(s)
- Hai Huang
- Institute of Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, PR China
| | | | | | | | | |
Collapse
|
38
|
Li J, Li P, Carr A, Wang X, DeLaPaz A, Sun L, Lee E, Tomei E, Li L. Functional expression of SCL/TAL1 interrupting locus (Stil) protects retinal dopaminergic cells from neurotoxin-induced degeneration. J Biol Chem 2012; 288:886-93. [PMID: 23166330 DOI: 10.1074/jbc.m112.417089] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We previously isolated a dominant mutation, night blindness b (nbb), which causes a late onset of retinal dopaminergic cell degeneration in zebrafish. In this study, we cloned the zebrafish nbb locus. Sequencing results revealed that nbb is a homolog of the vertebrate SCL/TAL1 interrupting locus (Stil). The Stil gene has been shown to play important roles in the regulation of vertebrate embryonic neural development and human cancer cell proliferation. In this study, we demonstrate that functional expression of Stil is also required for neural survival. In zebrafish, decreased expression of Stil resulted in increased toxic susceptibility of retinal dopaminergic cells to 6-hydroxydopamine. Increases in Stil-mediated Shh signaling transduction (i.e. by knocking down the Shh repressor Sufu) prevented dopaminergic cell death induced by neurotoxic insult. The data suggest that the oncogene Stil also plays important roles in neural protection.
Collapse
Affiliation(s)
- Jingling Li
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Gestri G, Link BA, Neuhauss SCF. The visual system of zebrafish and its use to model human ocular diseases. Dev Neurobiol 2012; 72:302-27. [PMID: 21595048 DOI: 10.1002/dneu.20919] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Free swimming zebrafish larvae depend mainly on their sense of vision to evade predation and to catch prey. Hence, there is strong selective pressure on the fast maturation of visual function and indeed the visual system already supports a number of visually driven behaviors in the newly hatched larvae.The ability to exploit the genetic and embryonic accessibility of the zebrafish in combination with a behavioral assessment of visual system function has made the zebrafish a popular model to study vision and its diseases.Here, we review the anatomy, physiology, and development of the zebrafish eye as the basis to relate the contributions of the zebrafish to our understanding of human ocular diseases.
Collapse
Affiliation(s)
- Gaia Gestri
- Department of Cell and Developmental Biology, University College, London,UK.
| | | | | |
Collapse
|
40
|
Schweitzer J, Lohr H, Filippi A, Driever W. Dopaminergic and noradrenergic circuit development in zebrafish. Dev Neurobiol 2012; 72:256-68. [PMID: 21567980 DOI: 10.1002/dneu.20911] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Dopaminergic and noradrenergic neurons constitute some of the major far projecting systems in the vertebrate brain and spinal cord that modulate the activity of circuits controlling a broad range of behaviors. Degeneration or dysfunction of dopaminergic neurons has also been linked to a number of neurological and psychiatric disorders, including Parkinson's disease.Zebrafish (Danio rerio) have emerged over the past two decades into a major genetic vertebrate model system,and thus contributed to a better understanding of developmental mechanisms controlling dopaminergic neuron specification and axonogenesis. In this review, we want to focus on conserved and dynamic aspects of the different catecholaminergic systems, which may help to evaluate the zebrafish as a model for dopaminergic and noradrenergic cellular specification and circuit function as well as biomedical aspects of catecholamine systems.
Collapse
|
41
|
Zebrafish inner retina: local signals for spatial position, luminance, and color contrast. Vis Neurosci 2012; 29:229-36. [PMID: 22877609 DOI: 10.1017/s0952523812000259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The retina of the zebrafish (Danio rerio) provides an unusually favorable preparation for genetic and developmental studies of the retina. Although the retina has been studied extensively for two decades, the neuronal response of the inner retina is largely unknown. This report describes a prominent local field potential of the inner retina, the Proximal Negative Response (PNR). It is best evoked by small (100 μm) precisely positioned spots of light and is exceedingly sensitive to negative luminance contrast. The polarity, waveform, and other properties of the PNR suggest that it arises primarily from ON-OFF neurons of the proximal retina. The dominant response to negative contrast and its enhancement by light adaptation is believed due to a dominant presynaptic input from OFF bipolar cells. Color contrast was investigated by analyzing responses to a green bar moving on green versus red backgrounds. Over an intermediate range of irradiance, the response to green on red was larger than the response to green on green, thereby providing evidence for the encoding of color contrast. The present findings complement the classic principle of color contrast for human vision known as Kirschmann's third law and bring to mind the view of Walls that color contrast may have been the driving force for the evolution of color vision in lower vertebrates. In sum, the PNR of zebrafish provides clear evidence for the encoding of color and luminance contrast in the inner retina. It exhibits the defining properties common to many other vertebrates, reinforcing the view that the zebrafish may further serve as a model for retinal function and that the PNR may provide a new approach for studies of development, genetics, and retinal degeneration in zebrafish.
Collapse
|
42
|
Herrmann R, Heflin SJ, Hammond T, Lee B, Wang J, Gainetdinov RR, Caron MG, Eggers ED, Frishman LJ, McCall MA, Arshavsky VY. Rod vision is controlled by dopamine-dependent sensitization of rod bipolar cells by GABA. Neuron 2011; 72:101-10. [PMID: 21982372 DOI: 10.1016/j.neuron.2011.07.030] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2011] [Indexed: 11/19/2022]
Abstract
Dark and light adaptation of retinal neurons allow our vision to operate over an enormous light intensity range. Here we report a mechanism that controls the light sensitivity and operational range of rod-driven bipolar cells that mediate dim-light vision. Our data indicate that the light responses of these cells are enhanced by sustained chloride currents via GABA(C) receptor channels. This sensitizing GABAergic input is controlled by dopamine D1 receptors, with horizontal cells serving as a plausible source of GABA release. Our findings expand the role of dopamine in vision from its well-established function of suppressing rod-driven signals in bright light to enhancing the same signals under dim illumination. They further reveal a role for GABA in sensitizing the circuitry for dim-light vision, thereby complementing GABA's traditional role in providing dynamic feedforward and feedback inhibition in the retina.
Collapse
Affiliation(s)
- Rolf Herrmann
- Albert Eye Research Institute, Duke University, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Wahid F, Jung H, Khan T, Hwang KH, Park JS, Chang SC, Khan MA, Kim YY. Effects of Rubus coreanus extract on visual processes in bullfrog's eye. JOURNAL OF ETHNOPHARMACOLOGY 2011; 138:333-339. [PMID: 21787855 DOI: 10.1016/j.jep.2011.07.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 07/07/2011] [Accepted: 07/07/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The fruit of Rubus coreanus (Rosaceae) is traditionally used as an aphrodisiac, astringent, restorative and tonic in Asian countries. It is advised for treating diseases related to liver, kidney and urinary dysfunction, premature greying, blurred vision, infertility, impotence and premature ejaculation. Additionally, there is a long history of different parts of the plants being used in the treatment of ophthalmic diseases. However, no scientific studies have been undertaken to determine the effects of Rubus coreanus in visual processes of the vertebrate retina. AIM OF STUDY The purpose of the present study was to investigate the positive effects of Rubus coreanus extracts on visual processes in the vertebrate's eye. MATERIALS AND METHODS Electroretinogram (ERG) techniques were used to record the responses from a bullfrog's eye cup preparations. Active pharmacological agents were used to block specific receptors in the retina and to leave others unaffected. Lipid peroxidation in the retina was generated by adding FeSO(4)+Na-ascorbate. RESULTS It was observed that both dark- and light-adapted ERG b-wave peak amplitude significantly increases with Rubus coreanus treatment. It was found that Rubus coreanus acts as a retinal neural antagonist but not as GABA receptor antagonist. Rubus coreanus treatment lowered the duration of rhodopsin regeneration. The results obtained indicated that Rubus coreanus protects against lipid peroxidation drop off ERG amplitude in retina. CONCLUSION Based on results obtained, it is suggested that Rubus coreanus can potentially improve visual sensitivity and can be used to treat pathophysiological conditions of eye.
Collapse
Affiliation(s)
- Fazli Wahid
- School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, 1370 Sangeok-dong, Buk-ku, Taegu 702-701, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Popova E, Kupenova P. Effects of dopamine D1 receptor blockade on the intensity-response function of ERG b- and d-waves under different conditions of light adaptation. Vision Res 2011; 51:1627-36. [DOI: 10.1016/j.visres.2011.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 05/05/2011] [Accepted: 05/06/2011] [Indexed: 11/29/2022]
|
45
|
Fleisch VC, Fraser B, Allison WT. Investigating regeneration and functional integration of CNS neurons: lessons from zebrafish genetics and other fish species. Biochim Biophys Acta Mol Basis Dis 2010; 1812:364-80. [PMID: 21044883 DOI: 10.1016/j.bbadis.2010.10.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 10/05/2010] [Accepted: 10/21/2010] [Indexed: 12/21/2022]
Abstract
Zebrafish possess a robust, innate CNS regenerative ability. Combined with their genetic tractability and vertebrate CNS architecture, this ability makes zebrafish an attractive model to gain requisite knowledge for clinical CNS regeneration. In treatment of neurological disorders, one can envisage replacing lost neurons through stem cell therapy or through activation of latent stem cells in the CNS. Here we review the evidence that radial glia are a major source of CNS stem cells in zebrafish and thus activation of radial glia is an attractive therapeutic target. We discuss the regenerative potential and the molecular mechanisms thereof, in the zebrafish spinal cord, retina, optic nerve and higher brain centres. We evaluate various cell ablation paradigms developed to induce regeneration, with particular emphasis on the need for (high throughput) indicators that neuronal regeneration has restored sensory or motor function. We also examine the potential confound that regeneration imposes as the community develops zebrafish models of neurodegeneration. We conclude that zebrafish combine several characters that make them a potent resource for testing hypotheses and discovering therapeutic targets in functional CNS regeneration. This article is part of a Special Issue entitled Zebrafish Models of Neurological Diseases.
Collapse
Affiliation(s)
- Valerie C Fleisch
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, Alberta, Canada.
| | | | | |
Collapse
|
46
|
|
47
|
Dulcis D, Spitzer NC. Illumination controls differentiation of dopamine neurons regulating behaviour. Nature 2008; 456:195-201. [PMID: 19005547 DOI: 10.1038/nature07569] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 10/21/2008] [Indexed: 12/23/2022]
Abstract
Specification of the appropriate neurotransmitter is a crucial step in neuronal differentiation because it enables signalling among populations of neurons. Experimental manipulations demonstrate that both autonomous and activity-dependent genetic programs contribute to this process during development, but whether natural environmental stimuli specify transmitter expression in a neuronal population is unknown. We investigated neurons of the ventral suprachiasmatic nucleus that regulate neuroendocrine pituitary function in response to light in teleosts, amphibia and primates. Here we show that altering light exposure, which changes the sensory input to the circuit controlling adaptation of skin pigmentation to background, changes the number of neurons expressing dopamine in larvae of the amphibian Xenopus laevis in a circuit-specific and activity-dependent manner. Neurons newly expressing dopamine then regulate changes in camouflage colouration in response to illumination. Thus, physiological activity alters the numbers of behaviourally relevant amine-transmitter-expressing neurons in the brain at postembryonic stages of development. The results may be pertinent to changes in cognitive states that are regulated by biogenic amines.
Collapse
Affiliation(s)
- Davide Dulcis
- Neurobiology Section, Division of Biological Sciences and Center for Molecular Genetics, Kavli Institute for Brain and Mind, UCSD La Jolla, California 92093-0357, USA.
| | | |
Collapse
|
48
|
Lorenc-Duda A, Berezińska M, Urbańska A, Gołembiowska K, Zawilska JB. Dopamine in the Turkey retina-an impact of environmental light, circadian clock, and melatonin. J Mol Neurosci 2008; 38:12-8. [PMID: 18953673 DOI: 10.1007/s12031-008-9153-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 09/25/2008] [Indexed: 11/29/2022]
Abstract
Substantial evidence suggests that dopamine and melatonin are mutually inhibitory factors that act in the retina as chemical analogs of day and night. Here, we show an impact of environmental light, biological clock, and melatonin on retinal levels of dopamine and its major metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) in the turkey. In turkeys held under different light (L) to dark (D) cycles (16L:8D, 12L:12D, 8L:16D), retinal levels of dopamine and DOPAC fluctuated with daily rhythms. High levels of dopamine and DOPAC were observed during light hours and low during dark hours. Under the three photoperiodic regimes, rhythms of dopamine and DOPAC were out of phase with daily oscillation in retinal melatonin content. In constant darkness, dopamine and DOPAC levels oscillated in circadian rhythms. Light deprivation resulted, however, in a significant decline in amplitudes of both rhythms. Injections of melatonin (0.1-1 mumol/eye) during daytime significantly reduced retinal levels of DOPAC. This suppressive effect of melatonin was more pronounced in the dark-adapted than light-exposed turkeys. Quinpirole (a D(2)/D(4)-dopamine receptor agonist; 0.1-10 nmol/eye) injected to dark-adapted turkeys significantly decreased retinal melatonin. Our results indicate that in the turkey retina: (1) environmental light is the major factor regulating dopamine synthesis and metabolism; (2) dopaminergic neurones are controlled, in part, by intrinsic circadian clock; and (3) dopamine and melatonin are components of the mutually inhibitory loop.
Collapse
Affiliation(s)
- Anna Lorenc-Duda
- Department of Pharmacology, Medical University of Łódź, Łódź, Poland
| | | | | | | | | |
Collapse
|
49
|
Vallone D, Lahiri K, Dickmeis T, Foulkes NS. Zebrafish cell clocks feel the heat and see the light! Zebrafish 2008; 2:171-87. [PMID: 18248192 DOI: 10.1089/zeb.2005.2.171] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The zebrafish has rapidly become established as one of the most valuable vertebrate models for studying circadian clock function. A major initial attraction was its utility in large-scale genetic screens. It subsequently emerged that most zebrafish cells possess circadian clocks that can be entrained directly by exposure to temperature or light dark cycles, a property shared by several zebrafish cell lines. This is not the case for mammals, where the retina is the primary source of light input to the clock. Furthermore, mammalian cell culture clocks can only be entrained by acute culture treatments such as serum shocks. Thus, the zebrafish is proving invaluable to study light and temperature input to the vertebrate clock. In addition, the accessibility of its early developmental stages has placed the zebrafish at the forefront of studies aimed at understanding how the circadian clock is established during embryogenesis.
Collapse
Affiliation(s)
- Daniela Vallone
- Max-Planck Institut für Entwicklungsbiologie, Tübingen, Germany
| | | | | | | |
Collapse
|
50
|
OFF ganglion cells cannot drive the optokinetic reflex in zebrafish. Proc Natl Acad Sci U S A 2007; 104:19126-31. [PMID: 18025459 DOI: 10.1073/pnas.0709337104] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Whereas the zebrafish retina has long been an important model system for developmental and genetic studies, little is known about the responses of the inner retinal neurons. Here we report single-unit ganglion cell recordings from 5- to 6-day-old zebrafish larvae. In wild-type larvae we identify at least five subtypes of ganglion cell responses to full-field illumination, with ON-OFF and ON-type cells predominating. In the nrc mutant retina, in which the photoreceptor terminals develop abnormally, we observe normal OFF responses but abnormal ON-OFF responses and no ON responses. Previously characterized as blind, these mutants lack an optokinetic reflex (OKR), but in another behavioral assay nrc mutant fish have near-normal responses to the offset of light and slow and sluggish responses to the onset of light. Pharmacological block of the ON pathway mimics most of the nrc visual defects. We conclude that the abnormal photoreceptor terminals in nrc mutants predominantly perturb the ON pathway and that the ON pathway is necessary to drive the OKR in larval zebrafish.
Collapse
|