1
|
Seynaeve M, Mantini D, de Beukelaar TT. Electrophysiological Approaches to Understanding Brain-Muscle Interactions During Gait: A Systematic Review. Bioengineering (Basel) 2025; 12:471. [PMID: 40428090 PMCID: PMC12108685 DOI: 10.3390/bioengineering12050471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/02/2025] [Accepted: 04/11/2025] [Indexed: 05/29/2025] Open
Abstract
This study systematically reviews the role of the cortex in gait control by analyzing connectivity between electroencephalography (EEG) and electromyography (EMG) signals, i.e., neuromuscular connectivity (NMC) during walking. We aim to answer the following questions: (i) Is there significant NMC during gait in a healthy population? (ii) Is NMC modulated by gait task specifications (e.g., speed, surface, and additional task demands)? (iii) Is NMC altered in the elderly or a population affected by a neuromuscular or neurologic disorder? Following PRISMA guidelines, a systematic search of seven scientific databases was conducted up to September 2023. Out of 1308 identified papers, 27 studies met the eligibility criteria. Despite large variability in methodology, significant NMC was detected in most of the studies. NMC was able to discriminate between a healthy population and a population affected by a neuromuscular or neurologic disorder. Tasks requiring higher sensorimotor control resulted in an elevated level of NMC. While NMC holds promise as a metric for advancing our comprehension of brain-muscle interactions during gait, aligning methodologies across studies is imperative. Analysis of NMC provides valuable insights for the understanding of neural control of movement and development of gait retraining programs and contributes to advancements in neurotechnology.
Collapse
Affiliation(s)
- Maura Seynaeve
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, 3001 Leuven, Belgium; (M.S.); (D.M.)
- KU Leuven Institute of Sports Science, 3001 Leuven, Belgium
| | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, 3001 Leuven, Belgium; (M.S.); (D.M.)
| | - Toon T. de Beukelaar
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, 3001 Leuven, Belgium; (M.S.); (D.M.)
- KU Leuven Institute of Sports Science, 3001 Leuven, Belgium
| |
Collapse
|
2
|
Henry M, Darendeli A, Tvrdy T, Daneshgar S, Enoka RM. Influence of age and feedback modality on the proprioceptive sense of force: insights from motor unit recordings. J Neurophysiol 2025; 133:1103-1115. [PMID: 40019737 DOI: 10.1152/jn.00486.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/26/2024] [Accepted: 02/20/2025] [Indexed: 03/01/2025] Open
Abstract
The primary purpose of our study was to compare the influence of feedback modality (visual vs. auditory) on force-reproduction accuracy in middle-aged and older adults. As a secondary objective, we investigated whether expected differences would be reflected in the neural drive sent to a hand muscle during the task. Participants (n = 42; 40-84 yr) performed a force-reproduction task with the first dorsal interosseus muscle at two target forces [5% and 20% of maximal voluntary contraction (MVC)]. Each trial involved a target phase that was guided by visual or auditory feedback and then a reproduction phase without feedback. The neural drive was characterized by measures of force steadiness and motor unit discharge characteristics during the target phase. Force-reproduction accuracy at the lower target force declined with increasing age and with visual feedback compared with auditory feedback. In contrast, there was no evidence of an effect of age or condition on force-reproduction accuracy at the moderate target force (20% MVC). Force steadiness was worse and motor unit coherence in the delta and beta bands was greater when the task was guided by auditory feedback at both target forces. These findings indicate that greater accuracy during the low-force task in the auditory-feedback condition was accompanied by a noisier control signal and differences in motor unit coherence in the delta and beta bands during the target phase.NEW & NOTEWORTHY The sense of force can be assessed with force-reproduction tasks, which typically involve visual feedback of the applied force during the target phase. Middle-aged and older adults improved force-reproduction accuracy when using auditory instead of visual feedback. This effect was accompanied by an increase in motor unit coherence in the beta band. This provides evidence for different sensorimotor processing of proprioceptive inputs when these sensory modalities are used to provide feedback of the applied force.
Collapse
Affiliation(s)
- Mélanie Henry
- Department of Integrative Physiology, University of Colorado Boulder, Colorado, United States
| | - Abdulkerim Darendeli
- Department of Integrative Physiology, University of Colorado Boulder, Colorado, United States
- Physical Therapy, Movement, and Rehabilitation Science, Northeastern University, Boston, Massachusetts, United States
| | - Taylor Tvrdy
- Department of Integrative Physiology, University of Colorado Boulder, Colorado, United States
| | - Sajjad Daneshgar
- Department of Integrative Physiology, University of Colorado Boulder, Colorado, United States
| | - Roger M Enoka
- Department of Integrative Physiology, University of Colorado Boulder, Colorado, United States
| |
Collapse
|
3
|
Visser YF, Medendorp WP, Selen LPJ. Corticomuscular and intermuscular coherence during evidence accumulation in sensorimotor decision-making. Physiol Rep 2025; 13:e70237. [PMID: 40102698 PMCID: PMC11919635 DOI: 10.14814/phy2.70237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/25/2024] [Accepted: 01/24/2025] [Indexed: 03/20/2025] Open
Abstract
Evidence accumulation processes during decision-making are thought to continuously feed into the motor system, preparing multiple competing motor plans, of which one is executed when the evidence is complete. Previously, the state of this accumulation process has been studied by reading out the preparatory state of the motor system with evoked responses, once per trial. In this study, we aim to continuously track the sensorimotor decision during the trial using corticomuscular (CMC) and intermuscular coherence (IMC). We recorded EEG and EMG of healthy young adults (n = 34) who viewed random dot motion stimuli, with varying strengths across trials, and indicated their perceived motion direction by reaching towards one of two targets, requiring either flexion or extension of the elbow. Coherence was computed in the beta band. After stimulus presentation, both CMC and IMC show an initial phasic pattern, which is followed by sustained coherence patterns at a level that depends on stimulus strength for CMC. Prior to reach onset, the CMC for different stimulus strengths had a tendency to settle at similar levels. This tendency tentatively marks a stimulus-independent decision bound. We conclude that CMC, and to a lesser extent IMC, track the evidence accumulation process on a single trial.
Collapse
Affiliation(s)
- Yvonne F. Visser
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - W. Pieter Medendorp
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - Luc P. J. Selen
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| |
Collapse
|
4
|
Yu C, Zhan J, Xu L, Zhou J, Fu W. Motor control performance-related modulation of beta-band EEG-sEMG coherence differs between general and local muscular exercise-induced fatigue. Eur J Appl Physiol 2025:10.1007/s00421-025-05714-4. [PMID: 39909897 DOI: 10.1007/s00421-025-05714-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 01/23/2025] [Indexed: 02/07/2025]
Abstract
PURPOSE Exercise-induced fatigue can reduce motor control performance and increase the risk of sporting injuries, which are related to functional coupling within the corticomotoneuronal pathway. However, the differences in functional coupling caused by general and local muscular exercise-induced fatigue are unknown. This study aimed to investigate the effects of exercise-induced fatigue on the beta-band (16-30 Hz) functional coupling between the sensorimotor cortex (SM1) and muscles of the dominant lower limb under different fatigue protocols. METHODS Twenty-four healthy male participants were recruited to participate in randomized sessions of personalized constant speed running as general muscular exercise (GME) and maximum isokinetic ankle plantar-dorsiflexion as local muscular exercise (LME) to induce fatigue. These sessions were separated by 7 days. The electroencephalogram (EEG) signals of SM1 (e.g., FC1, FCz, and Cz) and surface electromyography signals (sEMG) of four muscles (soleus, SOL; medial gastrocnemius, MG; later gastrocnemius, and LG; tibialis anterior, TA) were simultaneously recorded before and after fatigue during the ankle plantar-dorsiflexion task, which were used for beta-band coherence analyses. RESULTS Following fatigue induced by GME, the EEG-sEMG coherence was significantly greater than that induced by LME (P < 0.04). Compared to pre-fatigue state, the coherence of FC1-SOL, FCz-SOL, and Cz-SOL increased significantly after general fatigue, while these coherences decreased significantly after local fatigue. CONCLUSION Fatigue induced by GME indicates an enhancement in beta-band functional coupling between the SM1 and muscles of the dominant lower limb, which is related to higher motor control performance. In contrast, fatigue induced by LME diminishes the functional coupling.
Collapse
Affiliation(s)
- Changxiao Yu
- School of Rehabilitation Science, Hangzhou Medical College, Hangzhou, 310000, China
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Jianglong Zhan
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Linfeng Xu
- School of Rehabilitation Science, Hangzhou Medical College, Hangzhou, 310000, China
| | - Junhong Zhou
- The Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, 02131, USA.
- Harvard Medical School, Boston, MA, 02131, USA.
| | - Weijie Fu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
5
|
Zheng Y, Zheng B, Qiang W, Peng Y, Xu G, Wang G, Li L, Shin H. Corticomuscular coherence existed at the single motor unit level. Neuroimage 2025; 305:120999. [PMID: 39753163 DOI: 10.1016/j.neuroimage.2024.120999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/25/2024] [Accepted: 12/31/2024] [Indexed: 01/07/2025] Open
Abstract
The monosynaptic cortico-motoneuronal connections suggest the possibility of individual motor units (MUs) receiving independent commands from motor cortex. However, previous studies that used corticomuscular coherence (CMC) between electroencephalogram (EEG) signals and electromyogram (EMG) signals have not directly explored the corticospinal functionality at the single motoneuron level. The objective of this study is to find out whether synchronous activities exist between the motor cortex and individual MUs. Corticomuscular coherence was calculated between the EEG signals and the MU firing event trains which were extracted using the EMG decomposition technique. The results showed that some but not all MUs indeed had significant coherent activities with the contralateral motor cortex, which we named the cortico-motoneuronal coherence (CMnC). In contrast to the CMC only occurring in β and γ bands, CMnC occurred across the four common EEG frequency bands (θ, α, β and γ). Further, we identified individual MUs that showed significant interactions with the motor cortex. These coherent MUs (CohMU) could still be found even when the EMG signals were not coupled with the cortical activities. Compared with conventional CMC, our preliminary results indicated that the CMnC could potentially help to investigate the complex coupling between cortical and muscular activities due to its ability to separate different correlated components. This study proves that corticomuscular coherence exists at a single MU level, which provides a new perspective for the research on corticomuscular coupling. Further study on the CMnC could help deepen our understanding of the neural control of movement.
Collapse
Affiliation(s)
- Yang Zheng
- Institute of Engineering and Medicine Interdisciplinary Studies and the State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China.
| | - Bofang Zheng
- Institute of Engineering and Medicine Interdisciplinary Studies and the State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Wei Qiang
- Institute of Engineering and Medicine Interdisciplinary Studies and the State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Yu Peng
- Department of Rehabilitation, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Guanghua Xu
- Institute of Engineering and Medicine Interdisciplinary Studies and the State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Gang Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Lili Li
- College of Heath Science and Environment Engineering, Shenzhen Technology University, Shenzhen, Guangdong, China
| | - Henry Shin
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China.
| |
Collapse
|
6
|
Lim H, Yan S, Dee W, Keefer R, Hameeduddin I, Roth EJ, Rymer WZ, Wu M. Cortical drive may facilitate enhanced use of the paretic leg induced by random constraint force to the non-paretic leg during walking in chronic stroke. Exp Brain Res 2024; 242:2799-2814. [PMID: 39395062 DOI: 10.1007/s00221-024-06932-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/21/2024] [Indexed: 10/14/2024]
Abstract
The goal of this study was to determine the effects of applying random vs. constant constraint force to the non-paretic leg during walking on enhanced use of the paretic leg in individuals post-stroke, and examine the underlying brain mechanisms. Twelve individuals with chronic stroke were tested under two conditions while walking on a treadmill: random vs. constant magnitude of constraint force applied to the non-paretic leg during swing phase of gait using a custom designed robotic system. Leg kinematics, muscle activity of the paretic leg, and electroencephalography (EEG) were recorded during treadmill walking. Paretic step length and muscle activity of the paretic ankle plantarflexors significantly increased after walking with random and constant constraint forces. Cortico-cortical connectivity between motor cortices and cortico-muscular connectivity from the lesioned motor cortex to the paretic ankle plantarflexors significantly increased for the random force condition but not for the constant force condition. In addition, individuals post-stroke with greater baseline gait variability showed greater improvements in the paretic step length after walking with random force condition but not with the constant force condition. In conclusion, application of random constraint force to the non-paretic leg may enhance the use of the paretic leg during walking by facilitating cortical drive from the lesioned motor cortex to the paretic ankle plantarflexors. Results from this study may be used for the development of constraint induced locomotor intervention approaches aimed at improving locomotor function in individuals after stroke.
Collapse
Affiliation(s)
- Hyosok Lim
- Legs and Walking Lab, Shirley Ryan AbilityLab, Chicago, IL, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA
| | - Shijun Yan
- Legs and Walking Lab, Shirley Ryan AbilityLab, Chicago, IL, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA
| | - Weena Dee
- Legs and Walking Lab, Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Renee Keefer
- Legs and Walking Lab, Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Iram Hameeduddin
- Legs and Walking Lab, Shirley Ryan AbilityLab, Chicago, IL, USA
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Elliot J Roth
- Legs and Walking Lab, Shirley Ryan AbilityLab, Chicago, IL, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA
| | - William Z Rymer
- Legs and Walking Lab, Shirley Ryan AbilityLab, Chicago, IL, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA
| | - Ming Wu
- Legs and Walking Lab, Shirley Ryan AbilityLab, Chicago, IL, USA.
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA.
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
7
|
Liu CL, Huang SH, Wang WC, Chen CK, Su KH, Wu CY. Characterizing Two Hybrid Exercise-Cognitive Training Interventions With Neurophysiological and Behavioral Indexes in Post-Stroke Patients With Cognitive Dysfunction: A Randomized Controlled Trial. IEEE Trans Neural Syst Rehabil Eng 2024; 32:3913-3922. [PMID: 39418153 DOI: 10.1109/tnsre.2024.3482328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Combined exercise and cognitive training have been evidenced to be effective in cognitive and physical functions in post-stroke survivors. Recent interest has gradually shifted to technology-aided cognitive rehabilitation. However, clear neural makers or comprehensive behavioral indexes used for evaluating rehabilitation remain unexplored. The study aimed to examine the effects of two types of combined exercise-cognitive training on stroke patients with cognitive dysfunction, focusing on neural and behavioral markers. 39 patients were randomly assigned to sequential exercise-cognitive training, simultaneous exercise-cognitive training or active control groups and underwent 60 minutes/day training, 3 days/week, for 12 weeks. 29 patients ultimately completed the training. The markers/indexes included cognitive function, physical function, instrumental activities of daily living, and caregiver strain. Cognitive function included working memory task performance, neurophysiological markers, and cognitive indexes. The results indicated no d-prime difference between groups after the training. The simultaneous training demonstrated significant improvements in the neurophysiological marker of P300 and theta coherence compared to the other groups. Moreover, the simultaneous training also led to significant enhancements in physical function, as measured by the Rivermead Mobility Index, comparing to the other groups. Further analysis contrasting the two exercise-cognitive trainings revealed that improvements in cognition and multifaceted domains (i.e., instrumental activities of daily living and caregiver strain) were manifested in the simultaneous training. Together with the neural markers identified in the current interventions, the differential impacts of the two interventions indicates the potential of technology-driven and personalized rehabilitation in post-stroke patients.
Collapse
|
8
|
Zicher B, Avrillon S, Ibáñez J, Farina D. Changes in high-frequency neural inputs to muscles during movement cancellation. J Neural Eng 2024; 21:056039. [PMID: 39419088 DOI: 10.1088/1741-2552/ad8835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
Objective.Cortical beta (13-30 Hz) and gamma (30-60 Hz) oscillations are prominent in the motor cortex and are known to be transmitted to the muscles despite their limited direct impact on force modulation. However, we currently lack fundamental knowledge about the saliency of these oscillations at spinal level. Here, we developed an experimental approach to examine the modulations in high-frequency inputs to motoneurons under different motor states while maintaining a stable force, thus constraining behaviour.Approach.Specifically, we acquired brain and muscle activity during a 'GO'/'NO-GO' task. In this experiment, the effector muscle for the task (tibialis anterior) was kept tonically active during the trials, while participants (N= 12) reacted to sequences of auditory stimuli by either keeping the contraction unaltered ('NO-GO' trials), or by quickly performing a ballistic contraction ('GO' trials). Motor unit (MU) firing activity was extracted from high-density surface and intramuscular electromyographic signals, and the changes in its spectral contents in the 'NO-GO' trials were analysed.Main results.We observed an increase in beta and low-gamma (30-45 Hz) activity after the 'NO-GO' cue in the MU population activity. These results were in line with the brain activity changes measured with electroencephalography. These increases in power occur without relevant alterations in force, as behaviour was restricted to a stable force contraction.Significance.We show that modulations in motor cortical beta and gamma rhythms are also present in muscles when subjects cancel a prepared ballistic action while holding a stable contraction in a 'GO'/'NO-GO' task. This occurs while force levels produced by the task effector muscle remain largely unaltered. Our results suggest that muscle recordings are informative also about motor states that are not force-control signals. This opens up new potential use cases of peripheral neural interfaces.
Collapse
Affiliation(s)
- Blanka Zicher
- Department of Bioengineering and Computing, Imperial College London, London W12 0BZ, United Kingdom
| | - Simon Avrillon
- Department of Bioengineering and Computing, Imperial College London, London W12 0BZ, United Kingdom
| | - Jaime Ibáñez
- Department of Bioengineering and Computing, Imperial College London, London W12 0BZ, United Kingdom
- Centro de Investigacion Biomedica en Red en Bioingeniera, Biomateriales y Nanomedicina, CIBER, Zaragoza, Spain
- Biomedical Signal Interpretation and Computational Simulation Group (BSICoS), I3A and IIS, University of Zaragoza, Zaragoza 50018, Spain
| | - Dario Farina
- Department of Bioengineering and Computing, Imperial College London, London W12 0BZ, United Kingdom
| |
Collapse
|
9
|
Charalambous CC, Bowden MG, Liang JN, Kautz SA, Hadjipapas A. Alpha and beta/low-gamma frequency bands may have distinct neural origin and function during post-stroke walking. Exp Brain Res 2024; 242:2309-2327. [PMID: 39107522 DOI: 10.1007/s00221-024-06906-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 07/31/2024] [Indexed: 08/11/2024]
Abstract
Plantarflexors provide propulsion during walking and receive input from both corticospinal and corticoreticulospinal tracts, which exhibit some frequency-specificity that allows potential differentiation of each tract's descending drive. Given that stroke may differentially affect each tract and impair the function of plantarflexors during walking; here, we examined this frequency-specificity and its relation to walking-specific measures during post-stroke walking. Fourteen individuals with chronic stroke walked on an instrumented treadmill at self-selected and fast walking speed (SSWS and FWS, respectively) while surface electromyography (sEMG) from soleus (SOL), lateral gastrocnemius (LG), and medial gastrocnemius (MG) and ground reaction forces (GRF) were collected. We calculated the intermuscular coherences (IMC; alpha, beta, and low-gamma bands between SOL-LG, SOL-MG, LG-MG) and propulsive impulse using sEMG and GRF, respectively. We examined the interlimb and intralimb IMC comparisons and their relationships with propulsive impulse and walking speed. Interlimb IMC comparisons revealed that beta LG-MG (SSWS) and low-gamma SOL-LG (FWS) IMCs were degraded on the paretic side. Intralimb IMC comparisons revealed that only alpha IMCs (both speeds) exhibited a statistically significant difference to random coherence. Further, alpha LG-MG IMC was positively correlated with propulsive impulse in the paretic limb (SSWS). Alpha and beta/low-gamma bands may have a differential functional role, which may be related to the frequency-specificity of the underlying descending drives. The persistence of alpha band in plantarflexors and its strong positive relationship with propulsive impulse suggests relative alteration of corticoreticulospinal tract after stroke. These findings imply the presence of frequency-specific descending drives to walking-specific muscles in chronic stroke.
Collapse
Affiliation(s)
- Charalambos C Charalambous
- Department of Neurology, Duke University School of Medicine, 40 Medicine Circle Box 3824, Durham, NC, 27710, USA.
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, 21 Ilia Papakyriakou, Block C, Rm 202, 1700, Nicosia, Cyprus.
- Center for Neuroscience and Integrative Brain Research (CENIBRE), University of Nicosia Medical School, 21 Ilia Papakyriakou, Block C, Rm 202, 1700, Nicosia, Cyprus.
- Department of Health Sciences and Research, Medical University of South Carolina, 77 President Street MSC 700, Charleston, SC, 29425, USA.
| | - Mark G Bowden
- Brooks Rehabilitation Clinical Research Center, 3901 S. University Blvd, Suite 101, Jacksonville, FL, 32216, USA
| | - Jing Nong Liang
- Department of Physical Therapy, University of Nevada, 4505 S Maryland Pkwy, Box 453029, Las Vegas, NV, 89154-3029, USA
| | - Steven A Kautz
- Department of Health Sciences and Research, Medical University of South Carolina, 77 President Street MSC 700, Charleston, SC, 29425, USA
- Department of Rehabilitation Sciences, Medical University of South Carolina, Charleston, SC, USA
- Ralph H. Johnson VA Medical Center, 109 Bee St, Charleston, SC, 29401, USA
| | - Avgis Hadjipapas
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, 21 Ilia Papakyriakou, Block C, Rm 202, 1700, Nicosia, Cyprus
- Center for Neuroscience and Integrative Brain Research (CENIBRE), University of Nicosia Medical School, 21 Ilia Papakyriakou, Block C, Rm 202, 1700, Nicosia, Cyprus
| |
Collapse
|
10
|
Wang T, Tang J, Xi X, Peng Y, Wang M, Li L. Corticomuscular Coupling Analysis in Stroke Rehabilitation Based on Variational Mode Decomposition-Transfer Entropy. IEEE Trans Neural Syst Rehabil Eng 2024; 32:3506-3514. [PMID: 39083394 DOI: 10.1109/tnsre.2024.3436077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
This study aims to explore alterations in corticomuscular and cortical coupling during the rehabilitation of stroke patients. We initiated the analysis by employing variational modal decomposition (VMD) on electromyography (EMG) data, followed by the application of VDM-transfer entropy (VMD-TE) to quantify the coupling strength between electroencephalogram (EEG) and EMG signals. Subsequently, we constructed the VMD-TE connection matrix and analyzed the clustering coefficient and small-world attributes within the cortico-muscular functional network (CMFN). Finally, a random forest algorithm was employed to extract features from the VMD-TE connection matrix across different rehabilitation periods. Beta waves in EEG were emerged as the key information carrier between the cortex and muscle, and the CMFN of patients with the beta frequency band has small-world characteristics. During rehabilitation, we observed a decrease in coupling between the initially affected motor cortex and muscle, accompanied by an increase in coupling between the frontal region and muscle. Our findings suggest potential neuro-remodeling in stroke patients after rehabilitation, with CFMN serving as a valuable metric for assessing cortico-muscular coupling.
Collapse
|
11
|
Kukkar KK, Rao N, Huynh D, Shah S, Contreras-Vidal JL, Parikh PJ. Context-dependent reduction in corticomuscular coupling for balance control in chronic stroke survivors. Exp Brain Res 2024; 242:2093-2112. [PMID: 38963559 PMCID: PMC12066146 DOI: 10.1007/s00221-024-06884-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Balance control is an important indicator of mobility and independence in activities of daily living. How the functional coupling between the cortex and the muscle for balance control is affected following stroke remains to be known. We investigated the changes in coupling between the cortex and leg muscles during a challenging balance task over multiple frequency bands in chronic stroke survivors. Fourteen participants with stroke and ten healthy controls performed a challenging balance task. They stood on a computerized support surface that was either fixed (low difficulty condition) or sway-referenced with varying gain (medium and high difficulty conditions). We computed corticomuscular coherence between electrodes placed over the sensorimotor area (electroencephalography) and leg muscles (electromyography) and assessed balance performance using clinical and laboratory-based tests. We found significantly lower delta frequency band coherence in stroke participants when compared with healthy controls under medium difficulty condition, but not during low and high difficulty conditions. These differences were found for most of the distal but not for proximal leg muscle groups. No differences were found at other frequency bands. Participants with stroke showed poor balance clinical scores when compared with healthy controls, but no differences were found for laboratory-based tests. The observation of effects at distal but not at proximal muscle groups suggests differences in the (re)organization of the descending connections across two muscle groups for balance control. We argue that the observed group difference in delta band coherence indicates balance context-dependent alteration in mechanisms for the detection of somatosensory modulation resulting from sway-referencing of the support surface for balance maintenance following stroke.
Collapse
Affiliation(s)
- Komal K Kukkar
- Center for Neuromotor and Biomechanics Research, Department of Health and Human Performance, University of Houston, 3875 Holman Street, suite 104R GAR, Houston, TX, 77204, USA
| | - Nishant Rao
- Yale Child Study Center, Yale University, New Haven, Connecticut, USA
| | - Diana Huynh
- Center for Neuromotor and Biomechanics Research, Department of Health and Human Performance, University of Houston, 3875 Holman Street, suite 104R GAR, Houston, TX, 77204, USA
| | - Sheel Shah
- Center for Neuromotor and Biomechanics Research, Department of Health and Human Performance, University of Houston, 3875 Holman Street, suite 104R GAR, Houston, TX, 77204, USA
| | - Jose L Contreras-Vidal
- Laboratory for Noninvasive Brain-Machine Interface Systems, Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA
| | - Pranav J Parikh
- Center for Neuromotor and Biomechanics Research, Department of Health and Human Performance, University of Houston, 3875 Holman Street, suite 104R GAR, Houston, TX, 77204, USA.
| |
Collapse
|
12
|
Bolt NK, Loehr JD. Motor-related cortical oscillations distinguish one's own from a partner's contributions to a joint action. Biol Psychol 2024; 190:108804. [PMID: 38670429 DOI: 10.1016/j.biopsycho.2024.108804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 04/13/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
The ability to distinguish between one's own and others' actions is a requirement for successful joint action. Such a distinction might be supported by dissociable motor activity underlying each partner's individual contributions to the joint action. However, little research has directly compared motor activity associated with one's own vs. others' actions during joint action. The current study investigated whether motor-related cortical oscillations distinguish between self- and partner-produced actions when partners take turns producing taps to meet a joint timing goal. Across two experiments, the degree of beta suppression differentiated one's own from a partner's actions, with more suppression occurring during one's own actions than during a partner's actions. Self-partner differences in mu suppression were also evident, particularly when partners produced actions in succession. Increased beta suppression was also observed during partners' actions when they were followed by one's own actions, suggesting that the coordination demands imposed by the joint action could affect the pattern of beta reactivity during a turn-taking joint action. Together, these findings demonstrate that dynamic patterns of motor activity underpin successful joint action and that periods of distinct motor activity are associated with one's own contributions to a joint action.
Collapse
Affiliation(s)
- Nicole K Bolt
- Department of Psychology and Health Studies, University of Saskatchewan, Canada.
| | - Janeen D Loehr
- Department of Psychology and Health Studies, University of Saskatchewan, Canada
| |
Collapse
|
13
|
Issa NP, Aydin S, Bhatnagar S, Baumgartner NW, Hill J, Aluri S, Valentic CS, Polley E, Gomez CM, Rezania K. Intermuscular Coherence in Spinocerebellar Ataxias 3 and 6: a Preliminary Study. CEREBELLUM (LONDON, ENGLAND) 2024; 23:601-608. [PMID: 37428409 PMCID: PMC10776817 DOI: 10.1007/s12311-023-01585-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
Spinocerebellar ataxias (SCAs) are familial neurodegenerative diseases involving the cerebellum and spinocerebellar tracts. While there is variable involvement of corticospinal tracts (CST), dorsal root ganglia, and motor neurons in SCA3, SCA6 is characterized by a pure, late-onset ataxia. Abnormal intermuscular coherence in the beta-gamma frequency range (IMCβγ) implies a lack of integrity of CST or the afferent input from the acting muscles. We test the hypothesis that IMCβγ has the potential to be a biomarker of disease activity in SCA3 but not SCA6. Intermuscular coherence between biceps brachii and brachioradialis muscles was measured from surface EMG waveforms in SCA3 (N = 16) and SCA6 (N = 20) patients and in neurotypical subjects (N = 23). IMC peak frequencies were present in the β range in SCA patients and in the γ range in neurotypical subjects. The difference between IMC amplitudes in the γ and β ranges was significant when comparing neurotypical control subjects to SCA3 (p < 0.01) and SCA6 (p = 0.01) patients. IMCβγ amplitude was smaller in SCA3 patients compared to neurotypical subjects (p < 0.05), but not different between SCA3 and SCA6 patients or between SCA6 and neurotypical subjects. IMC metrics can differentiate SCA patients from normal controls.
Collapse
Affiliation(s)
- Naoum P Issa
- Department of Neurology, University of Chicago, 5841 S. Maryland Ave., MC2030, Chicago, IL, 60637, USA.
| | - Serdar Aydin
- Department of Neurology, University of Chicago, 5841 S. Maryland Ave., MC2030, Chicago, IL, 60637, USA
| | - Shail Bhatnagar
- Department of Neurology, University of Chicago, 5841 S. Maryland Ave., MC2030, Chicago, IL, 60637, USA
| | | | - Jacquelyn Hill
- Department of Neurology, University of Chicago, 5841 S. Maryland Ave., MC2030, Chicago, IL, 60637, USA
| | - Sravya Aluri
- Department of Neurology, University of Chicago, 5841 S. Maryland Ave., MC2030, Chicago, IL, 60637, USA
| | | | - Eric Polley
- Department of Neurology, University of Chicago, 5841 S. Maryland Ave., MC2030, Chicago, IL, 60637, USA
| | - Christopher M Gomez
- Department of Neurology, University of Chicago, 5841 S. Maryland Ave., MC2030, Chicago, IL, 60637, USA
| | - Kourosh Rezania
- Department of Neurology, University of Chicago, 5841 S. Maryland Ave., MC2030, Chicago, IL, 60637, USA
| |
Collapse
|
14
|
Zhang J, Wang M, Alam M, Zheng YP, Ye F, Hu X. Effects of non-invasive cervical spinal cord neuromodulation by trans-spinal electrical stimulation on cortico-muscular descending patterns in upper extremity of chronic stroke. Front Bioeng Biotechnol 2024; 12:1372158. [PMID: 38576448 PMCID: PMC10991759 DOI: 10.3389/fbioe.2024.1372158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/11/2024] [Indexed: 04/06/2024] Open
Abstract
Background: Trans-spinal electrical stimulation (tsES) to the intact spinal cord poststroke may modulate the cortico-muscular control in stroke survivors with diverse lesions in the brain. This work aimed to investigate the immediate effects of tsES on the cortico-muscular descending patterns during voluntary upper extremity (UE) muscle contractions by analyzing cortico-muscular coherence (CMCoh) and electromyography (EMG) in people with chronic stroke. Methods: Twelve chronic stroke participants were recruited to perform wrist-hand extension and flexion tasks at submaximal levels of voluntary contraction for the corresponding agonist flexors and extensors. During the tasks, the tsES was delivered to the cervical spinal cord with rectangular biphasic pulses. Electroencephalography (EEG) data were collected from the sensorimotor cortex, and the EMG data were recorded from both distal and proximal UE muscles. The CMCoh, laterality index (LI) of the peak CMCoh, and EMG activation level parameters under both non-tsES and tsES conditions were compared to evaluate the immediate effects of tsES on the cortico-muscular descending pathway. Results: The CMCoh and LI of peak CMCoh in the agonist distal muscles showed significant increases (p < 0.05) during the wrist-hand extension and flexion tasks with the application of tsES. The EMG activation levels of the antagonist distal muscle during wrist-hand extension were significantly decreased (p < 0.05) with tsES. Additionally, the proximal UE muscles exhibited significant decreases (p < 0.05) in peak CMCoh and EMG activation levels by applying tsES. There was a significant increase (p < 0.05) in LI of peak CMCoh of proximal UE muscles during tsES. Conclusion: The cervical spinal cord neuromodulation via tsES enhanced the residual descending excitatory control, activated the local inhibitory circuits within the spinal cord, and reduced the cortical and proximal muscular compensatory effects. These results suggested the potential of tsES as a supplementary input for improving UE motor functions in stroke rehabilitation.
Collapse
Affiliation(s)
- Jianing Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, China
| | - Maner Wang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, China
| | - Monzurul Alam
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, China
| | - Yong-Ping Zheng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, China
| | - Fuqiang Ye
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, China
| | - Xiaoling Hu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, China
- Research Institute for Smart Ageing (RISA), Hong Kong SAR, China
- Research Centre of Data Science and Artificial Intelligence (RC-DSAI), Hong Kong SAR, China
- Joint Research Centre for Biosensing and Precision Theranostics, Hong Kong SAR, China
- University Research Facility in Behavioral and Systems Neuroscience (UBSN), The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
15
|
Gao Z, Lv S, Ran X, Wang Y, Xia M, Wang J, Qiu M, Wei Y, Shao Z, Zhao Z, Zhang Y, Zhou X, Yu Y. Influencing factors of corticomuscular coherence in stroke patients. Front Hum Neurosci 2024; 18:1354332. [PMID: 38562230 PMCID: PMC10982423 DOI: 10.3389/fnhum.2024.1354332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Stroke, also known as cerebrovascular accident, is an acute cerebrovascular disease with a high incidence, disability rate, and mortality. It can disrupt the interaction between the cerebral cortex and external muscles. Corticomuscular coherence (CMC) is a common and useful method for studying how the cerebral cortex controls muscle activity. CMC can expose functional connections between the cortex and muscle, reflecting the information flow in the motor system. Afferent feedback related to CMC can reveal these functional connections. This paper aims to investigate the factors influencing CMC in stroke patients and provide a comprehensive summary and analysis of the current research in this area. This paper begins by discussing the impact of stroke and the significance of CMC in stroke patients. It then proceeds to elaborate on the mechanism of CMC and its defining formula. Next, the impacts of various factors on CMC in stroke patients were discussed individually. Lastly, this paper addresses current challenges and future prospects for CMC.
Collapse
Affiliation(s)
- Zhixian Gao
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Shiyang Lv
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Xiangying Ran
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Yuxi Wang
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Mengsheng Xia
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Junming Wang
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Mengyue Qiu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Yinping Wei
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Zhenpeng Shao
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Zongya Zhao
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Yehong Zhang
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Xuezhi Zhou
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
| | - Yi Yu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| |
Collapse
|
16
|
Guo Z, Lin JP, Simeone O, Mills KR, Cvetkovic Z, McClelland VM. Cross-frequency cortex-muscle interactions are abnormal in young people with dystonia. Brain Commun 2024; 6:fcae061. [PMID: 38487552 PMCID: PMC10939448 DOI: 10.1093/braincomms/fcae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/10/2024] [Accepted: 02/23/2024] [Indexed: 03/17/2024] Open
Abstract
Sensory processing and sensorimotor integration are abnormal in dystonia, including impaired modulation of beta-corticomuscular coherence. However, cortex-muscle interactions in either direction are rarely described, with reports limited predominantly to investigation of linear coupling, using corticomuscular coherence or Granger causality. Information-theoretic tools such as transfer entropy detect both linear and non-linear interactions between processes. This observational case-control study applies transfer entropy to determine intra- and cross-frequency cortex-muscle coupling in young people with dystonia/dystonic cerebral palsy. Fifteen children with dystonia/dystonic cerebral palsy and 13 controls, aged 12-18 years, performed a grasp task with their dominant hand. Mechanical perturbations were provided by an electromechanical tapper. Bipolar scalp EEG over contralateral sensorimotor cortex and surface EMG over first dorsal interosseous were recorded. Multi-scale wavelet transfer entropy was applied to decompose signals into functional frequency bands of oscillatory activity and to quantify intra- and cross-frequency coupling between brain and muscle. Statistical significance against the null hypothesis of zero transfer entropy was established, setting individual 95% confidence thresholds. The proportion of individuals in each group showing significant transfer entropy for each frequency combination/direction was compared using Fisher's exact test, correcting for multiple comparisons. Intra-frequency transfer entropy was detected in all participants bidirectionally in the beta (16-32 Hz) range and in most participants from EEG to EMG in the alpha (8-16 Hz) range. Cross-frequency transfer entropy across multiple frequency bands was largely similar between groups, but a specific coupling from low-frequency EMG to beta EEG was significantly reduced in dystonia [P = 0.0061 (corrected)]. The demonstration of bidirectional cortex-muscle communication in dystonia emphasizes the value of transfer entropy for exploring neural communications in neurological disorders. The novel finding of diminished coupling from low-frequency EMG to beta EEG in dystonia suggests impaired cortical feedback of proprioceptive information with a specific frequency signature that could be relevant to the origin of the excessive low-frequency drive to muscle.
Collapse
Affiliation(s)
- Zhenghao Guo
- Department of Engineering, King's College London, London WC2R 2LS, UK
- School of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jean-Pierre Lin
- Children's Neuroscience, Evelina London Children's Hospital, Guy's & St Thomas' NHS Foundation Trust (GSTT), London SE1 7EH, UK
| | - Osvaldo Simeone
- Department of Engineering, King's College London, London WC2R 2LS, UK
| | - Kerry R Mills
- Department of Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London SE5 9RX, UK
| | - Zoran Cvetkovic
- Department of Engineering, King's College London, London WC2R 2LS, UK
| | - Verity M McClelland
- Children's Neuroscience, Evelina London Children's Hospital, Guy's & St Thomas' NHS Foundation Trust (GSTT), London SE1 7EH, UK
- Department of Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London SE5 9RX, UK
| |
Collapse
|
17
|
Riehm CD, Bonnette S, Rush JL, Diekfuss JA, Koohestani M, Myer GD, Norte GE, Sherman DA. Corticomuscular cross-recurrence analysis reveals between-limb differences in motor control among individuals with ACL reconstruction. Exp Brain Res 2024; 242:355-365. [PMID: 38092900 PMCID: PMC10872341 DOI: 10.1007/s00221-023-06751-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/16/2023] [Indexed: 01/04/2024]
Abstract
Surgical reconstruction of the anterior cruciate ligament (ACL) and subsequent physical therapy can help athletes return to competition; however, re-injury rates remain disproportionately high due, in part, to lingering biomechanical and neurological factors that are not fully addressed during rehabilitation. Prior reports indicate that individuals exhibit altered electrical activity in both brain and muscle after ACL reconstruction (ACLR). In this investigation, we aimed to extend existing approaches by introducing a novel non-linear analysis of corticomuscular dynamics, which does not assume oscillatory coupling between brain and muscle: Corticomuscular cross-recurrence analysis (CM-cRQA). Our findings indicate that corticomuscular dynamics vary significantly between involved (injured) and uninvolved legs of participants with ACLR during voluntary isometric contractions between the brain and both the vastus medialis and lateralis. This finding points to a potential lingering neural deficit underlying re-injury for athletes after surgical reconstruction, namely the dynamical structure of neuromuscular (brain to quad muscle) coordination, which is significantly asymmetric, between limbs, in those who have ACLR.
Collapse
Affiliation(s)
- Christopher D Riehm
- Emory Sports Performance And Research Center (SPARC), Flowery Branch, GA, USA.
- Emory Sports Medicine Center, Atlanta, GA, USA.
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA.
| | - Scott Bonnette
- Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Justin L Rush
- Division of Physical Therapy, School of Rehabilitation Sciences, Ohio University, Athens, OH, USA
| | - Jed A Diekfuss
- Emory Sports Performance And Research Center (SPARC), Flowery Branch, GA, USA
- Emory Sports Medicine Center, Atlanta, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | - Moein Koohestani
- Neuroplasticity, & Sarcopenia (CNS) Lab, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL, USA
| | - Gregory D Myer
- Emory Sports Performance And Research Center (SPARC), Flowery Branch, GA, USA
- Emory Sports Medicine Center, Atlanta, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- The Micheli Center for Sports Injury Prevention, Waltham, MA, USA
- Youth Physical Development Centre, Cardiff Metropolitan University, Wales, UK
| | - Grant E Norte
- Neuroplasticity, & Sarcopenia (CNS) Lab, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL, USA
| | - David A Sherman
- Live4 Physical Therapy and Wellness, Acton, MA, USA
- Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| |
Collapse
|
18
|
Ortega-Auriol P, Byblow WD, Besier T, McMorland AJC. Muscle synergies are associated with intermuscular coherence and cortico-synergy coherence in an isometric upper limb task. Exp Brain Res 2023; 241:2627-2643. [PMID: 37737925 PMCID: PMC10635925 DOI: 10.1007/s00221-023-06706-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023]
Abstract
To elucidate the underlying physiological mechanisms of muscle synergies, we investigated long-range functional connectivity by cortico-muscular (CMC), intermuscular (IMC) and cortico-synergy (CSC) coherence. Fourteen healthy participants executed an isometric upper limb task in synergy-tuned directions. Cortical activity was recorded using 32-channel electroencephalography (EEG) and muscle activity using 16-channel electromyography (EMG). Using non-negative matrix factorisation (NMF), we calculated muscle synergies from two different tasks. A preliminary multidirectional task was used to identify synergy-preferred directions (PDs). A subsequent coherence task, consisting of generating forces isometrically in the synergy PDs, was used to assess the functional connectivity properties of synergies. Overall, we were able to identify four different synergies from the multidirectional task. A significant alpha band IMC was consistently present in all extracted synergies. Moreover, IMC alpha band was higher between muscles with higher weights within a synergy. Interestingly, CSC alpha band was also significantly higher across muscles with higher weights within a synergy. In contrast, no significant CMC was found between the motor cortex area and synergy muscles. The presence of a shared input onto synergistic muscles within a synergy supports the idea of neurally derived muscle synergies that build human movement. Our findings suggest cortical modulation of some of the synergies and the consequential existence of shared input between muscles within cortically modulated synergies.
Collapse
Affiliation(s)
- Pablo Ortega-Auriol
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand.
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.
| | - Winston D Byblow
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Thor Besier
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Angus J C McMorland
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
19
|
Chen BJ, Liu TY, Wu HC, Tsai MW, Wei SH, Chou LW. Effects of sling exercises on pain, function, and corticomuscular functional connectivity in individuals with chronic low back pain- preliminary study. PLoS One 2023; 18:e0288405. [PMID: 38032998 PMCID: PMC10688743 DOI: 10.1371/journal.pone.0288405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/21/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Individuals with chronic low back pain (CLBP) exhibit altered brain function and trunk muscle activation. AIM This study examined the effects of sling exercises on pain, function, and corticomuscular coherence (CMC) in healthy adults and individuals with CLBP. METHODS Eight individuals with CLBP and 15 healthy adults received sling exercise training for 6 weeks. Before and after training, participants performed two motor tasks: rapid arm lifts and repeated trunk flexion-extension tasks, and electromyography of the trunk muscles and electroencephalography of the sensorimotor cortex were recorded. Chi-squared test and Mann-Whitney U tests were used for between group comparison, and Wilcoxon signed-rank tests were used for pre- and post-training comparison. Spearman's Rank Correlation Coefficient (Rs) was used to identify for the relationship between motor performance and Corticomuscular coherence. RESULTS Sling exercises significantly improved pain (median from 3 to 1, p = .01) and Oswestry Disability Index scores (median from 2.5 to 2, p = .03) in the CLBP group. During rapid arm lifts, individuals with CLBP showed lower beta CMC of the transverse abdominis and internal oblique (Tra/IO) (0.8 vs. 0.49, p = .01) and lumbar erector spinae (0.70 vs. 0.38, p = .04) than the control group at baseline. During trunk flexion-extension, the CLBP group showed higher gamma CMC of the left Tra/IO than the control group at baseline (0.28 vs. 0.16 , p = .001). After training, all CMC became statistically non-significant between groups. The training induced improvement in anticipatory activation of the Tra/IO was positively correlated with the beta CMC (rs = 0.7851, p = .02). CONCLUSION A 6-week sling exercises diminished pain and disability in patients with CLBP and improved the anticipatory activation and CMC in some trunk muscles. These improvements were associated with training induced changes in corticomuscular connectivity in individuals with CLBP.
Collapse
Affiliation(s)
- Bo-Jhen Chen
- Department of Rehabilitation Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan (R.O.C.)
| | - Tzu-Ying Liu
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chao Tung University, Hsinchu, Taiwan (R.O.C.)
| | - Hsin-Chi Wu
- Department of Rehabilitation Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan (R.O.C.)
- Department of Medicine, Tzu Chi University, Hualien, Taiwan (R.O.C.)
| | - Mei-Wun Tsai
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chao Tung University, Hsinchu, Taiwan (R.O.C.)
| | - Shun-Hwa Wei
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chao Tung University, Hsinchu, Taiwan (R.O.C.)
| | - Li-Wei Chou
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chao Tung University, Hsinchu, Taiwan (R.O.C.)
| |
Collapse
|
20
|
Zhan J, Yu C, Xiao S, Shen B, Zhang C, Zhou J, Fu W. Effects of high-definition transcranial direct current stimulation on the cortical-muscular functional coupling and muscular activities of ankle dorsi-plantarflexion under running-induced fatigue. Front Physiol 2023; 14:1263309. [PMID: 37841316 PMCID: PMC10570418 DOI: 10.3389/fphys.2023.1263309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/22/2023] [Indexed: 10/17/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) can improve motor control performance under fatigue. However, the influences of tDCS on factors contributing to motor control (e.g., cortical-muscular functional coupling, CMFC) are unclear. This double-blinded and randomized study examined the effects of high-definition tDCS (HD-tDCS) on muscular activities of dorsiflexors and plantarflexors and CMFC when performing ankle dorsi-plantarflexion under fatigue. Twenty-four male adults were randomly assigned to receive five sessions of 20-min HD-tDCS targeting primary motor cortex (M1) or sham stimulation. Three days before and 1 day after the intervention, participants completed ankle dorsi-plantarflexion under fatigue induced by prolonged running exercise. During the task, electroencephalography (EEG) of M1 (e.g., C1, Cz) and surface electromyography (sEMG) of several muscles (e.g., tibialis anterior [TA]) were recorded synchronously. The corticomuscular coherence (CMC), root mean square (RMS) of sEMG, blood lactate, and maximal voluntary isometric contraction (MVC) of ankle dorsiflexors and plantarflexors were obtained. Before stimulation, greater beta- and gamma-band CMC between M1 and TA were significantly associated with greater RMS of TA (r = 0.460-0.619, p = 0.001-0.024). The beta- and gamma-band CMC of C1-TA and Cz-TA, and RMS of TA and MVC torque of dorsiflexors were significantly higher after HD-tDCS than those at pre-intervention in the HD-tDCS group and post-intervention in the control group (p = 0.002-0.046). However, the HD-tDCS-induced changes in CMC and muscle activities were not significantly associated (r = 0.050-0.128, p = 0.693-0.878). HD-tDCS applied over M1 can enhance the muscular activities of ankle dorsiflexion under fatigue and related CMFC.
Collapse
Affiliation(s)
- Jianglong Zhan
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Changxiao Yu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Songlin Xiao
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Bin Shen
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Chuyi Zhang
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Junhong Zhou
- The Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Weijie Fu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
21
|
Scaltritti M, Greatti E, Sulpizio S. Electrophysiological evidence of discontinuities in the propagation of lexical decision processes across the motor hierarchy. Neuropsychologia 2023; 188:108630. [PMID: 37380101 DOI: 10.1016/j.neuropsychologia.2023.108630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 06/30/2023]
Abstract
This research assessed the propagation of decisional effects across multiple electrophysiological indexes related to motor-response implementation within a lexical decision task, a paradigmatic case of a 2-alternative choice task on linguistic stimuli. By co-registering electroencephalographic and electromyographic data, we focused on the lexicality effect (i.e., the difference between responses to words and nonwords), and we tracked its influence across indexes of motor-response planning (indexed by effector-selective lateralization of beta-frequency desynchronizations), programming (indexed by the lateralized readiness potential) and execution (indexed by the chronometric durations of muscular responses). In addition, we explored corticomuscular coherence as the potential physiological underpinning of a continuous mapping of information between stimulus evaluation and response channels. The results revealed lexicality effects only on indexes of motor planning and execution, with no reliable involvement of the other measures. This pattern is discussed with reference to the hypothesis of multiple decisional components exerting different influences across the motor-hierarchy.
Collapse
Affiliation(s)
- Michele Scaltritti
- Dipartimento di Psicologia e Scienze Cognitive, Università Degli Studi di Trento, Corso Bettini 31, 38068, Rovereto TN, Italy.
| | - Elena Greatti
- Dipartimento di Psicologia e Scienze Cognitive, Università Degli Studi di Trento, Corso Bettini 31, 38068, Rovereto TN, Italy
| | - Simone Sulpizio
- Dipartimento di Psicologia - Università Degli Studi di Milano-Bicocca, Piazza Dell'Ateneo Nuovo 1, 20126, Milano MI, Italy; Milan Center for Neuroscience (NeuroMI) - Università Degli Studi di Milano-Bicocca, Piazza Dell'Ateneo Nuovo 1, 20126, Milano MI, Italy.
| |
Collapse
|
22
|
Ko NH, Laine CM, Valero-Cuevas FJ. Task-dependent alteration of beta-band intermuscular coherence is associated with ipsilateral corticospinal tract excitability. Front Sports Act Living 2023; 5:1177004. [PMID: 37576608 PMCID: PMC10416639 DOI: 10.3389/fspor.2023.1177004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023] Open
Abstract
Beta-band (15-30 Hz) synchronization between the EMG signals of active limb muscles can serve as a non-invasive assay of corticospinal tract integrity. Tasks engaging a single limb often primarily utilize one corticospinal pathway, although bilateral neural circuits can participate in goal-directed actions involving multi-muscle coordination and utilization of feedback. Suboptimal utilization of such circuits after CNS injury can result in unintended mirror movements and activation of pathological synergies. Accordingly, it is important to understand how the actions of one limb (e.g., a less-affected limb after strokes) influence the opposite corticospinal pathway for the rehabilitation target. Certain unimanual actions decrease the excitability of the "unengaged" corticospinal tract, presumably to prevent mirror movement, but there is no direct way to predict the extent to which this will occur. In this study, we tested the hypothesis that task-dependent changes in beta-band drives to muscles of one hand will inversely correlate with changes in the opposite corticospinal tract excitability. Ten participants completed spring pinching tasks known to induce differential 15-30 Hz drive to muscles. During compressions, transcranial magnetic stimulation single pulses to the ipsilateral M1 were delivered to generate motor-evoked potentials in the unengaged hand. The task-induced changes in ipsilateral corticospinal excitability were inversely correlated with associated changes in EMG-EMG coherence of the task hand. These results demonstrate a novel connection between intermuscular coherence and the excitability of the "unengaged" corticospinal tract and provide a springboard for further mechanistic studies of unimanual tasks of varying difficulty and their effects on neural pathways relevant to rehabilitation.
Collapse
Affiliation(s)
- Na-hyeon Ko
- Department of Physical Therapy, California State University, Fresno, CA, United States
| | - Christopher M. Laine
- Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States
| | - Francisco J. Valero-Cuevas
- Brain Body Dynamics Lab, Division of Biokinesiology and Physical Therapy, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
23
|
Zipser-Mohammadzada F, Scheffers MF, Conway BA, Halliday DM, Zipser CM, Curt A, Schubert M. Intramuscular coherence enables robust assessment of modulated supra-spinal input in human gait: an inter-dependence study of visual task and walking speed. Exp Brain Res 2023; 241:1675-1689. [PMID: 37199775 DOI: 10.1007/s00221-023-06635-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/11/2023] [Indexed: 05/19/2023]
Abstract
Intramuscular high-frequency coherence is increased during visually guided treadmill walking as a consequence of increased supra-spinal input. The influence of walking speed on intramuscular coherence and its inter-trial reproducibility need to be established before adoption as a functional gait assessment tool in clinical settings. Here, fifteen healthy controls performed a normal and a target walking task on a treadmill at various speeds (0.3 m/s, 0.5 m/s, 0.9 m/s, and preferred) during two sessions. Intramuscular coherence was calculated between two surface EMG recordings sites of the Tibialis anterior muscle during the swing phase of walking. The results were averaged across low-frequency (5-14 Hz) and high-frequency (15-55 Hz) bands. The effect of speed, task, and time on mean coherence was assessed using three-way repeated measures ANOVA. Reliability and agreement were calculated with the intra-class correlation coefficient and Bland-Altman method, respectively. Intramuscular coherence during target walking was significantly higher than during normal walking across all walking speeds in the high-frequency band as obtained by the three-way repeated measures ANOVA. Interaction effects between task and speed were found for the low- and high-frequency bands, suggesting that task-dependent differences increase at higher walking speeds. Reliability of intramuscular coherence was moderate to excellent for most normal and target walking tasks in all frequency bands. This study confirms previous reports of increased intramuscular coherence during target walking, while providing first evidence for reproducibility and robustness of this measure as a requirement to investigate supra-spinal input.Trial registration Registry number/ClinicalTrials.gov Identifier: NCT03343132, date of registration 2017/11/17.
Collapse
Affiliation(s)
| | - Marjelle Fredie Scheffers
- Department of Neurophysiology, Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
- Faculty of Medicine, Utrecht University, Utrecht, The Netherlands
| | - Bernard A Conway
- Biomedical Engineering, University of Strathclyde, Glasgow, G4 0NW, UK
| | - David M Halliday
- School of Physics, Engineering and Technology, University of York, York, YO10 5DD, UK
- York Biomedical Research Institute, University of York, York, UK
| | - Carl Moritz Zipser
- Department of Neurophysiology, Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Armin Curt
- Department of Neurophysiology, Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Martin Schubert
- Department of Neurophysiology, Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| |
Collapse
|
24
|
Issa NP, Aydin S, Bhatnagar S, Baumgartner NW, Hill J, Aluri S, Valentic CS, Gomez CM, Rezania K. Intermuscular coherence in spinocerebellar ataxias 3 and 6: a preliminary study. RESEARCH SQUARE 2023:rs.3.rs-2782070. [PMID: 37131794 PMCID: PMC10153384 DOI: 10.21203/rs.3.rs-2782070/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Objective : Spinocerebellar ataxias (SCAs) are familial neurodegenerative diseases involving the cerebellum and spinocerebellar tracts. While there is variable involvement of corticospinal tracts (CST), dorsal root ganglia, and motor neurons in SCA3, SCA6 is characterized by a pure, late-onset ataxia. Abnormal intermuscular coherence in the beta-gamma frequency range (IMCbg) implies lack of integrity of CST or the afferent input from the acting muscles. We test the hypothesis that IMCbg has the potential to be a biomarker of disease activity in SCA3 but not SCA6. Methods: Intermuscular coherence between biceps and brachioradialis muscles was measured from surface EMG waveforms in SCA3 (N=16) and SCA6 (N=20) patients, and in neurotypical subjects (N=23). Results: IMC peak frequencies were present in the b range in SCA patients and in the g range in neurotypical subjects. The difference between IMC amplitudes in the g and b ranges was significant when comparing neurotypical control subjects to SCA3 (p < 0.01) and SCA6 (p = 0.01) patients. IMCbg amplitude was smaller in SCA3 patients compared to neurotypical subjects (p<0.05), but not different between SCA3 and SCA6 patients or between SCA6 and neurotypical subjects. Conclusion/significance: IMC metrics can differentiate SCA patients from normal controls.
Collapse
|
25
|
Sherman DA, Baumeister J, Stock MS, Murray AM, Bazett-Jones DM, Norte GE. Weaker Quadriceps Corticomuscular Coherence in Individuals after ACL Reconstruction during Force Tracing. Med Sci Sports Exerc 2023; 55:625-632. [PMID: 36730761 DOI: 10.1249/mss.0000000000003080] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE This study aimed to compare quadriceps corticomuscular coherence (CMC) and force steadiness between individuals with anterior cruciate ligament reconstruction (ACLR) and uninjured controls during a force tracing task. METHODS Individuals with ACLR ( n = 20) and controls ( n = 20) performed a knee extension force-control task at 50% of maximal voluntary effort. Electrocortical activity, electromyographic activity, and torque output were recorded concurrently. CMC in beta (13-30 Hz) and gamma (31-80 Hz) frequency bands was assessed using partial directed coherence between the contralateral motor cortex (e.g., C4-C2-Cz electrodes) and the ipsilateral quadriceps muscles (e.g., left vastus medialis and lateralis). Force steadiness was quantified using root-mean-square error and coefficient of variation. Active motor threshold was determined using transcranial magnetic stimulation. Differences between groups (ACLR vs control) and limbs (involved vs uninvolved) were assessed using peak knee extension strength and active motor threshold as a priori covariates. RESULTS Participants with ACLR had lower gamma band connectivity bilaterally when compared with controls (vastus medialis: d = 0.8; vastus lateralis: d = 0.7). Further, the ACLR group demonstrated worse quadriceps force steadiness (root-mean-square error, d = 0.5), lower involved limb quadriceps strength ( d = 1.1), and higher active motor threshold ( d = 1.0) compared with controls. CONCLUSIONS Lower quadriceps gamma band CMC in the ACLR group suggests lower cortical drive (e.g., corticomotor decoupling) to the quadriceps compared with matched controls. Further, the ACLR group demonstrated worse quadriceps force steadiness, suggesting impaired ability to modulate quadriceps neuromuscular control. Notably, CMC differences were present only in the gamma frequency band, suggesting impairments may be specific to multisensory integration and force modulation.
Collapse
Affiliation(s)
| | - Jochen Baumeister
- Exercise Science and Neuroscience Unit, Department of Exercise and Health, Faculty of Science, Paderborn University, Paderborn, GERMANY
| | - Matt S Stock
- Neuromuscular Plasticity Laboratory, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL
| | - Amanda M Murray
- School of Exercise and Rehabilitation Sciences, College of Health and Human Services, University of Toledo, Toledo, OH
| | - David M Bazett-Jones
- School of Exercise and Rehabilitation Sciences, College of Health and Human Services, University of Toledo, Toledo, OH
| | - Grant E Norte
- School of Exercise and Rehabilitation Sciences, College of Health and Human Services, University of Toledo, Toledo, OH
| |
Collapse
|
26
|
Stokkermans M, Solis-Escalante T, Cohen MX, Weerdesteyn V. Distinct cortico-muscular coupling between step and stance leg during reactive stepping responses. Front Neurol 2023; 14:1124773. [PMID: 36998772 PMCID: PMC10043329 DOI: 10.3389/fneur.2023.1124773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/20/2023] [Indexed: 03/16/2023] Open
Abstract
Balance recovery often relies on successful stepping responses, which presumably require precise and rapid interactions between the cerebral cortex and the leg muscles. Yet, little is known about how cortico-muscular coupling (CMC) supports the execution of reactive stepping. We conducted an exploratory analysis investigating time-dependent CMC with specific leg muscles in a reactive stepping task. We analyzed high density EEG, EMG, and kinematics of 18 healthy young participants while exposing them to balance perturbations at different intensities, in the forward and backward directions. Participants were instructed to maintain their feet in place, unless stepping was unavoidable. Muscle-specific Granger causality analysis was conducted on single step- and stance-leg muscles over 13 EEG electrodes with a midfrontal scalp distribution. Time-frequency Granger causality analysis was used to identify CMC from cortex to muscles around perturbation onset, foot-off and foot strike events. We hypothesized that CMC would increase compared to baseline. In addition, we expected to observe different CMC between step and stance leg because of their functional role during the step response. In particular, we expected that CMC would be most evident for the agonist muscles while stepping, and that CMC would precede upregulation in EMG activity in these muscles. We observed distinct Granger gain dynamics over theta, alpha, beta, and low/high-gamma frequencies during the reactive balance response for all leg muscles in each step direction. Interestingly, between-leg differences in Granger gain were almost exclusively observed following the divergence of EMG activity. Our results demonstrate cortical involvement in the reactive balance response and provide insights into its temporal and spectral characteristics. Overall, our findings suggest that higher levels of CMC do not facilitate leg-specific EMG activity. Our work is relevant for clinical populations with impaired balance control, where CMC analysis may elucidate the underlying pathophysiological mechanisms.
Collapse
Affiliation(s)
- Mitchel Stokkermans
- Department of Rehabilitation, Radboud University Medical Center for Medical Neuroscience, Nijmegen, Netherlands
- Department of Synchronisation in Neural Systems, Donders Institute for Brain Cognition and Behavior, Nijmegen, Netherlands
| | - Teodoro Solis-Escalante
- Department of Rehabilitation, Radboud University Medical Center for Medical Neuroscience, Nijmegen, Netherlands
| | - Michael X. Cohen
- Department of Synchronisation in Neural Systems, Donders Institute for Brain Cognition and Behavior, Nijmegen, Netherlands
| | - Vivian Weerdesteyn
- Department of Rehabilitation, Radboud University Medical Center for Medical Neuroscience, Nijmegen, Netherlands
- Sint Maartenskliniek Research, Nijmegen, Netherlands
| |
Collapse
|
27
|
Bayram MB, Suviseshamuthu ES, Plow EB, Forrest GF, Yue GH. Aging-induced alterations in EEG spectral power associated with graded force motor tasks. Exp Brain Res 2023; 241:905-915. [PMID: 36808464 PMCID: PMC10037673 DOI: 10.1007/s00221-023-06572-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 02/12/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND It has been demonstrated that in young and healthy individuals, there is a strong association between the amplitude of EEG-derived motor activity-related cortical potential or EEG spectral power (ESP) and voluntary muscle force. This association suggests that the motor-related ESP may serve as an index of central nervous system function in controlling voluntary muscle activation Therefore, it may potentially be used as an objective marker to track changes in functional neuroplasticity due to neurological disorders, aging, and following rehabilitation therapies. To this end, the relationship between the band-specific ESP-combined spectral power of EEG oscillatory and aperiodic (noise) components-and voluntary elbow flexion (EF) force has been analyzed in elder and young individuals. METHODS 20 young (22.6 ± 0.87 year) and 28 elderly (74.79 ± 1.37 year) participants performed EF contractions at 20%, 50%, and 80% of maximum voluntary contraction (MVC) while high-density EEG signals were recorded. Both the absolute and relative ESPs were computed for the EEG frequency bands of interest. RESULTS The MVC force generated by the elderly was foreseeably lower than that of the young participants. Compared to young, the elderly cohort's (1) total ESP was significantly lower for the high (80% MVC) force task; (2) relative ESP in beta band was significantly elevated for the low and moderate (20% MVC and 50% MVC) force tasks; (3) absolute ESP failed to have a positive trend with force for EEG frequency bands of interest; and (4) beta-band relative ESP did not exhibit a significant decrease with increasing force levels. CONCLUSIONS As opposed to young subjects, the beta-band relative ESP in elderly did not significantly decrease with increasing EF force values. This observation suggests the use of beta-band relative ESP as a potential biomarker for age-related motor control degeneration.
Collapse
Affiliation(s)
- Mehmed Bugrahan Bayram
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, 1199 Pleasant Valley Way, West Orange, NJ, 07052, USA.
- Department of Biomedical Engineering, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Türkiye.
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Rutgers University, 185 W South Orange Ave, Newark, NJ, 07103, USA.
| | - Easter S Suviseshamuthu
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, 1199 Pleasant Valley Way, West Orange, NJ, 07052, USA
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Rutgers University, 185 W South Orange Ave, Newark, NJ, 07103, USA
| | - Ela B Plow
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | - Gail F Forrest
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, 1199 Pleasant Valley Way, West Orange, NJ, 07052, USA
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Rutgers University, 185 W South Orange Ave, Newark, NJ, 07103, USA
| | - Guang H Yue
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, 1199 Pleasant Valley Way, West Orange, NJ, 07052, USA
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Rutgers University, 185 W South Orange Ave, Newark, NJ, 07103, USA
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| |
Collapse
|
28
|
Charalambous CC, Hadjipapas A. Is there frequency-specificity in the motor control of walking? The putative differential role of alpha and beta oscillations. Front Syst Neurosci 2022; 16:922841. [PMID: 36387306 PMCID: PMC9650482 DOI: 10.3389/fnsys.2022.922841] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 10/14/2022] [Indexed: 11/04/2023] Open
Abstract
Alpha and beta oscillations have been assessed thoroughly during walking due to their potential role as proxies of the corticoreticulospinal tract (CReST) and corticospinal tract (CST), respectively. Given that damage to a descending tract after stroke can cause walking deficits, detailed knowledge of how these oscillations mechanistically contribute to walking could be utilized in strategies for post-stroke locomotor recovery. In this review, the goal was to summarize, synthesize, and discuss the existing evidence on the potential differential role of these oscillations on the motor descending drive, the effect of transcranial alternate current stimulation (tACS) on neurotypical and post-stroke walking, and to discuss remaining gaps in knowledge, future directions, and methodological considerations. Electrophysiological studies of corticomuscular, intermuscular, and intramuscular coherence during walking clearly demonstrate that beta oscillations are predominantly present in the dorsiflexors during the swing phase and may be absent post-stroke. The role of alpha oscillations, however, has not been pinpointed as clearly. We concluded that both animal and human studies should focus on the electrophysiological characterization of alpha oscillations and their potential role to the CReST. Another approach in elucidating the role of these oscillations is to modulate them and then quantify the impact on walking behavior. This is possible through tACS, whose beneficial effect on walking behavior (including boosting of beta oscillations in intramuscular coherence) has been recently demonstrated in both neurotypical adults and stroke patients. However, these studies still do not allow for specific roles of alpha and beta oscillations to be delineated because the tACS frequency used was much lower (i.e., individualized calculated gait frequency was used). Thus, we identify a main gap in the literature, which is tACS studies actually stimulating at alpha and beta frequencies during walking. Overall, we conclude that for beta oscillations there is a clear connection to descending drive in the corticospinal tract. The precise relationship between alpha oscillations and CReST remains elusive due to the gaps in the literature identified here. However, better understanding the role of alpha (and beta) oscillations in the motor control of walking can be used to progress and develop rehabilitation strategies for promoting locomotor recovery.
Collapse
Affiliation(s)
- Charalambos C. Charalambous
- Department of Basic and Clinical Sciences, Medical School, University of Nicosia, Nicosia, Cyprus
- Center for Neuroscience and Integrative Brain Research (CENIBRE), Medical School, University of Nicosia, Nicosia, Cyprus
| | - Avgis Hadjipapas
- Department of Basic and Clinical Sciences, Medical School, University of Nicosia, Nicosia, Cyprus
- Center for Neuroscience and Integrative Brain Research (CENIBRE), Medical School, University of Nicosia, Nicosia, Cyprus
| |
Collapse
|
29
|
Tremor, finger and hand dexterity and force steadiness, do not change after mental fatigue in healthy humans. PLoS One 2022; 17:e0272033. [PMID: 35947592 PMCID: PMC9365124 DOI: 10.1371/journal.pone.0272033] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/12/2022] [Indexed: 11/19/2022] Open
Abstract
The effects of mental fatigue have been studied in relation to specific percentages of maximal aerobic or anaerobic efforts, maximal voluntary contractions or the performance of sport specific skills. However, its effects on tremor, dexterity and force steadiness have been only marginally explored. The present work aimed at filling this gap. In twenty-nine young individuals, measurement of postural, kinetic and isometric tremor, pinch force steadiness and finger and hand dexterity were performed before and after either 100 min of mental fatigue or control tasks. During the interventions blood pressure, oxygen saturation and heart rate and perceived effort in continuing the task were recorded every 10 minutes. Tremor was analysed in both time (standard deviation) and frequency domain (position, amplitude and area of the dominant peak) of the acceleration signal. Finger dexterity was assessed by Purdue pegboard test and hand dexterity in terms of contact time in a buzz wire exercise. Force steadiness was quantified as coefficient of variation of the force signal. Postural, kinetic and isometric tremors, force steadiness and dexterity were not affected. Higher oxygen saturation values and higher variability of heart rate and blood pressure were found in the intervention group during the mental fatigue protocol (p < .001). The results provide no evidence that mental fatigue affects the neuromuscular parameters that influence postural, kinetic or isometric tremor, force steadiness and dexterity when measured in single-task conditions. Increased variability in heart rate may suggest that the volunteers in the intervention group altered their alert/stress state. Therefore, it is possible that the alterations that are commonly observed during mental fatigue, and that could have affected tremor, steadiness and dexterity only last for the duration of the cognitive task and are not detectable anymore soon after the mental task is terminated.
Collapse
|
30
|
Mongold SJ, Piitulainen H, Legrand T, Ghinst MV, Naeije G, Jousmäki V, Bourguignon M. Temporally stable beta sensorimotor oscillations and cortico-muscular coupling underlie force steadiness. Neuroimage 2022; 261:119491. [PMID: 35908607 DOI: 10.1016/j.neuroimage.2022.119491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 11/29/2022] Open
Abstract
As humans, we seamlessly hold objects in our hands, and may even lose consciousness of these objects. This phenomenon raises the unsettled question of the involvement of the cerebral cortex, the core area for voluntary motor control, in dynamically maintaining steady muscle force. To address this issue, we measured magnetoencephalographic brain activity from healthy adults who maintained a steady pinch grip. Using a novel analysis approach, we uncovered fine-grained temporal modulations in the beta sensorimotor brain rhythm and its coupling with muscle activity, with respect to several aspects of muscle force (rate of increase/decrease or plateauing high/low). These modulations preceded changes in force features by ∼40 ms and possessed behavioral relevance, as less salient or absent modulation predicted a more stable force output. These findings have consequences for the existing theories regarding the functional role of cortico-muscular coupling, and suggest that steady muscle contractions are characterized by a stable rather than fluttering involvement of the sensorimotor cortex.
Collapse
Affiliation(s)
- Scott J Mongold
- Laboratory of Neurophysiology and Movement Biomechanics, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium.
| | - Harri Piitulainen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland; Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Thomas Legrand
- Laboratory of Neurophysiology and Movement Biomechanics, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Marc Vander Ghinst
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium; Service d'ORL et de chirurgie cervico-faciale, CUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Gilles Naeije
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium; Centre de Référence Neuromusculaire, Department of Neurology, CUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Veikko Jousmäki
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; Aalto NeuroImaging, Aalto University School of Science, Espoo, Finland
| | - Mathieu Bourguignon
- Laboratory of Neurophysiology and Movement Biomechanics, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium; Laboratoire de Cartographie fonctionnelle du Cerveau, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium; BCBL, Basque Center on Cognition, Brain and Language, 20009 San Sebastian, Spain
| |
Collapse
|
31
|
Echeverria-Altuna I, Quinn AJ, Zokaei N, Woolrich MW, Nobre AC, van Ede F. Transient beta activity and cortico-muscular connectivity during sustained motor behaviour. Prog Neurobiol 2022; 214:102281. [PMID: 35550908 PMCID: PMC9742854 DOI: 10.1016/j.pneurobio.2022.102281] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/13/2022] [Accepted: 05/02/2022] [Indexed: 12/15/2022]
Abstract
Neural oscillations are thought to play a central role in orchestrating activity states between distant neural populations. For example, during isometric contraction, 13-30 Hz beta activity becomes phase coupled between the motor cortex and the contralateral muscle. This and related observations have led to the proposal that beta activity and connectivity sustain stable cognitive and motor states - or the 'status quo' - in the brain. Recently, however, beta activity at the single-trial level has been shown to be short-lived - though so far this has been reported for regional beta activity in tasks without sustained motor demands. Here, we measured magnetoencephalography (MEG) and electromyography (EMG) in 18 human participants performing a sustained isometric contraction (gripping) task. If cortico-muscular beta connectivity is directly responsible for sustaining a stable motor state, then beta activity within single trials should be (or become) sustained in this context. In contrast, we found that motor beta activity and connectivity with the downstream muscle were transient. Moreover, we found that sustained motor requirements did not prolong beta-event duration in comparison to rest. These findings suggest that neural synchronisation between the brain and the muscle involves short 'bursts' of frequency-specific connectivity, even when task demands - and motor behaviour - are sustained.
Collapse
Affiliation(s)
- Irene Echeverria-Altuna
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom,Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom,Corresponding authors at: Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Andrew J. Quinn
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Nahid Zokaei
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom,Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Mark W. Woolrich
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Anna C. Nobre
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom,Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom,Corresponding authors at: Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Freek van Ede
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom,Institute for Brain and Behavior Amsterdam, Department of Experimental and Applied Psychology, Vrije University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
32
|
Zhang X, Zhang S, Lu B, Wang Y, Li N, Peng Y, Hou J, Qiu J, Li F, Yao D, Xu P. Dynamic corticomuscular multi-regional modulations during finger movement revealed by time-varying network analysis. J Neural Eng 2022; 19. [PMID: 35523144 DOI: 10.1088/1741-2552/ac6d7c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 05/05/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE A body movement involves the complicated information exchange between the central and peripheral systems, which is characterized by the dynamical coupling patterns between the multiple brain areas and multiple muscle units. How the central and peripheral nerves coordinate multiple internal brain regions and muscle groups is very important when accomplishing the action. APPROACH In this study, we extend the adaptive directed transfer function to construct the time-varying networks between multiple corticomuscular regions and divide the movement duration into different stages by the time-varying corticomuscular network patterns. MAIN RESULTS The inter dynamical corticomuscular network demonstrated the different interaction patterns between the central and peripheral systems during the different hand movement stages. The muscles transmit bottom-up movement information in the preparation stage, but the brain issues top-down control commands and dominates in the execution stage, and finally, the brain's dominant advantage gradually weakens in the relaxation stage. When classifying the different movement stages based on time-varying corticomuscular network indicators, an average accuracy above 74% could be reliably achieved. SIGNIFICANCE The findings of this study help deepen our knowledge of central-peripheral nerve pathways and coordination mechanisms, and also provide opportunities for monitoring and regulating movement disorders.
Collapse
Affiliation(s)
- Xiabing Zhang
- University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, Chengdu, 610054, CHINA
| | - Shu Zhang
- University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, Chengdu, 610054, CHINA
| | - Bin Lu
- University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, Chengdu, 610054, CHINA
| | - Yifeng Wang
- University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, Chengdu, 610054, CHINA
| | - Ning Li
- University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, Chengdu, 610054, CHINA
| | - Yueheng Peng
- University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, Chengdu, 610054, CHINA
| | - Jingming Hou
- Third Military Medical University Southwest Hospital, No. 30, Gaotanyanzheng Street, Shapingba District, Chongqing, 400038, CHINA
| | - Jing Qiu
- University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, Chengdu, 610054, CHINA
| | - Fali Li
- University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, Chengdu, 610054, CHINA
| | - Dezhong Yao
- University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, Chengdu, 610054, CHINA
| | - Peng Xu
- University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, Chengdu, 610054, CHINA
| |
Collapse
|
33
|
Lapenta OM, Keller PE, Nozaradan S, Varlet M. Lateralised dynamic modulations of corticomuscular coherence associated with bimanual learning of rhythmic patterns. Sci Rep 2022; 12:6271. [PMID: 35428836 PMCID: PMC9012795 DOI: 10.1038/s41598-022-10342-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 03/28/2022] [Indexed: 11/09/2022] Open
Abstract
Human movements are spontaneously attracted to auditory rhythms, triggering an automatic activation of the motor system, a central phenomenon to music perception and production. Cortico-muscular coherence (CMC) in the theta, alpha, beta and gamma frequencies has been used as an index of the synchronisation between cortical motor regions and the muscles. Here we investigated how learning to produce a bimanual rhythmic pattern composed of low- and high-pitch sounds affects CMC in the beta frequency band. Electroencephalography (EEG) and electromyography (EMG) from the left and right First Dorsal Interosseus and Flexor Digitorum Superficialis muscles were concurrently recorded during constant pressure on a force sensor held between the thumb and index finger while listening to the rhythmic pattern before and after a bimanual training session. During the training, participants learnt to produce the rhythmic pattern guided by visual cues by pressing the force sensors with their left or right hand to produce the low- and high-pitch sounds, respectively. Results revealed no changes after training in overall beta CMC or beta oscillation amplitude, nor in the correlation between the left and right sides for EEG and EMG separately. However, correlation analyses indicated that left- and right-hand beta EEG-EMG coherence were positively correlated over time before training but became uncorrelated after training. This suggests that learning to bimanually produce a rhythmic musical pattern reinforces lateralised and segregated cortico-muscular communication.
Collapse
Affiliation(s)
- Olivia Morgan Lapenta
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Penrith, Australia. .,Center for Investigation in Psychology, University of Minho, Braga, Portugal.
| | - Peter E Keller
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Penrith, Australia
| | - Sylvie Nozaradan
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Penrith, Australia.,Institute of Neuroscience, Catholic University of Louvain, Woluwe-Saint-Lambert, Belgium
| | - Manuel Varlet
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Penrith, Australia.,School of Psychology, Western Sydney University, Penrith, Australia
| |
Collapse
|
34
|
Ohtsuka H, Nakajima T, Komiyama T, Suzuki S, Irie S, Ariyasu R. Execution of natural manipulation in the air enhances the beta-rhythm intermuscular coherences of the human arm depending on muscle pairs. J Neurophysiol 2022; 127:946-957. [PMID: 35294314 DOI: 10.1152/jn.00421.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Natural manipulation tasks in air consist of two kinematic components: a grasping component, with activation of the hand muscles, and a lifting component, with activation of the proximal muscles. However, it remains unclear whether the synchronized motor commands to the hand/proximal arm muscles are divergently controlled during the task. Therefore, we examined how intermuscular coherence was modulated depending on the muscle combinations during grip and lift (G&L) tasks. Electromyograms (EMGs) were recorded from the biceps brachii (BB), triceps brachii (TB), flexor digitorum superficialis (FDS), and extensor digitorum communis (EDC) muscles. The participants were required to maintain G&L tasks involving a small cubical box with the thumb and index and middle fingers. Consequently, we found that the beta-rhythm coherence (15-35 Hz) in BB-TB, BB-FDS, and TB-EDC pairs during G&L was significantly larger than that during the isolated task with cocontraction of the two target muscles but not BB-EDC, TB-FDS, and FDS-EDC (task and muscle pair specificities). These increases in beta-rhythm coherence were also observed in intramuscular EMG recordings. Furthermore, the results from the execution of several mimic G&L tasks revealed that the separated task-related motor signals and combinations between the motor signals/sensations of the fingertips or object load had minor contributions to the increase in the coherence. These results suggest that during G&L the central nervous system regulates synchronous drive onto motoneurons depending on the muscle pairs and that the multiple combination effect of the sensations of touch/object load and motor signals in the task promotes the synchrony of these pairs.NEW & NOTEWORTHY Natural manipulation in air consists of two kinematic components: grasping, with activation of hand muscles, and lifting, with activation of proximal muscles. We show that during the maintenance of object manipulation in air the central nervous system regulates the synchronous drive onto human motoneuron pools depending on the hand/proximal muscle pairs and that the multiple combination effect of the sensations of touch/object load and motor signals in the task promotes the synchrony of these pairs.
Collapse
Affiliation(s)
- Hiroyuki Ohtsuka
- Department of Integrative Physiology, Kyorin University School of Medicine, Mitaka City, Tokyo, Japan.,Department of Physical Therapy, Showa University School of Nursing and Rehabilitation Sciences, Yokohama City, Kanagawa, Japan
| | - Tsuyoshi Nakajima
- Department of Integrative Physiology, Kyorin University School of Medicine, Mitaka City, Tokyo, Japan
| | - Tomoyoshi Komiyama
- Division of Health and Sports Sciences, Faculty of Education, Chiba University, Chiba City, Chiba, Japan.,Division of Health and Sports Education, The United Graduate School of Education, Tokyo Gakugei University, Koganei City, Tokyo, Japan
| | - Shinya Suzuki
- Department of Integrative Physiology, Kyorin University School of Medicine, Mitaka City, Tokyo, Japan
| | - Shun Irie
- Department of Integrative Physiology, Kyorin University School of Medicine, Mitaka City, Tokyo, Japan
| | - Ryohei Ariyasu
- Department of Integrative Physiology, Kyorin University School of Medicine, Mitaka City, Tokyo, Japan
| |
Collapse
|
35
|
Exercise Effects on Motor Skill Consolidation and Intermuscular Coherence Depend on Practice Schedule. Brain Sci 2022; 12:brainsci12040436. [PMID: 35447968 PMCID: PMC9030594 DOI: 10.3390/brainsci12040436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiorespiratory or aerobic exercise immediately after practice of an upper-extremity motor skill task can facilitate skill consolidation, as demonstrated by enhanced performances at 24 h and 7-day retention tests. The purpose of this study was to examine the effect of acute cardiorespiratory exercise on motor skill consolidation when skill practice involved low and high levels of contextual interference introduced through repetitive and interleaved practice schedules, respectively. Forty-eight young healthy adults were allocated to one of four groups who performed either repetitive or interleaved practice of a pinch grip motor sequence task, followed by either a period of seated rest or a bout of high-intensity interval cycling. At pre- and post-practice and 24 h and 7-day retention tests, we assessed motor skill performance and β-band (15–35 Hz) intermuscular coherence using surface electromyography (EMG) collected from the abductor pollicis brevis and first dorsal interosseous. At the 7-day retention test, off-line consolidation was enhanced in the cardiorespiratory exercise relative to the rest group, but only among individuals who performed interleaved motor skill practice (p = 0.02). Similarly, at the 7-day retention test, β-band intermuscular coherence increased to a greater extent in the exercise group than in the rest group for those who performed interleaved practice (p = 0.02). Under the present experimental conditions, cardiorespiratory exercise preferentially supported motor skill consolidation and change in intermuscular coherence when motor skill practice involved higher rather than lower levels of contextual interference.
Collapse
|
36
|
Spedden ME, Beck MM, West TO, Farmer SF, Nielsen JB, Lundbye-Jensen J. Dynamics of cortical and corticomuscular connectivity during planning and execution of visually guided steps in humans. Cereb Cortex 2022; 33:258-277. [PMID: 35238339 PMCID: PMC7614067 DOI: 10.1093/cercor/bhac066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 01/17/2023] Open
Abstract
The cortical mechanisms underlying the act of taking a step-including planning, execution, and modification-are not well understood. We hypothesized that oscillatory communication in a parieto-frontal and corticomuscular network is involved in the neural control of visually guided steps. We addressed this hypothesis using source reconstruction and lagged coherence analysis of electroencephalographic and electromyographic recordings during visually guided stepping and 2 control tasks that aimed to investigate processes involved in (i) preparing and taking a step and (ii) adjusting a step based on visual information. Steps were divided into planning, initiation, and execution phases. Taking a step was characterized by an upregulation of beta/gamma coherence within the parieto-frontal network during planning followed by a downregulation of alpha and beta/gamma coherence during initiation and execution. Step modification was characterized by bidirectional modulations of alpha and beta/gamma coherence in the parieto-frontal network during the phases leading up to step execution. Corticomuscular coherence did not exhibit task-related effects. We suggest that these task-related modulations indicate that the brain makes use of communication through coherence in the context of large-scale, whole-body movements, reflecting a process of flexibly fine-tuning inter-regional communication to achieve precision control during human stepping.
Collapse
Affiliation(s)
| | - Mikkel Mailing Beck
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Timothy O. West
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London WC1N 3AR, UK,Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK
| | - Simon F. Farmer
- Department of Clinical Neurology, The National Hospital for Neurology and Neurosurgery, Queen Square London WC1N 3BG, UK,Department of Clinical and Movement Neurosciences, Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Jens Bo Nielsen
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark,Elsass Foundation, Charlottenlund, Denmark
| | - Jesper Lundbye-Jensen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
37
|
Castillo CSM, Vaidyanathan R, Atashzar SF. Synergistic Upper-limb Functional Muscle Connectivity using Acoustic Mechanomyography. IEEE Trans Biomed Eng 2022; 69:2569-2580. [PMID: 35157572 DOI: 10.1109/tbme.2022.3150422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Functional connectivity is a critical concept in describing synergistic muscle synchronization for the execution of complex motor tasks. Muscle synchronization is typically derived from the decomposition of intermuscular coherence (IMC) at different frequency bands through electromyography (EMG) signal analysis with limited out-of-clinic applications. In this investigation, we introduce muscle network analysis to assess the coordination and functional connectivity of muscles based on mechanomyography (MMG), focused on a targeted group of muscles that are typically active in the conduction of activities of daily living using the upper limb. In this regard, functional muscle networks are evaluated in this paper for ten able-bodied participants and three amputees. MMG activity was acquired from a custom-made wearable MMG armband placed over four superficial muscles around the forearm (i.e., flexor carpi radialis (FCR), brachioradialis (BR), extensor digitorum communis (EDC), and flexor carpi ulnaris (FCU)) while participants performed four different hand gestures. The results of connectivity analysis at multiple frequency bands showed significant topographical differences across gestures for low (< 5Hz) and high (> 12 Hz) frequencies and observable differences between able-bodied and amputee subjects. These findings show evidence that MMG can be used for the analysis of functional muscle connectivity and mapping of synergistic synchronization of upper-limb muscles in complex upper-limb tasks. The new physiological modality further provides key insights into the neural circuitry of motor coordination and offers the concomitant outcomes of demonstrating the feasibility of MMG to map muscle coherence from a neurophysiological perspective as well as providing the mechanistic basis for its translation into human-robot interfaces.
Collapse
|
38
|
Beck MM, Spedden ME, Lundbye-Jensen J. Reorganization of functional and directed corticomuscular connectivity during precision grip from childhood to adulthood. Sci Rep 2021; 11:22870. [PMID: 34819532 PMCID: PMC8613204 DOI: 10.1038/s41598-021-01903-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/25/2021] [Indexed: 11/09/2022] Open
Abstract
How does the neural control of fine movements develop from childhood to adulthood? Here, we investigated developmental differences in functional corticomuscular connectivity using coherence analyses in 111 individuals from four different age groups covering the age range 8-30 y. EEG and EMG were recorded while participants performed a uni-manual force-tracing task requiring fine control of force in a precision grip with both the dominant and non-dominant hand. Using beamforming methods, we located and reconstructed source activity from EEG data displaying peak coherence with the EMG activity of an intrinsic hand muscle during the task. Coherent cortical sources were found anterior and posterior to the central sulcus in the contralateral hemisphere. Undirected and directed corticomuscular coherence was quantified and compared between age groups. Our results revealed that coherence was greater in adults (20-30 yo) than in children (8-10 yo) and that this difference was driven by greater magnitudes of descending (cortex-to-muscle), rather than ascending (muscle-to-cortex), coherence. We speculate that the age-related differences reflect maturation of corticomuscular networks leading to increased functional connectivity with age. We interpret the greater magnitude of descending oscillatory coupling as reflecting a greater degree of feedforward control in adults compared to children. The findings provide a detailed characterization of differences in functional sensorimotor connectivity for individuals at different stages of typical ontogenetic development that may be related to the maturational refinement of dexterous motor control.
Collapse
Affiliation(s)
- Mikkel Malling Beck
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Nørre Alle 51, 2200, Copenhagen N, Denmark.
| | - Meaghan Elizabeth Spedden
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Nørre Alle 51, 2200, Copenhagen N, Denmark
| | - Jesper Lundbye-Jensen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Nørre Alle 51, 2200, Copenhagen N, Denmark
| |
Collapse
|
39
|
Gao L, Wu H, Cheng W, Lan B, Ren H, Zhang L, Wang L. Enhanced Descending Corticomuscular Coupling During Hand Grip With Static Force Compared With Enhancing Force. Clin EEG Neurosci 2021; 52:436-443. [PMID: 32611201 DOI: 10.1177/1550059420933149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The interaction between cortex and muscles under hand motor with different force states has not been quantitatively investigated yet, which to some extent places the optimized movement tasks design for brain-computer interface (BCI) applications in hand motor rehabilitation under uncertainty. Converging evidence has suggested that both the descending corticospinal pathway and ascending sensory feedback pathway are involved in the generation of corticomuscular coupling. The present study aimed to explore the corticomuscular coupling during hand motor task with enhancing force and steady-state force. Twenty healthy subjects performed precision grip with enhancing and static force using the right hand with visual feedback of exerted force. Mutual information and Granger causal connectivity were assessed between electroencephalography (EEG) over primary motor cortex and electromyography (EMG) recordings, and statistically analyzed. The results showed that the mutual information value was significantly larger for static force in the beta and alpha frequency band than enhancing force state. Furthermore, compared with enhancing force, the Granger causal connectivity of descending pathways from cortex to muscle was significantly larger for static force in the beta and high alpha frequency band (10-20 Hz), indicating the connection between the primary motor cortex and muscle was strengthened for static force. In summary, the hand grip with static force resulted in an increasing corticomuscular coupling from EEG over the primary motor cortex to EMG compared with enhancing force, implying more attention was required in the static force state. These results have important implications toward motor rehabilitation therapy design for the recovery of impaired hand motor functions.
Collapse
Affiliation(s)
- Lin Gao
- State Key Laboratory of Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China.,School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China.,Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing, Xi'an University of Technology, Xi'an, Shaanxi, People's Republic of China
| | - Hongjian Wu
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China.,National Engineering Research Center of Health Care and Medical Devices Xi'an Jiaotong University Branch, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Wei Cheng
- State Key Laboratory of Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China.,School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Beidi Lan
- Department of Structural Heart Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Haipeng Ren
- Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing, Xi'an University of Technology, Xi'an, Shaanxi, People's Republic of China
| | - Lu Zhang
- State Key Laboratory of Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China.,School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Ling Wang
- State Key Laboratory of Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China.,School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
40
|
Zokaei N, Quinn AJ, Hu MT, Husain M, van Ede F, Nobre AC. Reduced cortico-muscular beta coupling in Parkinson's disease predicts motor impairment. Brain Commun 2021; 3:fcab179. [PMID: 34514395 PMCID: PMC8421699 DOI: 10.1093/braincomms/fcab179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 05/15/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022] Open
Abstract
Long-range communication through the motor system is thought to be facilitated by phase coupling between neural activity in the 15–30 Hz beta range. During periods of sustained muscle contraction (grip), such coupling is manifest between motor cortex and the contralateral forearm muscles—measured as the cortico-muscular coherence. We examined alterations in cortico-muscular coherence in individuals with Parkinson’s disease, while equating grip strength between individuals with Parkinson’s disease (off their medication) and healthy control participants. We show a marked reduction in beta cortico-muscular coherence in the Parkinson’s disease group, even though the grip strength was comparable between the two groups. Moreover, the reduced cortico-muscular coherence was related to motor symptoms, so that individuals with lower cortico-muscular coherence also displayed worse motor symptoms. These findings highlight the cortico-muscular coherence as a simple, effective and clinically relevant neural marker of Parkinson’s disease pathology, with the potential to aid monitoring of disease progression and the efficacy of novel treatments for Parkinson’s disease.
Collapse
Affiliation(s)
- Nahid Zokaei
- Oxford Centre for Human Brain Activity (OHBA), Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
| | - Andrew J Quinn
- Oxford Centre for Human Brain Activity (OHBA), Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
| | - Michele T Hu
- Department of Neurology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Masud Husain
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
| | - Freek van Ede
- Oxford Centre for Human Brain Activity (OHBA), Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
| | - Anna Christina Nobre
- Oxford Centre for Human Brain Activity (OHBA), Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
| |
Collapse
|
41
|
Ye F, Sun Z, Yang D, Wang H, Xi X. Corticomuscular coupling analysis based on improved LSTM and transfer entropy. Neurosci Lett 2021; 760:136012. [PMID: 34098023 DOI: 10.1016/j.neulet.2021.136012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/11/2021] [Accepted: 06/02/2021] [Indexed: 11/23/2022]
Abstract
The study of functional corticomuscular coupling can reflect the interaction between the cerebral cortex and muscle tissue, thereby helping to understand how the brain controls muscle tissue and the effect of muscle movement on brain function. This study proposes a detection model of the coupling strength between the cortex and muscles. The detection model uses an adaptive selector to choose the optimal long short-term memory network, uses this network to extract the features of electroencephalography and electromyography, and finally transforms time characteristics into the frequency domain. The transfer entropy is used to represent the interaction intensity of signals in different frequency bands. Using this model, we analyze the coupling relationship between the cortex and muscles in the three movements of wrist flexion, wrist extension, and clench fist, and compare the model with traditional wavelet coherence analysis and deep canonical correlation analysis. The experimental results show that our model can not only express the bidirectional coupling relationship between different frequency bands but also suppress the possible false coupling that traditional methods may detect. Our research shows that the proposed model has great potential in medical rehabilitation, movement decoding, and other fields.
Collapse
Affiliation(s)
- Fei Ye
- Jinhua Municipal Central Hospital, Jinhua 321000, China; Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Ziyang Sun
- Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou 310018, China; School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Donghui Yang
- Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou 310018, China; School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Huijiao Wang
- Fair Friend Institute of Intelligent Manufacturing, Hangzhou Vocational & Technical College, Hangzhou 310018, China
| | - Xugang Xi
- Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou 310018, China; School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China.
| |
Collapse
|
42
|
Guo Z, McClelland VM, Simeone O, Mills KR, Cvetkovic Z. Multiscale Wavelet Transfer Entropy with Application to Corticomuscular Coupling Analysis. IEEE Trans Biomed Eng 2021; 69:771-782. [PMID: 34398749 DOI: 10.1109/tbme.2021.3104969] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Functional coupling between the motor cortex and muscle activity is commonly detected and quantified by cortico-muscular coherence (CMC) or Granger causality (GC) analysis, which are applicable only to linear couplings and are not sufficiently sensitive: some healthy subjects show no significant CMC and GC, and yet have good motor skills. The objective of this work is to develop measures of functional cortico-muscular coupling that have improved sensitivity and are capable of detecting both linear and non-linear interactions. METHODS A multiscale wavelet transfer entropy (TE) methodology is proposed. The methodology relies on a dyadic stationary wavelet transform to decompose electroencephalogram (EEG) and electromyogram (EMG) signals into functional bands of neural oscillations. Then, it applies TE analysis based on a range of embedding delay vectors to detect and quantify intra- and cross-frequency band cortico-muscular coupling at different time scales. RESULTS Our experiments with neurophysiological signals substantiate the potential of the developed methodologies for detecting and quantifying information flow between EEG and EMG signals for subjects with and without significant CMC or GC, including non-linear cross-frequency interactions, and interactions across different temporal scales. The obtained results are in agreement with the underlying sensorimotor neurophysiology. CONCLUSION These findings suggest that the concept of multiscale wavelet TE provides a comprehensive framework for analyzing cortex-muscle interactions. SIGNIFICANCE The proposed methodologies will enable developing novel insights into movement control and neurophysiological processes more generally.
Collapse
|
43
|
Suzuki R, Ushiyama J. Context-Dependent Modulation of Corticomuscular Coherence in a Series of Motor Initiation and Maintenance of Voluntary Contractions. Cereb Cortex Commun 2021; 1:tgaa074. [PMID: 34296134 PMCID: PMC8152874 DOI: 10.1093/texcom/tgaa074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 11/13/2022] Open
Abstract
For our precise motor control, we should consider "motor context," which involves the flow from feedforward to feedback control. The present study focused on corticomuscular coherence (CMC) to physiologically evaluate how the sensorimotor integration is modulated in a series of movements depending on the motor context. We evaluated CMC between electroencephalograms over the sensorimotor cortex and rectified electromyograms from the tibialis anterior muscle during intermittent contractions with 2 contraction intensities in 4 experiments. Although sustained contractions with weak-to-moderate intensities led to no difference in CMC between intensities, intermittent ballistic-and-hold contractions with 2 intensities (10% and 15% or 25% of the maximal voluntary contraction, MVC) presented in a randomized order resulted in greater magnitude of CMC for the weaker intensity. Moreover, the relative amount of initial error was larger for trials with 10% of MVC, which indicated that initial motor output was inaccurate during weaker contractions. However, this significant difference in CMC vanished in the absence of trial randomization or the application of intermittent ramp-and-hold contractions with slower torque developments. Overall, CMC appears to be modulated context-dependently and is especially enhanced when active sensorimotor integration is required in feedback control periods because of the complexity and inaccuracy of preceding motor control.
Collapse
Affiliation(s)
- Rina Suzuki
- Graduate School of Media and Governance, Keio University, Fujisawa 252-0882, Japan
| | - Junichi Ushiyama
- Faculty of Environment and Information Studies, Keio University, Fujisawa 252-0882, Japan
| |
Collapse
|
44
|
Varlet M, Nozaradan S, Trainor L, Keller PE. Dynamic Modulation of Beta Band Cortico-Muscular Coupling Induced by Audio-Visual Rhythms. Cereb Cortex Commun 2021; 1:tgaa043. [PMID: 34296112 PMCID: PMC8263089 DOI: 10.1093/texcom/tgaa043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/18/2022] Open
Abstract
Human movements often spontaneously fall into synchrony with auditory and visual environmental rhythms. Related behavioral studies have shown that motor responses are automatically and unintentionally coupled with external rhythmic stimuli. However, the neurophysiological processes underlying such motor entrainment remain largely unknown. Here, we investigated with electroencephalography (EEG) and electromyography (EMG) the modulation of neural and muscular activity induced by periodic audio and/or visual sequences. The sequences were presented at either 1 or 2 Hz, while participants maintained constant finger pressure on a force sensor. The results revealed that although there was no change of amplitude in participants' EMG in response to the sequences, the synchronization between EMG and EEG recorded over motor areas in the beta (12-40 Hz) frequency band was dynamically modulated, with maximal coherence occurring about 100 ms before each stimulus. These modulations in beta EEG-EMG motor coherence were found for the 2-Hz audio-visual sequences, confirming at a neurophysiological level the enhancement of motor entrainment with multimodal rhythms that fall within preferred perceptual and movement frequency ranges. Our findings identify beta band cortico-muscular coupling as a potential underlying mechanism of motor entrainment, further elucidating the nature of the link between sensory and motor systems in humans.
Collapse
Affiliation(s)
- Manuel Varlet
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Penrith, Australia
| | - Sylvie Nozaradan
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Penrith, Australia
| | - Laurel Trainor
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Peter E Keller
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Penrith, Australia
| |
Collapse
|
45
|
Fauvet M, Gasq D, Chalard A, Tisseyre J, Amarantini D. Temporal Dynamics of Corticomuscular Coherence Reflects Alteration of the Central Mechanisms of Neural Motor Control in Post-Stroke Patients. Front Hum Neurosci 2021; 15:682080. [PMID: 34366811 PMCID: PMC8342994 DOI: 10.3389/fnhum.2021.682080] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/21/2021] [Indexed: 11/16/2022] Open
Abstract
The neural control of muscular activity during a voluntary movement implies a continuous updating of a mix of afferent and efferent information. Corticomuscular coherence (CMC) is a powerful tool to explore the interactions between the motor cortex and the muscles involved in movement realization. The comparison of the temporal dynamics of CMC between healthy subjects and post-stroke patients could provide new insights into the question of how agonist and antagonist muscles are controlled related to motor performance during active voluntary movements. We recorded scalp electroencephalography activity, electromyography signals from agonist and antagonist muscles, and upper limb kinematics in eight healthy subjects and seventeen chronic post-stroke patients during twenty repeated voluntary elbow extensions and explored whether the modulation of the temporal dynamics of CMC could contribute to motor function impairment. Concomitantly with the alteration of elbow extension kinematics in post-stroke patients, dynamic CMC analysis showed a continuous CMC in both agonist and antagonist muscles during movement and highlighted that instantaneous CMC in antagonist muscles was higher for post-stroke patients compared to controls during the acceleration phase of elbow extension movement. In relation to motor control theories, our findings suggest that CMC could be involved in the online control of voluntary movement through the continuous integration of sensorimotor information. Moreover, specific alterations of CMC in antagonist muscles could reflect central command alterations of the selectivity in post-stroke patients.
Collapse
Affiliation(s)
- Maxime Fauvet
- ToNIC-Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - David Gasq
- ToNIC-Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France.,Department of Functional Physiological Explorations, University Hospital of Toulouse, Hôpital Rangueil, Toulouse, France
| | - Alexandre Chalard
- ToNIC-Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France.,Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States.,California Rehabilitation Institute, Los Angeles, CA, United States
| | - Joseph Tisseyre
- ToNIC-Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - David Amarantini
- ToNIC-Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| |
Collapse
|
46
|
Xi X, Wu X, Zhao YB, Wang J, Kong W, Luo Z. Cortico-muscular functional network: an exploration of cortico-muscular coupling in hand movements. J Neural Eng 2021; 18. [PMID: 34038874 DOI: 10.1088/1741-2552/ac0586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/26/2021] [Indexed: 11/12/2022]
Abstract
Objective. The main objective of this research was to study cortico-muscular, intra-cortical, and inter-muscular coupling. Herein, we established a cortico-muscular functional network (CMFN) to assess the network differences associated with making a fist, opening the hand, and wrist flexion.Approach. We used transfer entropy (TE) to calculate the causality between electroencephalographic and electromyographic data and established the TE connection matrix. We then applied graph theory to analyze the clustering coefficient, global efficiency, and small-world attributes of the CMFN. We also used Relief-F to extract the features of the TE connection matrix of the beta2 band for the different hand movements and observed high accuracy when this feature was used for action recognition.Main results. We found that the CMFN of the three actions in the beta band had small-world attributes, among which the beta2 band's small-world was stronger. Moreover, we found that the extracted features were mainly concentrated in the left frontal area, left motor area, occipital lobe, and related muscles, suggesting that the CMFN could be used to assess the coupling differences between the cortex and the muscles that are associated with different hand movements. Overall, our results showed that the beta2 (21-35 Hz) wave is the main information carrier between the cortex and the muscles, and the CMFN can be used in the beta2 band to assess cortico-muscular coupling.Significance. Our study preliminarily explored the CMFN associated with hand movements, providing additional insights regarding the transmission of information between the cortex and the muscles, thereby laying a foundation for future rehabilitation therapy targeting pathological cortical areas in stroke patients.
Collapse
Affiliation(s)
- Xugang Xi
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China.,Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou 310018, People's Republic of China
| | - Xiangxiang Wu
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China.,Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou 310018, People's Republic of China
| | - Yun-Bo Zhao
- Department of Automation, University of Science and Technology of China, Hefei, People's Republic of China
| | - Junhong Wang
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China.,Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou 310018, People's Republic of China
| | - Wanzeng Kong
- Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou 310018, People's Republic of China.,School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Zhizeng Luo
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China.,Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou 310018, People's Republic of China
| |
Collapse
|
47
|
Nijhuis P, Keller PE, Nozaradan S, Varlet M. Dynamic modulation of cortico-muscular coupling during real and imagined sensorimotor synchronisation. Neuroimage 2021; 238:118209. [PMID: 34051354 DOI: 10.1016/j.neuroimage.2021.118209] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 04/19/2021] [Accepted: 05/10/2021] [Indexed: 12/20/2022] Open
Abstract
People have a natural and intrinsic ability to coordinate body movements with rhythms surrounding them, known as sensorimotor synchronisation. This can be observed in daily environments, when dancing or singing along with music, or spontaneously walking, talking or applauding in synchrony with one another. However, the neurophysiological mechanisms underlying accurately synchronised movement with selected rhythms in the environment remain unclear. Here we studied real and imagined sensorimotor synchronisation with interleaved auditory and visual rhythms using cortico-muscular coherence (CMC) to better understand the processes underlying the preparation and execution of synchronised movement. Electroencephalography (EEG), electromyography (EMG) from the finger flexors, and continuous force signals were recorded in 20 participants during tapping and imagined tapping with discrete stimulus sequences consisting of alternating auditory beeps and visual flashes. The results show that the synchronisation between cortical and muscular activity in the beta (14-38 Hz) frequency band becomes time-locked to the taps executed in synchrony with the visual and auditory stimuli. Dynamic modulation in CMC also occurred when participants imagined tapping with the visual stimuli, but with lower amplitude and a different temporal profile compared to real tapping. These results suggest that CMC does not only reflect changes related to the production of the synchronised movement, but also to its preparation, which appears heightened under higher attentional demands imposed when synchronising with the visual stimuli. These findings highlight a critical role of beta band neural oscillations in the cortical-muscular coupling underlying sensorimotor synchronisation.
Collapse
Affiliation(s)
- Patti Nijhuis
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Sydney, Australia.
| | - Peter E Keller
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Sydney, Australia
| | - Sylvie Nozaradan
- Institute of Neuroscience (Ions), Université catholique de Louvain (UCL), Belgium
| | - Manuel Varlet
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Sydney, Australia; School of Psychology, Western Sydney University, Sydney, Australia
| |
Collapse
|
48
|
Construction and analysis of cortical–muscular functional network based on EEG-EMG coherence using wavelet coherence. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2021.01.102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
49
|
Houston M, Li X, Zhou P, Li S, Roh J, Zhang Y. Alterations in Muscle Networks in the Upper Extremity of Chronic Stroke Survivors. IEEE Trans Neural Syst Rehabil Eng 2021; 29:1026-1034. [PMID: 33900919 DOI: 10.1109/tnsre.2021.3075907] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Muscle networks describe the functional connectivity between muscles quantified through the decomposition of intermuscular coherence (IMC) to identify shared frequencies at which certain muscles are co-modulated by common neural input. Efforts have been devoted to characterizing muscle networks in healthy subjects but stroke-linked alterations to muscle networks remain unexplored. Muscle networks were assessed for eight key upper extremity muscles during isometric force generation in stroke survivors with mild, moderate, and severe impairment and compared against healthy controls to identify stroke-specificalterations in muscle connectivity. Coherence matrices were decomposed using non-negative matrix factorization. The variance accounted for thresholding was then assessed to identify the number of muscle networks. Results showed that the number of muscle networks decreased in stroke survivors compared to age-matched healthy controls (four networks in the healthy control group) as the severity of post-stroke motor impairment increased (three in the mild- and two in the moderate- and severe-strokegroups). Statistically significant reductions of IMC in the synergistic deltoid muscles in the alpha-band in stroke patients versus healthy controls ( p < 0.05) were identified. This study represents the first effort, to the best of our knowledge, to assess stroke-linked alterations in functional intermuscular connectivity using muscle network analysis. The findings revealed a pattern of alterations to muscle networks in stroke survivors compared to healthy controls, as a result of the loss of brain function associated with the stroke. These alterations in muscle networks reflected underlying pathophysiology. These findings can help better understand the motor impairment and motor control in stroke and may advance rehabilitation efforts for stroke by identifying the impaired neuromuscular coordination among multiple muscles in the frequency domain.
Collapse
|
50
|
Betti V, Della Penna S, de Pasquale F, Corbetta M. Spontaneous Beta Band Rhythms in the Predictive Coding of Natural Stimuli. Neuroscientist 2021; 27:184-201. [PMID: 32538310 PMCID: PMC7961741 DOI: 10.1177/1073858420928988] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The regularity of the physical world and the biomechanics of the human body movements generate distributions of highly probable states that are internalized by the brain in the course of a lifetime. In Bayesian terms, the brain exploits prior knowledge, especially under conditions when sensory input is unavailable or uncertain, to predictively anticipate the most likely outcome of upcoming stimuli and movements. These internal models, formed during development, yet still malleable in adults, continuously adapt through the learning of novel stimuli and movements.Traditionally, neural beta (β) oscillations are considered essential for maintaining sensorimotor and cognitive representations, and for temporal coding of expectations. However, recent findings show that fluctuations of β band power in the resting state strongly correlate between cortical association regions. Moreover, central (hub) regions form strong interactions over time with different brain regions/networks (dynamic core). β band centrality fluctuations of regions of the dynamic core predict global efficiency peaks suggesting a mechanism for network integration. Furthermore, this temporal architecture is surprisingly stable, both in topology and dynamics, during the observation of ecological natural visual scenes, whereas synthetic temporally scrambled stimuli modify it. We propose that spontaneous β rhythms may function as a long-term "prior" of frequent environmental stimuli and behaviors.
Collapse
Affiliation(s)
- Viviana Betti
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Stefania Della Penna
- Institute for Advanced Biomedical Technologies and Department of Neuroscience, Imaging and Clinical Sciences, “G. D’Annunzio” University, Chieti, Italy
| | | | - Maurizio Corbetta
- Department of Neuroscience and Padova Neuroscience Center (PNC), University of Padua, Padua, Italy
- Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
- Department of Neurology, Radiology, and Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|