1
|
Rose JK, Butterfield M, Liang J, Parvand M, Lin CHS, Rankin CH. Neuroligin Plays a Role in Ethanol-Induced Disruption of Memory and Corresponding Modulation of Glutamate Receptor Expression. Front Behav Neurosci 2022; 16:908630. [PMID: 35722190 PMCID: PMC9204643 DOI: 10.3389/fnbeh.2022.908630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Exposure to alcohol causes deficits in long-term memory formation across species. Using a long-term habituation memory assay in Caenorhabditis elegans, the effects of ethanol on long-term memory (> 24 h) for habituation were investigated. An impairment in long-term memory was observed when animals were trained in the presence of ethanol. Cues of internal state or training context during testing did not restore memory. Ethanol exposure during training also interfered with the downregulation of AMPA/KA-type glutamate receptor subunit (GLR-1) punctal expression previously associated with long-term memory for habituation in C. elegans. Interestingly, ethanol exposure alone had the opposite effect, increasing GLR-1::GFP punctal expression. Worms with a mutation in the C. elegans ortholog of vertebrate neuroligins (nlg-1) were resistant to the effects of ethanol on memory, as they displayed both GLR-1::GFP downregulation and long-term memory for habituation after training in the presence of ethanol. These findings provide insights into the molecular mechanisms through which alcohol consumption impacts memory.
Collapse
|
2
|
Han GC, Jing HM, Zhang WJ, Zhang N, Li ZN, Zhang GY, Gao S, Ning JY, Li GJ. Effects of lanthanum nitrate on behavioral disorder, neuronal damage and gene expression in different developmental stages of Caenorhabditis elegans. Toxicology 2021; 465:153012. [PMID: 34718030 DOI: 10.1016/j.tox.2021.153012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022]
Abstract
Rare earth elements (REEs) are widely used in the industry, agriculture, biomedicine, aerospace, etc, and have been shown to pose toxic effects on animals, as such, studies focusing on their biomedical properties are gaining wide attention. However, environmental and population health risks of REEs are still not very clear. Also, the REEs damage to the nervous system and related molecular mechanisms needs further research. In this study, the L1 and L4 stages of the model organism Caenorhabditis elegans were used to evaluate the effects and possible neurotoxic mechanism of lanthanum(III) nitrate hexahydrate (La(NO3)3·6H2O). For the L1 and L4 stage worms, the 48-h median lethal concentrations (LC50s) of La(NO3)3·6H2O were 93.163 and 648.0 mg/L respectively. Our results show that La(NO3)3·6H2O induces growth inhibition and defects in behavior such as body length, body width, body bending frequency, head thrashing frequency and pharyngeal pumping frequency at the L1 and L4 stages in C. elegans. The L1 stage is more sensitive to the toxicity of lanthanum than the L4 stage worms. Using transgenic strains (BZ555, EG1285 and NL5901), we found that La(NO3)3·6H2O caused the loss or break of soma and dendrite neurons in L1 and L4 stages; and α-synuclein aggregation in L1 stage, indicating that Lanthanum can cause toxic damage to dopaminergic and GABAergic neurons. Mechanistically, La(NO3)3·6H2O exposure inhibited or activated the neurotransmitter transporters and receptors (glutamate, serotonin and dopamine) in C. elegans, which regulate behavior and movement functions. Furthermore, significant increase in the production of reactive oxygen species (ROS) was found in the L4 stage C. elegans exposed to La(NO3)3·6H2O. Altogether, our data show that exposure to lanthanum can cause neuronal toxic damage and behavioral defects in C. elegans, and provide basic information for understanding the neurotoxic effect mechanism and environmental health risks of rare earth elements.
Collapse
Affiliation(s)
- Gao-Chao Han
- Institute of Toxicology, Beijing Center for Disease Prevention and Control/Beijing Research Center for Preventive Medicine/Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, 100013, PR China; School of Public Health, Capital Medical University, Beijing, 100069, PR China
| | - Hai-Ming Jing
- Institute of Toxicology, Beijing Center for Disease Prevention and Control/Beijing Research Center for Preventive Medicine/Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, 100013, PR China; School of Public Health, Capital Medical University, Beijing, 100069, PR China
| | - Wen-Jing Zhang
- Institute of Toxicology, Beijing Center for Disease Prevention and Control/Beijing Research Center for Preventive Medicine/Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, 100013, PR China
| | - Nan Zhang
- Institute of Toxicology, Beijing Center for Disease Prevention and Control/Beijing Research Center for Preventive Medicine/Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, 100013, PR China
| | - Zi-Nan Li
- Institute of Toxicology, Beijing Center for Disease Prevention and Control/Beijing Research Center for Preventive Medicine/Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, 100013, PR China
| | - Guo-Yan Zhang
- Institute of Toxicology, Beijing Center for Disease Prevention and Control/Beijing Research Center for Preventive Medicine/Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, 100013, PR China; School of Public Health, Capital Medical University, Beijing, 100069, PR China
| | - Shan Gao
- Institute of Toxicology, Beijing Center for Disease Prevention and Control/Beijing Research Center for Preventive Medicine/Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, 100013, PR China
| | - Jun-Yu Ning
- Institute of Toxicology, Beijing Center for Disease Prevention and Control/Beijing Research Center for Preventive Medicine/Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, 100013, PR China; School of Public Health, Capital Medical University, Beijing, 100069, PR China
| | - Guo-Jun Li
- Institute of Toxicology, Beijing Center for Disease Prevention and Control/Beijing Research Center for Preventive Medicine/Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, 100013, PR China; School of Public Health, Capital Medical University, Beijing, 100069, PR China.
| |
Collapse
|
3
|
Molecular Mechanisms of Reconsolidation-Dependent Memory Updating. Int J Mol Sci 2020; 21:ijms21186580. [PMID: 32916796 PMCID: PMC7555418 DOI: 10.3390/ijms21186580] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/19/2022] Open
Abstract
Memory is not a stable record of experience, but instead is an ongoing process that allows existing memories to be modified with new information through a reconsolidation-dependent updating process. For a previously stable memory to be updated, the memory must first become labile through a process called destabilization. Destabilization is a protein degradation-dependent process that occurs when new information is presented. Following destabilization, a memory becomes stable again through a protein synthesis-dependent process called restabilization. Much work remains to fully characterize the mechanisms that underlie both destabilization and subsequent restabilization, however. In this article, we briefly review the discovery of reconsolidation as a potential mechanism for memory updating. We then discuss the behavioral paradigms that have been used to identify the molecular mechanisms of reconsolidation-dependent memory updating. Finally, we outline what is known about the molecular mechanisms that support the memory updating process. Understanding the molecular mechanisms underlying reconsolidation-dependent memory updating is an important step toward leveraging this process in a therapeutic setting to modify maladaptive memories and to improve memory when it fails.
Collapse
|
4
|
Turel ZB, Prados J, Urcelay GP. Heat shock disrupts expression of excitatory and extinction memories in planaria: Interaction with amount of exposure. Behav Processes 2020; 179:104197. [PMID: 32679225 DOI: 10.1016/j.beproc.2020.104197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/22/2022]
Abstract
In planarians, as seen in rodents, natural reinforcers (sucrose) and drugs of abuse support Conditioned Place Preference (CPP), which is a form of Pavlovian learning to examine the rewarding effects of natural reinforcers and drugs of abuse. Using this preparation, we have previously observed acquisition, extinction and reinstatement of sucrose CPP. In the present experiments, we used planaria to investigate the amnestic effects of Heat Shock (HS, a known stressor in planaria) following different amounts of CPP extinction sessions. Experiment 1 showed that planarians developed a CPP response to a sucrose-paired surface. Heat shock, when given in conjunction with exposure to the sucrose-paired surface, produced amnesia as assessed by a subsequent sucrose reinstatement test. We interpreted that the amnesic effect of HS was due to HS affecting the dominant excitatory memory at the time of HS exposure. Thus, we hypothesized that after extensive extinction training (10 exposures), HS would lead to recovery from extinction (when the new inhibitory memory is dominant at the time of HS exposure). Experiment 2 explored this possibility and showed that given HS following 10 extinction sessions had no amnestic effect on the excitatory CPP response. In Experiment 3, we hypothesized that 16 extinction sessions would produce a stronger (and hence dominant) extinction inhibitory trace, which then would be vulnerable to HS. We observed that HS impaired the expression of the extinction memory following 16 exposures. These results reveal different effects of HS on CPP memories depending on the amount of extinction, and are fully consistent with the literature using rodents and humans. In addition, they suggest that planaria is a promising pre-clinical model to assess fundamental memory processes.
Collapse
Affiliation(s)
- Zehra B Turel
- Department of Neuroscience, Psychology & Behaviour, University of Leicester, UK
| | - Jose Prados
- Department of Neuroscience, Psychology & Behaviour, University of Leicester, UK
| | - Gonzalo P Urcelay
- Department of Neuroscience, Psychology & Behaviour, University of Leicester, UK.
| |
Collapse
|
5
|
Molecular Mechanisms in Hippocampus Involved on Object Recognition Memory Consolidation and Reconsolidation. Neuroscience 2020; 435:112-123. [PMID: 32272151 DOI: 10.1016/j.neuroscience.2020.03.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/01/2020] [Accepted: 03/31/2020] [Indexed: 11/20/2022]
Abstract
Acquired information is stabilized into long-term memory through a process known as consolidation. Though, after consolidation, when stored information is retrieved they can be again susceptible, allowing modification, updating and strengthening and to be re-stabilized they need a new process referred to as memory reconsolidation. However, the molecular mechanisms of recognition memory consolidation and reconsolidation are not fully understood. Also, considering that the study of the link between synaptic proteins is key to understanding of memory processes, we investigated, in male Wistar rats, molecular mechanisms in the hippocampus involved on object recognition memory (ORM) consolidation and reconsolidation. We verified that the blockade of AMPA receptors (AMPAr) and L-VDCCs calcium channels impaired ORM consolidation and reconsolidation when administered into CA1 immediately after sample phase or reactivation phase and that these impairments were blocked by the administration of AMPAr agonist and of neurotrophin BDNF. Also, the blockade of CaMKII impaired ORM consolidation when administered 3 h after sample phase but had no effect on ORM reconsolidation and its effect was blocked by the administration of BDNF, but not of AMPAr agonist. So, this study provides new evidence of the molecular mechanisms involved on the consolidation and reconsolidation of ORM, demonstrating that AMPAr and L-VDCCs are necessary for the consolidation and reconsolidation of ORM while CaMKII is necessary only for the consolidation and also that there is a link between BDNF and AMPAr, L-VDCCs and CaMKII as well as a link between AMPAr and L-VDCCs on ORM consolidation and reconsolidation.
Collapse
|
6
|
Haubrich J, Bernabo M, Baker AG, Nader K. Impairments to Consolidation, Reconsolidation, and Long-Term Memory Maintenance Lead to Memory Erasure. Annu Rev Neurosci 2020; 43:297-314. [PMID: 32097575 DOI: 10.1146/annurev-neuro-091319-024636] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An enduring problem in neuroscience is determining whether cases of amnesia result from eradication of the memory trace (storage impairment) or if the trace is present but inaccessible (retrieval impairment). The most direct approach to resolving this question is to quantify changes in the brain mechanisms of long-term memory (BM-LTM). This approach argues that if the amnesia is due to a retrieval failure, BM-LTM should remain at levels comparable to trained, unimpaired animals. Conversely, if memories are erased, BM-LTM should be reduced to resemble untrained levels. Here we review the use of BM-LTM in a number of studies that induced amnesia by targeting memory maintenance or reconsolidation. The literature strongly suggests that such amnesia is due to storage rather than retrieval impairments. We also describe the shortcomings of the purely behavioral protocol that purports to show recovery from amnesia as a method of understanding the nature of amnesia.
Collapse
Affiliation(s)
- Josué Haubrich
- Department of Psychology, McGill University, Montreal, Quebec H3A 1B1, Canada;
| | - Matteo Bernabo
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Andrew G Baker
- Department of Psychology, McGill University, Montreal, Quebec H3A 1B1, Canada;
| | - Karim Nader
- Department of Psychology, McGill University, Montreal, Quebec H3A 1B1, Canada;
| |
Collapse
|
7
|
Nikitin V, Solntseva S, Kozyrev S, Nikitin P. Long-term memory consolidation or reconsolidation impairment induces amnesia with key characteristics that are similar to key learning characteristics. Neurosci Biobehav Rev 2020; 108:542-558. [DOI: 10.1016/j.neubiorev.2019.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/16/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023]
|
8
|
KIDA S. Function and mechanisms of memory destabilization and reconsolidation after retrieval. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2020; 96:95-106. [PMID: 32161213 PMCID: PMC7167366 DOI: 10.2183/pjab.96.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/27/2019] [Indexed: 05/30/2023]
Abstract
Memory retrieval is not a passive process. When a memory is retrieved, the retrieved memory is destabilized, similar to short-term memory just after learning, and requires memory reconsolidation to re-stabilize the memory. Recent studies characterizing destabilization and reconsolidation showed that a retrieved memory is not always destabilized and that there are boundary conditions that determine the induction of destabilization and reconsolidation according to certain parameters, such as the duration of retrieval and the memory strength and age. Moreover, the reconsolidation of contextual fear memory is not independent of memory extinction; rather, these memory processes interact with each other. There is an increasing number of findings suggesting that destabilization following retrieval facilitates the modification, weakening, or strengthening of the original memory, and the resultant updated memory is stabilized through reconsolidation. Reconsolidation could be targeted therapeutically to improve emotional disorders such as post-traumatic stress disorder and phobia. Thus, this review summarizes recent findings to understand the mechanisms and function of reconsolidation.
Collapse
Affiliation(s)
- Satoshi KIDA
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Quillfeldt JA. Temporal Flexibility of Systems Consolidation and the Synaptic Occupancy/Reset Theory (SORT): Cues About the Nature of the Engram. Front Synaptic Neurosci 2019; 11:1. [PMID: 30814946 PMCID: PMC6381034 DOI: 10.3389/fnsyn.2019.00001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 01/14/2019] [Indexed: 11/24/2022] Open
Abstract
The ability to adapt to new situations involves behavioral changes expressed either from an innate repertoire, or by acquiring experience through memory consolidation mechanisms, by far a much richer and flexible source of adaptation. Memory formation consists of two interrelated processes that take place at different spatial and temporal scales, Synaptic Consolidation, local plastic changes in the recruited neurons, and Systems Consolidation, a process of gradual reorganization of the explicit/declarative memory trace between hippocampus and the neocortex. In this review, we summarize some converging experimental results from our lab that support a normal temporal framework of memory systems consolidation as measured both from the anatomical and the psychological points of view, and propose a hypothetical model that explains these findings while predicting other phenomena. Then, the same experimental design was repeated interposing additional tasks between the training and the remote test to verify for any interference: we found that (a) when the animals were subject to a succession of new learnings, systems consolidation was accelerated, with the disengagement of the hippocampus taking place before the natural time point of this functional switch, but (b) when a few reactivation sessions reexposed the animal to the training context without the shock, systems consolidation was delayed, with the hippocampus prolonging its involvement in retrieval. We hypothesize that new learning recruits from a fixed number of plastic synapses in the CA1 area to store the engram index, while reconsolidation lead to a different outcome, in which additional synapses are made available. The first situation implies the need of a reset mechanism in order to free synapses needed for further learning, and explains the acceleration observed under intense learning activity, while the delay might be explained by a different process, able to generate extra free synapses: depending on the cognitive demands, it deals either with a fixed or a variable pool of available synapses. The Synaptic Occupancy/Reset Theory (SORT) emerged as an explanation for the temporal flexibility of systems consolidation, to encompass the two different dynamics of explicit memories, as well as to bridge both synaptic and systems consolidation in one single mechanism.
Collapse
Affiliation(s)
- Jorge Alberto Quillfeldt
- Psychobiology and Neurocomputation Lab, Department of Biophysics, Institute of Biosciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Neurosciences Graduate Program, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Department of Psychology, McGill University, Montreal, QC, Canada
| |
Collapse
|
10
|
Feldmann KG, Chowdhury A, Becker JL, McAlpin N, Ahmed T, Haider S, Richard Xia JX, Diaz K, Mehta MG, Mano I. Non-canonical activation of CREB mediates neuroprotection in a Caenorhabditis elegans model of excitotoxic necrosis. J Neurochem 2018; 148:531-549. [PMID: 30447010 DOI: 10.1111/jnc.14629] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/26/2018] [Accepted: 11/13/2018] [Indexed: 12/11/2022]
Abstract
Excitotoxicity, caused by exaggerated neuronal stimulation by Glutamate (Glu), is a major cause of neurodegeneration in brain ischemia. While we know that neurodegeneration is triggered by overstimulation of Glu-receptors (GluRs), the subsequent mechanisms that lead to cellular demise remain controversial. Surprisingly, signaling downstream of GluRs can also activate neuroprotective pathways. The strongest evidence involves activation of the transcription factor cAMP response element-binding protein (CREB), widely recognized for its importance in synaptic plasticity. Canonical views describe CREB as a phosphorylation-triggered transcription factor, where transcriptional activation involves CREB phosphorylation and association with CREB-binding protein. However, given CREB's ubiquitous cross-tissue expression, the multitude of cascades leading to CREB phosphorylation, and its ability to regulate thousands of genes, it remains unclear how CREB exerts closely tailored, differential neuroprotective responses in excitotoxicity. A non-canonical, alternative cascade for activation of CREB-mediated transcription involves the CREB co-factor cAMP-regulated transcriptional co-activator (CRTC), and may be independent of CREB phosphorylation. To identify cascades that activate CREB in excitotoxicity we used a Caenorhabditis elegans model of neurodegeneration by excitotoxic necrosis. We demonstrated that CREB's neuroprotective effect was conserved, and seemed most effective in neurons with moderate Glu exposure. We found that factors mediating canonical CREB activation were not involved. Instead, phosphorylation-independent CREB activation in nematode excitotoxic necrosis hinged on CRTC. CREB-mediated transcription that depends on CRTC, but not on CREB phosphorylation, might lead to expression of a specific subset of neuroprotective genes. Elucidating conserved mechanisms of excitotoxicity-specific CREB activation can help us focus on core neuroprotective programs in excitotoxicity. Cover Image for this issue: doi: 10.1111/jnc.14494.
Collapse
Affiliation(s)
- K Genevieve Feldmann
- Department of Molecular, Cellular and Biomedical Sciences, CDI Cluster on Neural Development and Repair, The CUNY School of Medicine, City College (CCNY), The City University of New York (CUNY), New York City, New York, USA.,The CUNY Neuroscience Collaborative PhD Program, CUNY Graduate Center, New York City, New York, USA
| | - Ayesha Chowdhury
- Department of Molecular, Cellular and Biomedical Sciences, CDI Cluster on Neural Development and Repair, The CUNY School of Medicine, City College (CCNY), The City University of New York (CUNY), New York City, New York, USA.,The CUNY Neuroscience Collaborative PhD Program, CUNY Graduate Center, New York City, New York, USA
| | - Jessica L Becker
- Undergraduate Program in Biology, CCNY, CUNY, New York City, New York, USA
| | - N'Gina McAlpin
- Undergraduate Program in Biology, CCNY, CUNY, New York City, New York, USA
| | - Taqwa Ahmed
- The Sophie Davis BS/MD program, CUNY School of Medicine, New York City, New York, USA
| | - Syed Haider
- Undergraduate Program in Biology, CCNY, CUNY, New York City, New York, USA
| | - Jian X Richard Xia
- The Sophie Davis BS/MD program, CUNY School of Medicine, New York City, New York, USA
| | - Karina Diaz
- The Sophie Davis BS/MD program, CUNY School of Medicine, New York City, New York, USA
| | - Monal G Mehta
- Robert Wood Johnson Medical School, Rutgers - The State University of New Jersey, Piscataway, New Jersey, USA
| | - Itzhak Mano
- Department of Molecular, Cellular and Biomedical Sciences, CDI Cluster on Neural Development and Repair, The CUNY School of Medicine, City College (CCNY), The City University of New York (CUNY), New York City, New York, USA.,The CUNY Neuroscience Collaborative PhD Program, CUNY Graduate Center, New York City, New York, USA.,The Sophie Davis BS/MD program, CUNY School of Medicine, New York City, New York, USA
| |
Collapse
|
11
|
Lux V, Masseck OA, Herlitze S, Sauvage MM. Optogenetic Destabilization of the Memory Trace in CA1: Insights into Reconsolidation and Retrieval Processes. Cereb Cortex 2018; 27:841-851. [PMID: 26620265 DOI: 10.1093/cercor/bhv282] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Reactivation of memory can cause instability necessitating the reconsolidation of the trace. This process can be blocked by amnestic treatments administered after memory reactivation resulting in subsequent memory deficits. While the basolateral amygdala (BLA) is known to be crucial for reconsolidation, evidence for a contribution of the hippocampal CA1 region has only started to accumulate. Moreover, the effect of a reconsolidation blockade in CA1 has only been evaluated behaviorally, and it is unknown whether this manipulation has a long-term effect on neuronal activity. We combined optogenetic and high-resolution molecular imaging techniques to inhibit cell firing in CA1 following the reactivation of a fear memory in mice, evaluated memory performance and imaged neuronal activity the next day upon reexposure to the conditioning context. Blocking memory reconsolidation led to severe memory impairments that were associated with reduced neuronal activity not only in CA1 but also in CA3 and the BLA. Thus, our results indicate that CA1 is necessary for reconsolidation and suggest the involvement of a CA3-CA1-BLA network in the retrieval of contextual fear memory. Further investigations of this network might contribute to the validation of new brain targets for the treatment of pathologies such as posttraumatic stress disorders.
Collapse
Affiliation(s)
- Vanessa Lux
- Functional Architecture of Memory unit, Mercator Research Group, Medical Faculty, Ruhr University Bochum, Bochum 44801, Germany
| | - Olivia A Masseck
- Department of General Zoology and Neurobiology, Ruhr University Bochum, Bochum 44801, Germany
| | - Stefan Herlitze
- Department of General Zoology and Neurobiology, Ruhr University Bochum, Bochum 44801, Germany
| | - Magdalena M Sauvage
- Functional Architecture of Memory unit, Mercator Research Group, Medical Faculty, Ruhr University Bochum, Bochum 44801, Germany
| |
Collapse
|
12
|
McDiarmid TA, Yu AJ, Rankin CH. Beyond the response-High throughput behavioral analyses to link genome to phenome in Caenorhabditis elegans. GENES BRAIN AND BEHAVIOR 2018; 17:e12437. [DOI: 10.1111/gbb.12437] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/03/2017] [Accepted: 11/04/2017] [Indexed: 12/15/2022]
Affiliation(s)
- T. A. McDiarmid
- Djavad Mowafaghian Centre for Brain Health; University of British Columbia; Vancouver British Columbia Canada
| | - A. J. Yu
- Djavad Mowafaghian Centre for Brain Health; University of British Columbia; Vancouver British Columbia Canada
| | - C. H. Rankin
- Djavad Mowafaghian Centre for Brain Health; University of British Columbia; Vancouver British Columbia Canada
- Department of Psychology; University of British Columbia; Vancouver British Columbia Canada
| |
Collapse
|
13
|
Abstract
Scientific advances in the last decades uncovered that memory is not a stable, fixed entity. Apparently stable memories may become transiently labile and susceptible to modifications when retrieved due to the process of reconsolidation. Here, we review the initial evidence and the logic on which reconsolidation theory is based, the wide range of conditions in which it has been reported and recent findings further revealing the fascinating nature of this process. Special focus is given to conceptual issues of when and why reconsolidation happen and its possible outcomes. Last, we discuss the potential clinical implications of memory modifications by reconsolidation.
Collapse
Affiliation(s)
- Josue Haubrich
- Department of Psychology, McGill University, Montreal, Canada
- Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Karim Nader
- Department of Psychology, McGill University, Montreal, Canada.
| |
Collapse
|
14
|
Abstract
Research on the reconsolidation effect was greatly revitalized by the highly analytic demonstration of memory reconsolidation (Nader et al. Nature 406:722-726, 2000) in a well-defined behavioral protocol (auditory fear conditioning in the rat). Since this study, reconsolidation has been demonstrated in hundreds of studies over a range of species, tasks, and amnesic agents. Evidence for reconsolidation does not come solely from the behavioral level of analysis. Cellular and molecular correlates of reconsolidation have also been found. In this chapter, I will first define the evidence on which reconsolidation is concluded to exist. I will then discuss some of the conceptual issues facing the field in determining when reconsolidation does and does not occur. Lastly I will explain the clinical implications of this effect.
Collapse
Affiliation(s)
- Karim Nader
- Psychology Department, McGill University, 1205 Dr. Penfield Ave, Montreal, QC, Canada, H3A 1B1,
| |
Collapse
|
15
|
Abstract
Memory reconsolidation is the process in which reactivated long-term memory (LTM) becomes transiently sensitive to amnesic agents that are effective at consolidation. The phenomenon was first described more than 50 years ago but did not fit the dominant paradigm that posited that consolidation takes place only once per LTM item. Research on reconsolidation was revitalized only more than a decade ago with the demonstration of reconsolidation in a well-defined behavioral protocol (auditory fear conditioning in the rat) subserved by an identified brain circuit (basolateral amygdala). Since then, reconsolidation has been shown in many studies over a range of species, tasks, and amnesic agents, and cellular and molecular correlates of reconsolidation have also been identified. In this review, I will first define the evidence on which reconsolidation is based, and proceed to discuss some of the conceptual issues facing the field in determining when reconsolidation does and does not occur. Last, I will refer to the potential clinical implications of reconsolidation.
Collapse
Affiliation(s)
- Karim Nader
- Psychology Department, McGill University, Montréal, Quebec H3A 1B1, Canada
| |
Collapse
|
16
|
Wolman MA, Jain RA, Marsden KC, Bell H, Skinner J, Hayer KE, Hogenesch JB, Granato M. A genome-wide screen identifies PAPP-AA-mediated IGFR signaling as a novel regulator of habituation learning. Neuron 2015; 85:1200-11. [PMID: 25754827 DOI: 10.1016/j.neuron.2015.02.025] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/06/2015] [Accepted: 02/12/2015] [Indexed: 01/15/2023]
Abstract
Habituation represents a fundamental form of learning, yet the underlying molecular genetic mechanisms are not well defined. Here we report on a genome-wide genetic screen, coupled with whole-genome sequencing, that identified 14 zebrafish startle habituation mutants including mutants of the vertebrate-specific gene pregnancy-associated plasma protein-aa (pappaa). PAPP-AA encodes an extracellular metalloprotease known to increase IGF bioavailability, thereby enhancing IGF receptor signaling. We find that pappaa is expressed by startle circuit neurons, and expression of wild-type but not a metalloprotease-inactive version of pappaa restores habituation in pappaa mutants. Furthermore, acutely inhibiting IGF1R function in wild-type reduces habituation, while activation of IGF1R downstream effectors in pappaa mutants restores habituation, demonstrating that pappaa promotes learning by acutely and locally increasing IGF bioavailability. In sum, our results define the first functional gene set for habituation learning in a vertebrate and identify PAPPAA-regulated IGF signaling as a novel mechanism regulating habituation learning.
Collapse
Affiliation(s)
- Marc A Wolman
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, 1157 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104, USA; Department of Zoology, University of Wisconsin; 213 Zoology Research Building, 1117 West Johnson Street, Madison, WI 53706, USA
| | - Roshan A Jain
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, 1157 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Kurt C Marsden
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, 1157 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Hannah Bell
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, 1157 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Julianne Skinner
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, 1157 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Katharina E Hayer
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, 829 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - John B Hogenesch
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, 829 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Michael Granato
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, 1157 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
17
|
Exton-McGuinness MT, Lee JL, Reichelt AC. Updating memories—The role of prediction errors in memory reconsolidation. Behav Brain Res 2015; 278:375-84. [DOI: 10.1016/j.bbr.2014.10.011] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 10/08/2014] [Accepted: 10/10/2014] [Indexed: 10/24/2022]
|
18
|
Ye HY, Ye BP, Wang DY. Molecular control of memory in nematode Caenorhabditis elegans. Neurosci Bull 2014; 24:49-55. [PMID: 18273077 DOI: 10.1007/s12264-008-0808-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Model invertebrate organism Caenorhabditis elegans has become an ideal model to unravel the complex processes of memory. C. elegans has three simple forms of memory: memory for thermosensation, memory for chemosensation, and memory for mechanosensation. In the form of memory for mechanosensation, short-term memory, intermediate-term memory, and long-term memory have been extensively studied. The short-term memory and intermediate-term memory may occur in the presynaptic sensory neurons, whereas the long-term memory may occur in the postsynaptic interneurons. This review will discuss the recent progress on genetic and molecular regulation of memory in C. elegans.
Collapse
Affiliation(s)
- Hua-Yue Ye
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | | | | |
Collapse
|
19
|
Abstract
This review aims to demonstrate how an understanding of the brain mechanisms involved in memory provides a basis for; (i) reconceptualizing some mental disorders; (ii) refining existing therapeutic tools; and (iii) designing new ones for targeting processes that maintain these disorders. First, some of the stages which a memory undergoes are defined, and the clinical relevance of an understanding of memory processing by the brain is discussed. This is followed by a brief review of some of the clinical studies that have targeted memory processes. Finally, some new insights provided by the field of neuroscience with implications for conceptualizing mental disorders are presented.
Collapse
Affiliation(s)
- Karim Nader
- Department of Psychology, McGill University, Montreal, Canada
| | - Oliver Hardt
- Chancellor's Fellow, Centre for Cognitive & Neural Systems, The University of Edinburgh, UK
| | - Ruth Lanius
- Department of Psychiatry, University of Waterloo, Ontario, Canada
| |
Collapse
|
20
|
Schwabe L, Nader K, Pruessner JC. Reconsolidation of human memory: brain mechanisms and clinical relevance. Biol Psychiatry 2014; 76:274-80. [PMID: 24755493 DOI: 10.1016/j.biopsych.2014.03.008] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/21/2014] [Accepted: 03/10/2014] [Indexed: 12/17/2022]
Abstract
The processes of memory formation and storage are complex and highly dynamic. Once memories are consolidated, they are not necessarily fixed but can be changed long after storage. In particular, seemingly stable memories may re-enter an unstable state when they are retrieved, from which they must be re-stabilized during a process known as reconsolidation. During reconsolidation, memories are susceptible to modifications again, thus providing an opportunity to update seemingly stable memories. While initial demonstrations of memory reconsolidation came mainly from animal studies, evidence for reconsolidation in humans is now accumulating as well. Here, we review recent advances in our understanding of human memory reconsolidation. After a summary of findings on the reconsolidation of human fear and episodic memory, we focus particularly on recent neuroimaging data that provide first insights into how reconsolidation processes are implemented in the human brain. Finally, we discuss the implications of memory modifications during reconsolidation for the treatment of mental disorders such as posttraumatic stress disorder and drug addiction.
Collapse
Affiliation(s)
- Lars Schwabe
- Department of Cognitive Psychology, Ruhr-University Bochum, Bochum, Germany.
| | - Karim Nader
- Department of Psychology and Douglas Mental Health Institute, Montreal, Canada
| | - Jens C Pruessner
- Department of Psychology and Douglas Mental Health Institute, Montreal, Canada; Department of Psychiatry, McGill University, Montreal, Canada
| |
Collapse
|
21
|
Delorenzi A, Maza FJ, Suárez LD, Barreiro K, Molina VA, Stehberg J. Memory beyond expression. ACTA ACUST UNITED AC 2014; 108:307-22. [PMID: 25102126 DOI: 10.1016/j.jphysparis.2014.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 07/16/2014] [Accepted: 07/17/2014] [Indexed: 01/05/2023]
Abstract
The idea that memories are not invariable after the consolidation process has led to new perspectives about several mnemonic processes. In this framework, we review our studies on the modulation of memory expression during reconsolidation. We propose that during both memory consolidation and reconsolidation, neuromodulators can determine the probability of the memory trace to guide behavior, i.e. they can either increase or decrease its behavioral expressibility without affecting the potential of persistent memories to be activated and become labile. Our hypothesis is based on the findings that positive modulation of memory expression during reconsolidation occurs even if memories are behaviorally unexpressed. This review discusses the original approach taken in the studies of the crab Neohelice (Chasmagnathus) granulata, which was then successfully applied to test the hypothesis in rodent fear memory. Data presented offers a new way of thinking about both weak trainings and experimental amnesia: memory retrieval can be dissociated from memory expression. Furthermore, the strategy presented here allowed us to show in human declarative memory that the periods in which long-term memory can be activated and become labile during reconsolidation exceeds the periods in which that memory is expressed, providing direct evidence that conscious access to memory is not needed for reconsolidation. Specific controls based on the constraints of reminders to trigger reconsolidation allow us to distinguish between obliterated and unexpressed but activated long-term memories after amnesic treatments, weak trainings and forgetting. In the hypothesis discussed, memory expressibility--the outcome of experience-dependent changes in the potential to behave--is considered as a flexible and modulable attribute of long-term memories. Expression seems to be just one of the possible fates of re-activated memories.
Collapse
Affiliation(s)
- A Delorenzi
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), Argentina.
| | - F J Maza
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), Argentina.
| | - L D Suárez
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), Argentina.
| | - K Barreiro
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), Argentina.
| | - V A Molina
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, IFEC-CONICET (X5000HUA), Argentina.
| | - J Stehberg
- Laboratorio de Neurobiología, Departamento de Ciencias Biológicas, Universidad Andrés Bello, Chile.
| |
Collapse
|
22
|
Peymen K, Watteyne J, Frooninckx L, Schoofs L, Beets I. The FMRFamide-Like Peptide Family in Nematodes. Front Endocrinol (Lausanne) 2014; 5:90. [PMID: 24982652 PMCID: PMC4058706 DOI: 10.3389/fendo.2014.00090] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 05/31/2014] [Indexed: 12/31/2022] Open
Abstract
In the three decades since the FMRFamide peptide was isolated from the mollusk Macrocallista nimbosa, structurally similar peptides sharing a C-terminal RFamide motif have been identified across the animal kingdom. FMRFamide-like peptides (FLPs) represent the largest known family of neuropeptides in invertebrates. In the phylum Nematoda, at least 32 flp-genes are classified, making the FLP system of nematodes unusually complex. The diversity of the nematode FLP complement is most extensively mapped in Caenorhabditis elegans, where over 70 FLPs have been predicted. FLPs have shown to be expressed in the majority of the 302 C. elegans neurons including interneurons, sensory neurons, and motor neurons. The vast expression of FLPs is reflected in the broad functional repertoire of nematode FLP signaling, including neuroendocrine and neuromodulatory effects on locomotory activity, reproduction, feeding, and behavior. In contrast to the many identified nematode FLPs, only few peptides have been assigned a receptor and there is the need to clarify the pathway components and working mechanisms of the FLP signaling network. Here, we review the diversity, distribution, and functions of FLPs in nematodes.
Collapse
Affiliation(s)
- Katleen Peymen
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Jan Watteyne
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Lotte Frooninckx
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Liliane Schoofs
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Isabel Beets
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, Leuven, Belgium
- *Correspondence: Isabel Beets, Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, Naamsestraat 59, Leuven 3000, Belgium e-mail:
| |
Collapse
|
23
|
Barreiro KA, Suárez LD, Lynch VM, Molina VA, Delorenzi A. Memory expression is independent of memory labilization/reconsolidation. Neurobiol Learn Mem 2013; 106:283-91. [DOI: 10.1016/j.nlm.2013.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 09/25/2013] [Accepted: 10/12/2013] [Indexed: 01/10/2023]
|
24
|
Reichelt AC, Lee JLC. Memory reconsolidation in aversive and appetitive settings. Front Behav Neurosci 2013; 7:118. [PMID: 24058336 PMCID: PMC3766793 DOI: 10.3389/fnbeh.2013.00118] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/20/2013] [Indexed: 11/16/2022] Open
Abstract
Memory reconsolidation has been observed across species and in a number of behavioral paradigms. The majority of memory reconsolidation studies have been carried out in Pavlovian fear conditioning and other aversive memory settings, with potential implications for the treatment of post-traumatic stress disorder. However, there is a growing literature on memory reconsolidation in appetitive reward-related memory paradigms, including translational models of drug addiction. While there appears to be substantial similarity in the basic phenomenon and underlying mechanisms of memory reconsolidation across unconditioned stimulus valence, there are also notable discrepancies. These arise both when comparing aversive to appetitive paradigms and also across different paradigms within the same valence of memory. We review the demonstration of memory reconsolidation across different aversive and appetitive memory paradigms, the commonalities and differences in underlying mechanisms and the conditions under which each memory undergoes reconsolidation. We focus particularly on whether principles derived from the aversive literature are applicable to appetitive settings, and also whether the expanding literature in appetitive paradigms is informative for fear memory reconsolidation.
Collapse
Affiliation(s)
- Amy C Reichelt
- School of Psychology, University of Birmingham Birmingham, UK
| | | |
Collapse
|
25
|
Reactivation enables memory updating, precision-keeping and strengthening: Exploring the possible biological roles of reconsolidation. Neuroscience 2013; 244:42-8. [DOI: 10.1016/j.neuroscience.2013.04.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 04/03/2013] [Accepted: 04/04/2013] [Indexed: 11/18/2022]
|
26
|
Tronson NC, Taylor JR. Addiction: a drug-induced disorder of memory reconsolidation. Curr Opin Neurobiol 2013; 23:573-80. [PMID: 23415831 PMCID: PMC3677957 DOI: 10.1016/j.conb.2013.01.022] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 01/15/2013] [Accepted: 01/16/2013] [Indexed: 12/15/2022]
Abstract
Persistent maladaptive memories that maintain drug seeking and are resistant to extinction are a hallmark of addiction. As such, disruption of memory reconsolidation after retrieval has received attention for its therapeutic potential. Unrestrained reconsolidation may have the opposite effect, leading to reiterative and cumulative strengthening of memory over long periods of time. Here we review the molecular mechanisms underlying reconsolidation of appetitive and drug-rewarded memories, and discuss how these findings contribute to our understanding of the nature of this process. Finally, we suggest that drug-induced alterations to signal transduction might lead to dysregulation of reconsolidation, causing enhancements of drug-related memory after retrieval, and significantly contribute to the compulsive drug seeking that is a core component of addiction.
Collapse
Affiliation(s)
- Natalie C Tronson
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109,
| | - Jane R. Taylor
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06508
- Department of Psychology, Yale University, New Haven, CT 06508,
| |
Collapse
|
27
|
Reconsolidation and extinction of an appetitive pavlovian memory. Neurobiol Learn Mem 2013; 104:25-31. [PMID: 23639449 DOI: 10.1016/j.nlm.2013.04.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 04/19/2013] [Accepted: 04/19/2013] [Indexed: 01/20/2023]
Abstract
When memories are retrieved, they can enter a labile state during which the memory may be modified and subsequently restabilized through the process of reconsolidation. However, this does not occur in all situations, and certain "boundary conditions" determine whether a memory will undergo reconsolidation. Naïve male lister hooded rats were trained for 5 days to press a lever in order to retrieve a food reward associated with a pavlovian light stimulus. Three days post-training, animals were injected with either MK-801 (0.1 mgkg(-1); i.p.) or saline vehicle, 30 min before they were placed back into the training context for a retrieval session. Lever pressing was reinforced only by the light stimulus and was restricted to either 10, 30 or 50 presentations of the light conditioned stimulus. After 48 h, animals were again returned to the boxes and light-reinforced lever-pressing activity was recorded. MK-801-treated animals in the 10CS group significantly reduced lever pressing at test, compared to saline controls. In contrast, MK-801-treated rats in the 50CS group demonstrated a significant increase. There was no effect of MK-801 in the 30CS group. Additionally, there were no effects of MK-801 in an analogous, pure instrumental, setting when the cue lights were omitted. The opposing effects of MK-801 under different parametric conditions likely reflect impairments of appetitive pavlovian memory reconsolidation and extinction, respectively. These results demonstrate a competition between reconsolidation and extinction. However, there are also conditions under which MK-801 fails to impair either process.
Collapse
|
28
|
Alaghband Y, Marshall JF. Common influences of non-competitive NMDA receptor antagonists on the consolidation and reconsolidation of cocaine-cue memory. Psychopharmacology (Berl) 2013; 226:707-19. [PMID: 22829432 PMCID: PMC3917839 DOI: 10.1007/s00213-012-2793-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 06/26/2012] [Indexed: 11/25/2022]
Abstract
RATIONALE Environmental stimuli or contexts previously associated with rewarding drugs contribute importantly to relapse among addicts, and research has focused on neurobiological processes maintaining those memories. Much research shows contributions of cell surface receptors and intracellular signaling pathways in maintaining associations between rewarding drugs (e.g., cocaine) and concurrent cues/contexts; these memories can be degraded at the time of their retrieval through reconsolidation interference. Much less studied is the consolidation of drug-cue memories during their acquisition. OBJECTIVE The present experiments use the cocaine-conditioned place preference (CPP) paradigm in rats to directly compare, in a consistent setting, the effects of N-methyl-D-aspartate (NMDA) glutamate receptor antagonists MK-801 and memantine on the consolidation and reconsolidation of cocaine-cue memories. METHODS For the consolidation studies, animals were systemically administered MK-801 or memantine immediately following training sessions. To investigate the effects of these NMDA receptor antagonists on the retention of previously established cocaine-cue memories, animals were systemically administered MK-801 or memantine immediately after memory retrieval. RESULTS Animals given either NMDA receptor antagonist immediately following training sessions did not establish a preference for the cocaine-paired compartment. Post-retrieval administration of either NMDA receptor antagonist attenuated the animals' preference for the cocaine-paired compartment. Furthermore, animals given NMDA receptor antagonists post-retrieval showed a blunted response to cocaine-primed reinstatement. CONCLUSIONS Using two distinct NMDA receptor antagonists in a common setting, these findings demonstrate that NMDA receptor-dependent processes contribute both to the consolidation and reconsolidation of cocaine-cue memories, and they point to the potential utility of treatments that interfere with drug-cue memory reconsolidation.
Collapse
Affiliation(s)
- Yasaman Alaghband
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA 92697, USA
| | | |
Collapse
|
29
|
Learning and reconsolidation implicate different synaptic mechanisms. Proc Natl Acad Sci U S A 2013; 110:4798-803. [PMID: 23487762 DOI: 10.1073/pnas.1217878110] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Synaptic mechanisms underlying memory reconsolidation after retrieval are largely unknown. Here we report that synapses in projections to the lateral nucleus of the amygdala implicated in auditory fear conditioning, which are potentiated by learning, enter a labile state after memory reactivation, and must be restabilized through a postsynaptic mechanism implicating the mammalian target of rapamycin kinase-dependent signaling. Fear-conditioning-induced synaptic enhancements were primarily presynaptic in origin. Reconsolidation blockade with rapamycin, inhibiting mammalian target of rapamycin kinase activity, suppressed synaptic potentiation in slices from fear-conditioned rats. Surprisingly, this reduction of synaptic efficacy was mediated by post- but not presynaptic mechanisms. These findings suggest that different plasticity rules may apply to the processes underlying the acquisition of original fear memory and postreactivational stabilization of fear-conditioning-induced synaptic enhancements mediating fear memory reconsolidation.
Collapse
|
30
|
Li C, Timbers TA, Rose JK, Bozorgmehr T, McEwan A, Rankin CH. The FMRFamide-related neuropeptide FLP-20 is required in the mechanosensory neurons during memory for massed training in C. elegans. Learn Mem 2013; 20:103-8. [PMID: 23325727 DOI: 10.1101/lm.028993.112] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Lasting memories are likely to result from a lasting change in neurotransmission. In the nematode Caenorhabditis elegans, spaced training with a tap stimulus induces habituation to the tap that lasts for >24 h and is dependent on glutamate transmission, postsynaptic AMPA receptors, and CREB. Here we describe a distinct, presynaptic mechanism for a shorter lasting memory for tap habituation induced by massed training. We report that a FMRFamide-related peptide (FMRF = Phe-Met-Arg-Phe-NH(2)), FLP-20, is critical for memory lasting 12 h following massed training, but is not required for other forms of memory. Massed training correlated with a flp-20-dependent increase in synaptobrevin tagged with green fluorescent protein in the presynaptic terminals of the PLM mechanosensory neurons that followed the timeline of the memory trace. We also demonstrated that flp-20 is required specifically in the mechanosensory neurons for memory 12 h after massed training. These findings show that within the same species and form of learning, memory is induced by distinct mechanisms to create a lasting alteration in neurotransmission that is dependent upon the temporal pattern of training: memory of spaced training results from postsynaptic changes in the interneurons of the neural circuit, whereas memory of massed training results from presynaptic changes in the mechanosensory neurons of the neural circuit.
Collapse
Affiliation(s)
- Chris Li
- Department of Biology, City College of the City University of New York, NY 10031, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Besnard A, Caboche J, Laroche S. Reconsolidation of memory: A decade of debate. Prog Neurobiol 2012; 99:61-80. [PMID: 22877586 DOI: 10.1016/j.pneurobio.2012.07.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 06/13/2012] [Accepted: 07/08/2012] [Indexed: 10/28/2022]
|
32
|
Cai D, Pearce K, Chen S, Glanzman DL. Reconsolidation of long-term memory in Aplysia. Curr Biol 2012; 22:1783-8. [PMID: 22885063 DOI: 10.1016/j.cub.2012.07.038] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 06/15/2012] [Accepted: 07/16/2012] [Indexed: 10/28/2022]
Abstract
When an animal is reminded of a prior experience and shortly afterward treated with a protein synthesis inhibitor, the consolidated memory for the experience can be disrupted; by contrast, protein synthesis inhibition without prior reminding commonly does not disrupt long-term memory [1-3]. Such results imply that the reminding triggers reconsolidation of the memory. Here, we asked whether the behavioral and synaptic changes associated with the memory for long-term sensitization (LTS) of the siphon-withdrawal reflex in the marine snail Aplysia californica [4, 5] could undergo reconsolidation. In support of this idea, we found that when sensitized animals were given abbreviated reminder sensitization training 48-96 hr after the original sensitization training, followed by treatment with the protein synthesis inhibitor anisomycin, LTS was disrupted. We also found that long-term (≥ 24 hr) facilitation (LTF) [6], which can be induced in the monosynaptic connection between Aplysia sensory and motor neurons in dissociated cell culture by multiple spaced pulses of the endogenous facilitatory transmitter serotonin (5-HT) [7, 8], could be eliminated by treating the synapses with one reminder pulse of 5-HT, followed by anisomycin, at 48 hr after the original training. Our results provide a simple model system for understanding the synaptic basis of reconsolidation.
Collapse
Affiliation(s)
- Diancai Cai
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
33
|
Kroes MC, Fernández G. Dynamic neural systems enable adaptive, flexible memories. Neurosci Biobehav Rev 2012; 36:1646-66. [DOI: 10.1016/j.neubiorev.2012.02.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 02/07/2012] [Accepted: 02/20/2012] [Indexed: 10/28/2022]
|
34
|
Induction of Amnesia Evoked by Impairment to Memory Reconsolidation by Glutamate or Serotonin Receptor Antagonists Is Suppressed by Protein Synthesis Inhibitors. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11055-012-9581-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
35
|
Total recall. Reconsolidation theory unifies cognitive psychology and neuroscience and creates new therapeutic options for memory-related disorders. EMBO Rep 2011; 12:1106-8. [PMID: 21997292 DOI: 10.1038/embor.2011.199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
36
|
Amano H, Maruyama IN. Aversive olfactory learning and associative long-term memory in Caenorhabditis elegans. Learn Mem 2011; 18:654-65. [PMID: 21960709 DOI: 10.1101/lm.2224411] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The nematode Caenorhabditis elegans (C. elegans) adult hermaphrodite has 302 invariant neurons and is suited for cellular and molecular studies on complex behaviors including learning and memory. Here, we have developed protocols for classical conditioning of worms with 1-propanol, as a conditioned stimulus (CS), and hydrochloride (HCl) (pH 4.0), as an unconditioned stimulus (US). Before the conditioning, worms were attracted to 1-propanol and avoided HCl in chemotaxis assay. In contrast, after massed or spaced training, worms were either not attracted at all to or repelled from 1-propanol on the assay plate. The memory after the spaced training was retained for 24 h, while the memory after the massed training was no longer observable within 3 h. Worms pretreated with transcription and translation inhibitors failed to form the memory by the spaced training, whereas the memory after the massed training was not significantly affected by the inhibitors and was sensitive to cold-shock anesthesia. Therefore, the memories after the spaced and massed trainings can be classified as long-term memory (LTM) and short-term/middle-term memory (STM/MTM), respectively. Consistently, like other organisms including Aplysia, Drosophila, and mice, C. elegans mutants defective in nmr-1 encoding an NMDA receptor subunit failed to form both LTM and STM/MTM, while mutations in crh-1 encoding the CREB transcription factor affected only the LTM.
Collapse
Affiliation(s)
- Hisayuki Amano
- Information Processing Biology Unit, Okinawa Institute of Science and Technology, Okinawa 904-0412, Japan
| | | |
Collapse
|
37
|
Abstract
Most studies on memory consolidation consider the new information as if it were imposed on a tabula rasa, but considerable evidence indicates that new memories must be interleaved within a large network of relevant pre-existing knowledge. Early studies on reconsolidation highlighted that a newly consolidated memory could be erased after reactivation, but new evidence has shown that an effective reactivation experience must also involve memory reorganization to incorporate new learning. The combination of these observations on consolidation and reconsolidation highlights the fundamental similarities of both phenomena as the integration of new information and old, and it suggests reconsolidation = consolidation as a neverending process of schema modification.
Collapse
Affiliation(s)
- Sam McKenzie
- Center for Memory and Brain, Boston University, Boston, MA 02215, USA
| | | |
Collapse
|
38
|
Abstract
Whole organism-based small-molecule screens have proven powerful in identifying novel therapeutic chemicals, yet this approach has not been exploited to identify new cognitive enhancers. Here we present an automated high-throughput system for measuring nonassociative learning behaviors in larval zebrafish. Using this system, we report that spaced training blocks of repetitive visual stimuli elicit protein synthesis-dependent long-term habituation in larval zebrafish, lasting up to 24 h. Moreover, repetitive acoustic stimulation induces robust short-term habituation that can be modulated by stimulation frequency and instantaneously dishabituated through cross-modal stimulation. To characterize the neurochemical pathways underlying short-term habituation, we screened 1,760 bioactive compounds with known targets. Although we found extensive functional conservation of short-term learning between larval zebrafish and mammalian models, we also discovered several compounds with previously unknown roles in learning. These compounds included a myristic acid analog known to interact with Src family kinases and an inhibitor of cyclin dependent kinase 2, demonstrating that high-throughput chemical screens combined with high-resolution behavioral assays provide a powerful approach for the discovery of novel cognitive modulators.
Collapse
|
39
|
Hong I, Kim J, Song B, Park S, Lee J, Kim J, An B, Lee S, Choi S. Modulation of fear memory by retrieval and extinction: a clue for memory deconsolidation. Rev Neurosci 2011; 22:205-29. [PMID: 21476941 DOI: 10.1515/rns.2011.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Memories are fragile and easily forgotten at first, but after a consolidation period of hours to weeks, are inscribed in our brains as stable traces, no longer vulnerable to conventional amnesic treatments. Retrieval of a memory renders it labile, akin to the early stages of consolidation. This phenomenon has been explored as memory reactivation, in the sense that the memory is temporarily 'deconsolidated', allowing a short time window for amnesic intervention. This window closes again after reconsolidation, which restores the stability of the memory. In contrast to this 'transient deconsolidation' and the short-spanned amnesic effects of consolidation blockers, some specific treatments can disrupt even consolidated memory, leading to apparent amnesia. We propose the term 'amnesic deconsolidation' to describe such processes that lead to disruption of consolidated memory and/or consolidated memory traces. We review studies of these 'amnesic deconsolidation' treatments that enhance memory extinction, alleviate relapse, and reverse learning-induced plasticity. The transient deconsolidation that memory retrieval induces and the amnesic deconsolidation that these regimes induce both seem to dislodge a component that stabilizes consolidated memory. Characterizing this component, at both molecular and network levels, will provide a key to developing clinical treatments for memory-related disorders and to defining the consolidated memory trace.
Collapse
Affiliation(s)
- Ingie Hong
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
The role of NMDA and AMPA/Kainate receptors in the consolidation of catalepsy sensitization. Behav Brain Res 2011; 218:194-9. [DOI: 10.1016/j.bbr.2010.11.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 11/25/2010] [Accepted: 11/28/2010] [Indexed: 11/22/2022]
|
41
|
Davis S, Renaudineau S, Poirier R, Poucet B, Save E, Laroche S. The formation and stability of recognition memory: what happens upon recall? Front Behav Neurosci 2010; 4:177. [PMID: 21120149 PMCID: PMC2992451 DOI: 10.3389/fnbeh.2010.00177] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 10/29/2010] [Indexed: 12/13/2022] Open
Abstract
The idea that an already consolidated memory can become destabilized after recall and requires a process of reconsolidation to maintain it for subsequent use has gained much credence over the past decade. Experimental studies in rodents have shown pharmacological, genetic, or injurious manipulation at the time of memory reactivation can disrupt the already consolidated memory. Despite the force of experimental data showing this phenomenon, a number of questions have remained unanswered and no consensus has emerged as to the conditions under which a memory can be disrupted following reactivation. To date most rodent studies of reconsolidation are based on negatively reinforced memories, in particular fear-associated memories, while the storage and stability of forms of memory that do not rely on explicit reinforcement have been less often studied. In this review, we focus on recognition memory, a paradigm widely used in humans to probe declarative memory. We briefly outline recent advances in our understanding of the processes and brain circuits involved in recognition memory and review the evidence that recognition memory can undergo reconsolidation upon reactivation. We also review recent findings suggesting that some molecular mechanisms underlying consolidation of recognition memory are similarly recruited after recall to ensure memory stability, while others are more specifically engaged in consolidation or reconsolidation. Finally, we provide novel data on the role of Rsk2, a mental retardation gene, and of the transcription factor zif268/egr1 in reconsolidation of object-location memory, and offer suggestions as to how assessing the activation of certain molecular mechanisms following recall in recognition memory may help understand the relative importance of different aspects of remodeling or updating long-lasting memories.
Collapse
Affiliation(s)
- Sabrina Davis
- Centre de Neurosciences Paris-Sud, UMR 8195, Univ Paris-Sud Orsay, France
| | | | | | | | | | | |
Collapse
|
42
|
Zhang Y, Smolen P, Baxter DA, Byrne JH. The sensitivity of memory consolidation and reconsolidation to inhibitors of protein synthesis and kinases: computational analysis. Learn Mem 2010; 17:428-39. [PMID: 20736337 DOI: 10.1101/lm.1844010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Memory consolidation and reconsolidation require kinase activation and protein synthesis. Blocking either process during or shortly after training or recall disrupts memory stabilization, which suggests the existence of a critical time window during which these processes are necessary. Using a computational model of kinase synthesis and activation, we investigated the ways in which the dynamics of molecular positive-feedback loops may contribute to the time window for memory stabilization and memory maintenance. In the models, training triggered a transition in the amount of kinase between two stable states, which represented consolidation. Simulating protein synthesis inhibition (PSI) from before to 40 min after training blocked or delayed consolidation. Beyond 40 min, substantial (>95%) PSI had little effect despite the fact that the elevated amount of kinase was maintained by increased protein synthesis. However, PSI made established memories labile to perturbations. Simulations of kinase inhibition produced similar results. In addition, similar properties were found in several other models that also included positive-feedback loops. Even though our models are based on simplifications of the actual mechanisms of molecular consolidation, they illustrate the practical difficulty of empirically measuring "time windows" for consolidation. This is particularly true when consolidation and reconsolidation of memory depends, in part, on the dynamics of molecular positive-feedback loops.
Collapse
Affiliation(s)
- Yili Zhang
- WM Keck Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Anatomy, The University of Texas Medical School at Houston, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
43
|
Maciejak P, Szyndler J, Lehner M, Turzyńska D, Sobolewska A, Bidziński A, Płaźnik A. The differential effects of protein synthesis inhibition on the expression and reconsolidation of pentylenetetrazole kindled seizures. Epilepsy Behav 2010; 18:193-200. [PMID: 20605533 DOI: 10.1016/j.yebeh.2010.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 04/06/2010] [Accepted: 04/07/2010] [Indexed: 11/26/2022]
Abstract
This work attempted to answer the question whether the central processes engaged in the memory formation and the epilepsy development are governed by the overlapping mechanisms. The effects of the protein synthesis inhibitor cycloheximide (CHX) were examined on the expression and reconsolidation of pentylenetetrazole (PTZ) - induced kindled seizures and for comparative purposes, on the reconsolidation of conditioned fear response (conditioned freezing). It was found that post-test intracerebroventricular administration of CHX (125microg/5microl) significantly attenuated the expression of a conditioned fear response examined 24h later. Thus, inhibition of de novo brain protein synthesis interfered with the reconsolidation of a conditioned response. CHX given at the same dose repeatedly to fully kindled rats immediately after three consecutive sessions of PTZ-induced seizures (35mg/kg ip) did not modify the strength of convulsions. On the other hand, CHX significantly attenuated the strength of convulsions when the drug was administered 1h before the PTZ injection, which occurred every second day for three consecutive sessions. However, when CHX was omitted in a consecutive session, PTZ induced a fully developed expression of tonic-clonic convulsions, thereby indicating that CHX-induced changes in seizure intensity were transitory. Western Blot analysis confirmed that CHX potently inhibited PTZ-induced protein synthesis (c-Fos) in the rat brain, examined 60min after CHX and PTZ administration. The present findings suggest that the mechanisms underlying kindling are resistant to modification, even under the influence of protein synthesis inhibitors, and that there are important differences between the processes of learning and kindling seizures.
Collapse
Affiliation(s)
- Piotr Maciejak
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland.
| | | | | | | | | | | | | |
Collapse
|
44
|
Ardiel EL, Rankin CH. An elegant mind: Learning and memory in Caenorhabditis elegans. Learn Mem 2010; 17:191-201. [DOI: 10.1101/lm.960510] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
|
46
|
Giles AC, Rankin CH. Behavioral and genetic characterization of habituation using Caenorhabditis elegans. Neurobiol Learn Mem 2009; 92:139-46. [DOI: 10.1016/j.nlm.2008.08.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 08/12/2008] [Accepted: 08/12/2008] [Indexed: 11/24/2022]
|
47
|
Lee JLC. Reconsolidation: maintaining memory relevance. Trends Neurosci 2009; 32:413-20. [PMID: 19640595 PMCID: PMC3650827 DOI: 10.1016/j.tins.2009.05.002] [Citation(s) in RCA: 355] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 05/13/2009] [Accepted: 05/15/2009] [Indexed: 11/18/2022]
Abstract
The retrieval of a memory places it into a plastic state, the result of which is that the memory can be disrupted or even enhanced by experimental treatment. This phenomenon has been conceptualised within a framework of memories being reactivated and then reconsolidated in repeated rounds of cellular processing. The reconsolidation phase has been seized upon as crucial for the understanding of memory stability and, more recently, as a potential therapeutic target in the treatment of disorders such as post-traumatic stress and drug addiction. However, little is known about the reactivation process, or what might be the adaptive function of retrieval-induced plasticity. Reconsolidation has long been proposed to mediate memory updating, but only recently has this hypothesis been supported experimentally. Here, the adaptive function of memory reconsolidation is explored in more detail, with a strong emphasis on its role in updating memories to maintain their relevance.
Collapse
Affiliation(s)
- Jonathan L C Lee
- School of Psychology, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
48
|
Abstract
The predominant view about memory formation states that a consolidation process stabilizes newly acquired traces until they are safely stored in the brain. However, during the last ten years evidence has accumulated to indicate that, upon retrieval, consolidated memories are rendered again vulnerable to the action of metabolic blockers, notably protein synthesis inhibitors. This has led to the hypothesis that memories are reconsolidated at the time of retrieval, and that this requires protein synthesis in different brain regions. Here we will address the consolidation-reconsolidation debate and discuss some controversial issues about the reconsolidation hypothesis, in particular the biological role of this process.
Collapse
|
49
|
|
50
|
Browning K, Lukowiak K. Ketamine inhibits long-term, but not intermediate-term memory formation in Lymnaea stagnalis. Neuroscience 2008; 155:613-25. [DOI: 10.1016/j.neuroscience.2008.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 05/22/2008] [Accepted: 06/09/2008] [Indexed: 10/22/2022]
|