1
|
Simoneau M, Nooristani M, Blouin JS. Balance control threshold to vestibular stimuli. J Physiol 2025; 603:2783-2799. [PMID: 40183736 DOI: 10.1113/jp288016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/12/2025] [Indexed: 04/05/2025] Open
Abstract
Bipedalism renders our erect posture unstable, requiring the integration and processing of multisensory information to remain upright. To understand how each sense contributes to balance, perceptual thresholds to isolated sensory disturbances while standing are typically quantified. Perception, however, is distinct from balance control. Both processes rely on distinct internal body representations, and participants can misattribute the consequences of self-generated balance-correcting actions as an external perturbation. Here, we used signal detection theory to quantify non-perceptual balance control thresholds to isolated vestibular stimuli given the role of vestibular cues in generating balance-correcting responses. We exposed participants standing on force plates to electrical vestibular stimulation (EVS) at varying amplitudes (0.2, 0.4, 0.6 mA) and frequencies (0.1, 0.2, 0.5, 1 Hz). Stimuli delivered at 0.2 mA (0.1-0.5 Hz) and 0.4 mA (0.1, 0.2 Hz) remained unperceived but evoked whole-body responses above the sensorimotor noise underlying balance control. Balance control thresholds ranged from 0.09 to 0.57 mA; they increased with EVS amplitude and decreased with frequency. The physiological mechanisms underlying these EVS amplitude and frequency effects involved a decrease in response gain with increased stimulus amplitude and a reduction in response variability with increased stimulus frequency. Our findings demonstrate that balance responses to isolated vestibular stimuli can be quantified below perceptual thresholds and highlight the dynamic regulation of response gain and the influence of whole-body motion variability in the vestibular control of balance. Our results also open the door to assessing the isolated vestibular contributions to postural control in people with balance impairments. KEY POINTS: Upright balance control relies on sensory information from multiple sensory systems, but balance control thresholds to isolated sensory stimuli remain largely unknown because these stimuli, or their associated responses, can be perceived. We applied isolated electrical vestibular perturbations and used signal detection theory to quantify balance control thresholds to unperceived sensory stimuli. Vestibular stimuli delivered at 0.2 mA (0.1-0.5 Hz) and 0.4 mA (0.1 and 0.2 Hz) remained unperceived but evoked balance-correcting responses above the sensorimotor noise underlying the control of standing. Balance thresholds increased with current amplitude (0.2-0.6 mA) and decreased with stimulus frequency (0.1-1 Hz) and were linked to decreased gain of lateral force and reduced lateral force variability as current amplitude and frequency increased, respectively. These results pave the way for uncovering the sensory contributions to the non-perceptual mechanisms regulating balance-correcting motor commands essential for bipedalism and their potential role in balance impairments.
Collapse
Affiliation(s)
- Martin Simoneau
- Department of Kinesiology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), Quebec City, Quebec, Canada
| | - Mujda Nooristani
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), Quebec City, Quebec, Canada
- School of Rehabilitation Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Jean-Sébastien Blouin
- School of Kinesiology, The University of British Columbia, British Columbia, Vancouver, Canada
| |
Collapse
|
2
|
Delle Monache S, La Scaleia B, Finazzi Agrò A, Lacquaniti F, Zago M. Psychophysical evidence for an internal model of gravity in the visual and vestibular estimates of vertical motion duration. Sci Rep 2025; 15:10394. [PMID: 40140430 PMCID: PMC11947213 DOI: 10.1038/s41598-025-94512-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
The motion of objects and ourselves along the vertical is affected by gravitational acceleration. However, the visual system is poorly sensitive to accelerations, and the otolith organs do not disassociate gravitational and inertial accelerations. Here, we tested the hypothesis that the brain estimates the duration of vertical visual motion and self-motion by means of an internal model of gravity predicting that downward motions are accelerated and upward motions are decelerated by gravity. In visual sessions, a target moved up or down while participants remained stationary. In vestibular sessions, participants were moved up or down in the absence of a visual target. In visual-vestibular sessions, participants were moved up or down while the visual target remained fixed in space. In all sessions, we verified that participants looked straight-ahead. We found that downward motions of either the visual target or the participant were systematically perceived as lasting less than upward motions of the same duration, and vice-versa for the opposite direction of motion, consistent with the predictions of the internal model of gravity. In visual-vestibular sessions, there was no significant difference in the average estimates of duration of downward and upward motion of the participant. However, there was large inter-subject variability of these estimates.
Collapse
Affiliation(s)
- Sergio Delle Monache
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, 00179, Italy.
- Department of Systems Medicine and Centre of Space Bio-medicine, University of Rome Tor Vergata, Rome, 00133, Italy.
| | - Barbara La Scaleia
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, 00179, Italy.
| | - Anna Finazzi Agrò
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, 00179, Italy
- Centre of Space Bio-Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
- Department of Physics, University of Trento, Trento, 38123, Italy
| | - Francesco Lacquaniti
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, 00179, Italy
- Department of Systems Medicine and Centre of Space Bio-medicine, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Myrka Zago
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, 00179, Italy
- Department of Systems Medicine and Centre of Space Bio-medicine, University of Rome Tor Vergata, Rome, 00133, Italy
| |
Collapse
|
3
|
Kobel MJ, Wagner AR, Merfeld DM. Associations Between Vestibular Perception and Cognitive Performance in Healthy Adults. Ear Hear 2025; 46:461-473. [PMID: 39506197 PMCID: PMC11832344 DOI: 10.1097/aud.0000000000001598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
OBJECTIVES A growing body of evidence has linked vestibular function to the higher-order cognitive ability in aging individuals. Past evidence has suggested unique links between vestibular function and cognition on the basis of end-organ involvement (i.e., otoliths versus canals). However, past studies have only assessed vestibular reflexes despite the diversity of vestibular pathways. Thus, this exploratory study aimed to assess associations between vestibular perception and cognition in aging adults to determine potential relationships. DESIGN Fifty adults (21 to 84 years; mean = 52.9, SD = 19.8) were included in this cross-sectional study. All participants completed a vestibular perceptual threshold test battery designed to target perception predominantly mediated by each end-organ pair and intra-vestibular integration: 1 Hz y -translation (utricle), 1 Hz z -translation (saccule), 2 Hz yaw rotation (horizontal canals), 2 Hz right anterior, left posterior (RALP), and left anterior, right posterior (LARP) tilts (vertical canals), and 0.5 Hz roll tilt (canal-otolith integration). Participants also completed standard assessments of cognition and path integration: Digit Symbol Substitution Test (DSST), Trail Making Test (TMT), and the Gait Disorientation Test (GDT). Associations were assessed using Spearman rank correlation, and multivariable regression analyses. RESULTS For correlation analyses, DSST correlated to RALP/LARP tilt, roll tilt, and z -translation. TMT-A only correlated to z -translation, and TMT-B correlated to roll tilt and z -translation after correcting for multiple comparisons. GDT correlated to RALP/LARP tilt and y -translation. In age-adjusted regression analyses, DSST and TMT-B were associated with z -translation thresholds and GDT was associated with y -translation thresholds. CONCLUSIONS In this cross-sectional study, we identified associations between vestibular perceptual thresholds with otolith contributions and standard measures of cognition. These results are in line with past results suggesting unique associations between otolith function and cognitive performance.
Collapse
Affiliation(s)
- Megan J Kobel
- Department of Speech, Language & Hearing Sciences, University of Arizona, Tucson, Arizona, USA
| | - Andrew R Wagner
- Department of Physical Therapy, Creighton University, Omaha, Nebraska, USA
| | - Daniel M Merfeld
- Department of Otolaryngology-Head & Neck Surgery, Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
4
|
Allred AR, Lippert AF, Wood SJ. Galvanic Vestibular Stimulation Advancements for Spatial Disorientation Training. Aerosp Med Hum Perform 2024; 95:390-398. [PMID: 38915170 DOI: 10.3357/amhp.6362.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
INTRODUCTION: Spatial disorientation (SD) remains the leading contributor to Class A mishaps in the U.S. Navy, consistent with historical trends. Despite this, SD training for military aircrew is largely confined to the classroom and experiential training replicating SD illusions is limited and infrequent. Static flight simulators are most commonly used for training but offer no vestibular stimulation to the flight crew, omitting the source of vestibular-mediated SD.BACKGROUND: We first cover vestibular-mediated SD illusions which may be replicated through galvanic vestibular stimulation (GVS) in a static environment. GVS is a safe, reliable, low-cost avenue for providing vestibular sensory stimulation. We review the underlying mechanisms of GVS such as the excitement and inhibition of the afferent neurons innervating the vestibular system, particularly in the binaural bipolar electrode montage.APPLICATIONS: Two approaches for how GVS may be used to enhance SD training are examined. The first is a means for providing unreliable vestibular sensory perceptions to pilots, and the second details how GVS can be leveraged for replicating vestibular-mediated SD illusions.DISCUSSION: We recommend GVS be pursued as an enhancement to existing SD training. The ability to disorient aircrew in the safe training environment of a static flight simulator would allow for aircrew familiarization to SD, serving as an opportunity to practice life-saving checklist items to recover from SD. A repeatable training profile that could be worn by military aircrew in a static flight simulator may afford a low-cost training solution to the number one cause of fatalities in military aviation.Allred AR, Lippert AF, Wood SJ. Galvanic vestibular stimulation advancements for spatial disorientation training. Aerosp Med Hum Perform. 2024; 95(7):390-398.
Collapse
|
5
|
Takeda T, Tajino J, Merfeld DM. Frequency dependence of human thresholds: both perceptual and vestibuloocular reflex thresholds. J Neurophysiol 2024; 131:1143-1155. [PMID: 38658179 PMCID: PMC11383383 DOI: 10.1152/jn.00224.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024] Open
Abstract
Although perceptual thresholds have been widely studied, vestibuloocular reflex (VOR) thresholds have received less attention, so the relationship between VOR and perceptual thresholds remains unclear. We compared the frequency dependence of human VOR thresholds to human perceptual thresholds for yaw head rotation in both upright ("yaw rotation") and supine ("yaw tilt") positions, using the same human subjects and motion device. VOR thresholds were generally a little smaller than perceptual thresholds. We also found that horizontal VOR thresholds for both yaw rotation about an Earth-vertical axis and yaw tilt (yaw rotation about an Earth-horizontal axis) were relatively constant across four frequencies (0.2, 0.5, 1, and 2 Hz), with little difference between yaw rotation and yaw tilt VOR thresholds. For yaw tilt stimuli, perceptual thresholds were slightly lower at the lowest frequency and nearly constant at all other (higher) frequencies. However, for yaw rotation, perceptual thresholds increased significantly at the lowest frequency (0.2 Hz). We conclude 1) that VOR thresholds were relatively constant across frequency for both yaw rotation and yaw tilt, 2) that the known contributions of velocity storage to the VOR likely yielded these VOR thresholds that were similar for yaw rotation and yaw tilt for all frequencies tested, and 3) that the integration of otolith and horizontal canal signals during yaw tilt when supine contributes to stable perceptual thresholds, especially relative to the low-frequency perceptual thresholds recorded during yaw rotation.NEW & NOTEWORTHY We describe for the first time that human VOR thresholds differ from human forced-choice perceptual thresholds, with the difference especially evident at frequencies below 0.5 Hz. We also report that VOR thresholds are relatively constant across frequency for both yaw rotation and yaw tilt. These findings are consistent with the idea that high-pass filtering in cortical pathways impacts cognitive decision-making.
Collapse
Affiliation(s)
- Takamori Takeda
- Department of Otolaryngology, The Ohio State University, Columbus, Ohio, United States
| | - Junichi Tajino
- Department of Otolaryngology, The Ohio State University, Columbus, Ohio, United States
| | - Daniel M Merfeld
- Department of Otolaryngology, The Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
6
|
Clark TK, Galvan-Garza RC, Merfeld DM. Intra-individual consistency of vestibular perceptual thresholds. Atten Percept Psychophys 2024; 86:1417-1434. [PMID: 38658516 DOI: 10.3758/s13414-024-02886-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2024] [Indexed: 04/26/2024]
Abstract
Vestibular perceptual thresholds quantify sensory noise associated with reliable perception of small self-motions. Previous studies have identified substantial variation between even healthy individuals' thresholds. However, it remains unclear if or how an individual's vestibular threshold varies over repeated measures across various time scales (repeated measurements on the same day, across days, weeks, or months). Here, we assessed yaw rotation and roll tilt thresholds in four individuals and compared this intra-individual variability to inter-individual variability of thresholds measured across a large age-matched cohort each measured only once. For analysis, we performed simulations of threshold measurements where there was no underlying variability (or it was manipulated) to compare to that observed empirically. We found remarkable consistency in vestibular thresholds within individuals, for both yaw rotation and roll tilt; this contrasts with substantial inter-individual differences. Thus, we conclude that vestibular perceptual thresholds are an innate characteristic, which validates pooling measures across sessions and potentially serves as a stable clinical diagnostic and/or biomarker.
Collapse
Affiliation(s)
- Torin K Clark
- Jenks Vestibular Physiology Lab, Massachusetts Eye and Ear Infirmary, Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA.
- Man Vehicle Laboratory, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Bioastronautics Laboratory, Smead Aerospace Engineering Sciences, University of Colorado-Boulder, 3375 Discovery Dr. AERO N301, Boulder, CO, 80309, USA.
| | - Raquel C Galvan-Garza
- Jenks Vestibular Physiology Lab, Massachusetts Eye and Ear Infirmary, Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
- Man Vehicle Laboratory, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel M Merfeld
- Jenks Vestibular Physiology Lab, Massachusetts Eye and Ear Infirmary, Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
- Otolaryngology-Head & Neck Surgery, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
7
|
Mohammadi M, Carriot J, Mackrous I, Cullen KE, Chacron MJ. Neural populations within macaque early vestibular pathways are adapted to encode natural self-motion. PLoS Biol 2024; 22:e3002623. [PMID: 38687807 PMCID: PMC11086886 DOI: 10.1371/journal.pbio.3002623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 05/10/2024] [Accepted: 04/11/2024] [Indexed: 05/02/2024] Open
Abstract
How the activities of large neural populations are integrated in the brain to ensure accurate perception and behavior remains a central problem in systems neuroscience. Here, we investigated population coding of naturalistic self-motion by neurons within early vestibular pathways in rhesus macaques (Macacca mulatta). While vestibular neurons displayed similar dynamic tuning to self-motion, inspection of their spike trains revealed significant heterogeneity. Further analysis revealed that, during natural but not artificial stimulation, heterogeneity resulted primarily from variability across neurons as opposed to trial-to-trial variability. Interestingly, vestibular neurons displayed different correlation structures during naturalistic and artificial self-motion. Specifically, while correlations due to the stimulus (i.e., signal correlations) did not differ, correlations between the trial-to-trial variabilities of neural responses (i.e., noise correlations) were instead significantly positive during naturalistic but not artificial stimulation. Using computational modeling, we show that positive noise correlations during naturalistic stimulation benefits information transmission by heterogeneous vestibular neural populations. Taken together, our results provide evidence that neurons within early vestibular pathways are adapted to the statistics of natural self-motion stimuli at the population level. We suggest that similar adaptations will be found in other systems and species.
Collapse
Affiliation(s)
- Mohammad Mohammadi
- Department of Biological and Biomedical Engineering, McGill University, Montreal, Canada
| | - Jerome Carriot
- Department of Physiology, McGill University, Montreal, Canada
| | | | - Kathleen E. Cullen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | | |
Collapse
|
8
|
Kobel MJ, Wagner AR, Merfeld DM. Vestibular contributions to linear motion perception. Exp Brain Res 2024; 242:385-402. [PMID: 38135820 PMCID: PMC11058474 DOI: 10.1007/s00221-023-06754-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023]
Abstract
Vestibular contributions to linear motion (i.e., translation) perception mediated by the otoliths have yet to be fully characterized. To quantify the maximal extent that non-vestibular cues can contribute to translation perception, we assessed vestibular perceptual thresholds in two patients with complete bilateral vestibular ablation to compare to our data in 12 young (< 40 years), healthy controls. Vestibular thresholds were assessed for naso-occipital ("x-translation"), inter-aural ("y-translation"), and superior-inferior ("z-translation") translations in three body orientations (upright, supine, side-lying). Overall, in our patients with bilateral complete vestibular loss, thresholds were elevated ~ 2-45 times relative to healthy controls. No systematic differences in vestibular perceptual thresholds were noted between motions that differed only with respect to their orientation relative to the head (i.e., otoliths) in patients with bilateral vestibular loss. In addition, bilateral loss patients tended to show a larger impairment in the perception of earth-vertical translations (i.e., motion parallel to gravity) relative to earth-horizontal translations, which suggests increased contribution of the vestibular system for earth-vertical motions. However, differences were also noted between the two patients. Finally, with the exception of side-lying x-translations, no consistent effects of body orientation in our bilateral loss patients were seen independent from those resulting from changes in the plane of translation relative to gravity. Overall, our data confirm predominant vestibular contributions to whole-body direction-recognition translation tasks and provide fundamental insights into vestibular contributions to translation motion perception.
Collapse
Affiliation(s)
- Megan J Kobel
- Otolaryngology-Head and Neck Surgery, Ohio State University Wexner Medical Center, 915 Olentangy River Road, Columbus, OH, 43204, USA.
| | - Andrew R Wagner
- Otolaryngology-Head and Neck Surgery, Ohio State University Wexner Medical Center, 915 Olentangy River Road, Columbus, OH, 43204, USA
| | - Daniel M Merfeld
- Otolaryngology-Head and Neck Surgery, Ohio State University Wexner Medical Center, 915 Olentangy River Road, Columbus, OH, 43204, USA
- Speech and Hearing Science, Ohio State University, Columbus, USA
- Health and Rehabilitation Sciences, Ohio State University, Columbus, USA
- Biomedical Engineering, Ohio State University, Columbus, USA
| |
Collapse
|
9
|
Kobel MJ, Wagner AR, Oas JG, Merfeld DM. Characterization of Vestibular Perception in Patients with Persistent Postural-Perceptual Dizziness. Otol Neurotol 2024; 45:75-82. [PMID: 38013457 DOI: 10.1097/mao.0000000000004053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
OBJECTIVE To assess vestibular (i.e., passive self-motion) perception in patients diagnosed with persistent postural-perceptual dizziness (PPPD). STUDY DESIGN Case-controlled, cross-sectional, observational investigation. SETTING Single-center laboratory-based study. PATIENTS Thirteen patients with PPPD, 13 age-matched healthy control volunteers. Of those with PPPD, eight had co-occurring vestibular migraine (VM). INTERVENTIONS All participants completed a vestibular threshold test battery reflecting perception with predominant inputs from ( a ) the otoliths (1-Hz interaural y -axis translation, 1-Hz superior-inferior z -axis translation), ( b ) the semicircular canals (2-Hz yaw rotation, 2-Hz tilts in the planes of the vertical canal pairs), and ( c ) and canal-otolith integration (0.5-Hz roll tilt). MAIN OUTCOME MEASURES Direction-recognition thresholds for each vestibular threshold test condition. RESULTS Across all patients with PPPD, higher thresholds for superior-inferior z -translations thresholds in comparison to age-matched healthy control participants were identified ( p < 0.001). Those patients with co-occurring VM and PPPD (PPPD/+VM) displayed significantly higher z -translation thresholds ( p = 0.006), whereas patients with PPPD without VM (PPPD/-VM) displayed significantly higher roll tilt thresholds ( p = 0.029). CONCLUSIONS Patients with PPPD did not display a global worsening of passive self-motion perception as quantified by vestibular perceptual thresholds. Instead, patients with PPPD displayed elevated thresholds for only roll tilt and z -translation thresholds, with the relative change in each threshold impacted by the co-occurrence of VM. Because both z -translation and roll tilt motions are reliant on accurate gravity perception, our data suggest that patients with PPPD may exhibit impaired processing of graviceptive cues.
Collapse
Affiliation(s)
- Megan J Kobel
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus
| | - Andrew R Wagner
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus
| | - John G Oas
- Naval Aerospace Medical Research Laboratory, Naval Medical Research Unit-Dayton, Dayton, Ohio
| | - Daniel M Merfeld
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus
| |
Collapse
|
10
|
Fitze DC, Mast FW, Ertl M. Human vestibular perceptual thresholds - A systematic review of passive motion perception. Gait Posture 2024; 107:83-95. [PMID: 37778297 DOI: 10.1016/j.gaitpost.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND The vestibular system detects head accelerations within 6 degrees of freedom. How well this is accomplished is described by vestibular perceptual thresholds. They are a measure of perceptual performance based on the conscious evaluation of sensory information. This review provides an integrative synthesis of the vestibular perceptual thresholds reported in the literature. The focus lies on the estimation of thresholds in healthy participants, used devices and stimulus profiles. The dependence of these thresholds on the participants clinical status and age is also reviewed. Furthermore, thresholds from primate studies are discussed. RESULTS Thresholds have been measured for frequencies ranging from 0.05 to 5 Hz. They decrease with increasing frequency for five of the six main degrees of freedom (inter-aural, head-vertical, naso-occipital, yaw, pitch). No consistent pattern is evident for roll rotations. For a frequency range beyond 5 Hz, a U-shaped relationship is suggested by a qualitative comparison to primate data. Where enough data is available, increasing thresholds with age and higher thresholds in patients compared to healthy controls can be observed. No effects related to gender or handedness are reported. SIGNIFICANCE Vestibular thresholds are essential for next generation screening tools in the clinical domain, for the assessment of athletic performance, and workplace safety alike. Knowledge about vestibular perceptual thresholds contributes to basic and applied research in fields such as perception, cognition, learning, and healthy aging. This review provides normative values for vestibular thresholds. Gaps in current knowledge are highlighted and attention is drawn to specific issues for improving the inter-study comparability in the future.
Collapse
Affiliation(s)
- Daniel C Fitze
- Department of Psychology, University of Bern, Fabrikstrasse 8, 3012, Bern, Switzerland.
| | - Fred W Mast
- Department of Psychology, University of Bern, Fabrikstrasse 8, 3012, Bern, Switzerland.
| | - Matthias Ertl
- Department of Psychology, University of Bern, Fabrikstrasse 8, 3012, Bern, Switzerland.
| |
Collapse
|
11
|
Geno O, Critelli K, Arduino C, Crane BT, Anson E. Psychometrics of inertial heading perception. J Vestib Res 2024; 34:83-92. [PMID: 38640182 PMCID: PMC11451419 DOI: 10.3233/ves-230077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
BACKGROUND Inertial self-motion perception is thought to depend primarily on otolith cues. Recent evidence demonstrated that vestibular perceptual thresholds (including inertial heading) are adaptable, suggesting novel clinical approaches for treating perceptual impairments resulting from vestibular disease. OBJECTIVE Little is known about the psychometric properties of perceptual estimates of inertial heading like test-retest reliability. Here we investigate the psychometric properties of a passive inertial heading perceptual test. METHODS Forty-seven healthy subjects participated across two visits, performing in an inertial heading discrimination task. The point of subjective equality (PSE) and thresholds for heading discrimination were identified for the same day and across day tests. Paired t-tests determined if the PSE or thresholds significantly changed and a mixed interclass correlation coefficient (ICC) model examined test-retest reliability. Minimum detectable change (MDC) was calculated for PSE and threshold for heading discrimination. RESULTS Within a testing session, the heading discrimination PSE score test-retest reliability was good (ICC = 0. 80) and did not change (t(1,36) = -1.23, p = 0.23). Heading discrimination thresholds were moderately reliable (ICC = 0.67) and also stable (t(1,36) = 0.10, p = 0.92). Across testing sessions, heading direction PSE scores were moderately correlated (ICC = 0.59) and stable (t(1,46) = -0.44, p = 0.66). Heading direction thresholds had poor reliability (ICC = 0.03) and were significantly smaller at the second visit (t(1,46) = 2.8, p = 0.008). MDC for heading direction PSE ranged from 6-9 degrees across tests. CONCLUSION The current results indicate moderate reliability for heading perception PSE and provide clinical context for interpreting change in inertial vestibular self-motion perception over time or after an intervention.
Collapse
Affiliation(s)
- Olivia Geno
- Department of Neuroscience, University of Rochester, Rochester NY, USA
| | - Kyle Critelli
- Department of Otolaryngology, University of Rochester, Rochester NY, USA
| | - Cesar Arduino
- Department of Otolaryngology, University of Rochester, Rochester NY, USA
| | - Benjamin T. Crane
- Department of Neuroscience, University of Rochester, Rochester NY, USA
- Department of Otolaryngology, University of Rochester, Rochester NY, USA
| | - Eric Anson
- Department of Neuroscience, University of Rochester, Rochester NY, USA
- Department of Otolaryngology, University of Rochester, Rochester NY, USA
| |
Collapse
|
12
|
La Scaleia B, Brunetti C, Lacquaniti F, Zago M. Head-centric computing for vestibular stimulation under head-free conditions. Front Bioeng Biotechnol 2023; 11:1296901. [PMID: 38130821 PMCID: PMC10734306 DOI: 10.3389/fbioe.2023.1296901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Background: The vestibular end organs (semicircular canals, saccule and utricle) monitor head orientation and motion. Vestibular stimulation by means of controlled translations, rotations or tilts of the head represents a routine manoeuvre to test the vestibular apparatus in a laboratory or clinical setting. In diagnostics, it is used to assess oculomotor postural or perceptual responses, whose abnormalities can reveal subclinical vestibular dysfunctions due to pathology, aging or drugs. Objective: The assessment of the vestibular function requires the alignment of the motion stimuli as close as possible with reference axes of the head, for instance the cardinal axes naso-occipital, interaural, cranio-caudal. This is often achieved by using a head restraint, such as a helmet or strap holding the head tightly in a predefined posture that guarantees the alignment described above. However, such restraints may be quite uncomfortable, especially for elderly or claustrophobic patients. Moreover, it might be desirable to test the vestibular function under the more natural conditions in which the head is free to move, as when subjects are tracking a visual target or they are standing erect on the moving platform. Here, we document algorithms that allow delivering motion stimuli aligned with head-fixed axes under head-free conditions. Methods: We implemented and validated these algorithms using a MOOG-6DOF motion platform in two different conditions. 1) The participant kept the head in a resting, fully unrestrained posture, while inter-aural, naso-occipital or cranio-caudal translations were applied. 2) The participant moved the head continuously while a naso-occipital translation was applied. Head and platform motion were monitored in real-time using Vicon. Results: The results for both conditions showed excellent agreement between the theoretical spatio-temporal profile of the motion stimuli and the corresponding profile of actual motion as measured in real-time. Conclusion: We propose our approach as a safe, non-intrusive method to test the vestibular system under the natural head-free conditions required by the experiential perspective of the patients.
Collapse
Affiliation(s)
- Barbara La Scaleia
- Laboratory of Visuomotor Control and Gravitational Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Claudia Brunetti
- Laboratory of Visuomotor Control and Gravitational Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Francesco Lacquaniti
- Laboratory of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico—Scientific Institute for Research, Hospitalization and Healthcare, Santa Lucia Foundation, Rome, Italy
- Department of Systems Medicine and Centre of Space Bio-medicine, University of Rome Tor Vergata, Rome, Italy
| | - Myrka Zago
- Laboratory of Visuomotor Control and Gravitational Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Systems Medicine and Centre of Space Bio-medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
13
|
Gonzalez ELC, King SA, Karmali F. Your Vestibular Thresholds May Be Lower Than You Think: Cognitive Biases in Vestibular Psychophysics. Am J Audiol 2023; 32:730-738. [PMID: 37084775 PMCID: PMC10721247 DOI: 10.1044/2023_aja-22-00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/23/2022] [Accepted: 02/08/2023] [Indexed: 04/23/2023] Open
Abstract
PURPOSE Recently, there has been a surge of interest in measuring vestibular perceptual thresholds, which quantify the smallest motion that a subject can reliably perceive, to study physiology and pathophysiology. These thresholds are sensitive to age, pathology, and postural performance. Threshold tasks require decisions to be made in the presence of uncertainty. Since humans often rely on past information when making decisions in the presence of uncertainty, we hypothesized that (a) perceptual responses are affected by their preceding trial; (b) perceptual responses tend to be biased opposite of the "preceding response" because of cognitive biases but are not biased by the "preceding stimulus"; and (c) when fits do not account for this cognitive bias, thresholds are overestimated. To our knowledge, these hypotheses are unaddressed in vestibular and direction-recognition tasks. CONCLUSIONS Results in normal subjects supported each hypothesis. Subjects tended to respond opposite of their preceding response (not the preceding stimulus), indicating a cognitive bias, and this caused an overestimation of thresholds. Using an enhanced model (MATLAB code provided) that considered these effects, average thresholds were lower (5.5% for yaw, 7.1% for interaural). Since the results indicate that the magnitude of cognitive bias varies across subjects, this enhanced model can reduce measurement variability and potentially improve the efficiency of data collection.
Collapse
Affiliation(s)
- Elena Lopez-Contreras Gonzalez
- Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear, Boston
- Department of Otolaryngology–Head and Neck Surgery, Harvard Medical School, Boston, MA
| | - Susan A. King
- Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear, Boston
| | - Faisal Karmali
- Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear, Boston
- Department of Otolaryngology–Head and Neck Surgery, Harvard Medical School, Boston, MA
| |
Collapse
|
14
|
Grove CR, Klatt BN, Wagner AR, Anson ER. Vestibular perceptual testing from lab to clinic: a review. Front Neurol 2023; 14:1265889. [PMID: 37859653 PMCID: PMC10583719 DOI: 10.3389/fneur.2023.1265889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
Not all dizziness presents as vertigo, suggesting other perceptual symptoms for individuals with vestibular disease. These non-specific perceptual complaints of dizziness have led to a recent resurgence in literature examining vestibular perceptual testing with the aim to enhance clinical diagnostics and therapeutics. Recent evidence supports incorporating rehabilitation methods to retrain vestibular perception. This review describes the current field of vestibular perceptual testing from scientific laboratory techniques that may not be clinic friendly to some low-tech options that may be more clinic friendly. Limitations are highlighted suggesting directions for additional research.
Collapse
Affiliation(s)
- Colin R. Grove
- Department of Otolaryngology Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Division of Physical Therapy, Department of Physical Medicine and Rehabilitation School of Medicine, Emory University, Atlanta, GA, United States
| | - Brooke N. Klatt
- Physical Therapy Department, University of Pittsburgh, Pittsburgh, PA, United States
| | - Andrew R. Wagner
- Department of Otolaryngology—Head and Neck Surgery, Ohio State University Wexner Medical Center, Columbus, OH, United States
- School of Health and Rehabilitation Sciences, Ohio State University, Columbus, OH, United States
| | - Eric R. Anson
- Department of Otolaryngology, University of Rochester, Rochester, NY, United States
- Physical Therapy Department, University of Rochester, Rochester, NY, United States
- Department of Neuroscience, University of Rochester, Rochester, NY, United States
| |
Collapse
|
15
|
Wagner AR, Merfeld DM. Influence of Visual Feedback on Roll Tilt Perceptual Training. Otol Neurotol 2023; 44:949-955. [PMID: 37590890 PMCID: PMC10502940 DOI: 10.1097/mao.0000000000003990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
HYPOTHESIS We hypothesized that the addition of visual feedback during roll tilt perceptual training would yield a significant reduction in vestibular perceptual thresholds relative to a control group. BACKGROUND We previously showed that roll tilt vestibular thresholds could be improved through a perceptual training protocol that used a simple auditory cue. Variability in training outcomes within the treatment group suggested that an auditory cue alone may be suboptimal for improving self-motion perception. METHODS In 10 healthy adults, roll tilt vestibular thresholds, quantifying the smallest motion that can be reliably perceived, were measured before ("pretraining") and after ("posttraining") a training protocol designed to improve roll tilt perception. The protocol included 1,300 trials of 0.5 Hz whole-body roll tilt over 5 days, with participants being given both an auditory cue ("correct' vs. "incorrect') and visual feedback (viewing a stationary visual scene) after indicating their perceived direction of tilt. A control group (N = 10) underwent only the "pretraining" and "posttraining" assessments. RESULTS The training group showed an average decrease in roll tilt vestibular thresholds of 1.7% ± 56%, with training outcomes varying widely. Three individuals showed an average increase in roll tilt thresholds of 69.7%, whereas the remaining seven adults showed an average decrease in thresholds of 32.3%. CONCLUSION These data show that visual feedback during roll tilt perceptual training leads to heterogenous outcomes, but in a subset of individuals, it may lead to improvements in perceptual precision. Additional work is needed to define the optimal training parameters, including feedback schema, before investigating potential clinical applications.
Collapse
Affiliation(s)
- Andrew R. Wagner
- Department of Otolaryngology – Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus OH
| | - Daniel M. Merfeld
- Department of Otolaryngology – Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus OH
- Department of Speech and Hearing Sciences, The Ohio State University, Columbus, OH
| |
Collapse
|
16
|
Liu B, Shan J, Gu Y. Temporal and spatial properties of vestibular signals for perception of self-motion. Front Neurol 2023; 14:1266513. [PMID: 37780704 PMCID: PMC10534010 DOI: 10.3389/fneur.2023.1266513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
It is well recognized that the vestibular system is involved in numerous important cognitive functions, including self-motion perception, spatial orientation, locomotion, and vector-based navigation, in addition to basic reflexes, such as oculomotor or body postural control. Consistent with this rationale, vestibular signals exist broadly in the brain, including several regions of the cerebral cortex, potentially allowing tight coordination with other sensory systems to improve the accuracy and precision of perception or action during self-motion. Recent neurophysiological studies in animal models based on single-cell resolution indicate that vestibular signals exhibit complex spatiotemporal dynamics, producing challenges in identifying their exact functions and how they are integrated with other modality signals. For example, vestibular and optic flow could provide congruent and incongruent signals regarding spatial tuning functions, reference frames, and temporal dynamics. Comprehensive studies, including behavioral tasks, neural recording across sensory and sensory-motor association areas, and causal link manipulations, have provided some insights into the neural mechanisms underlying multisensory self-motion perception.
Collapse
Affiliation(s)
- Bingyu Liu
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, International Center for Primate Brain Research, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiayu Shan
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, International Center for Primate Brain Research, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong Gu
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, International Center for Primate Brain Research, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
Wagner AR, Kobel MJ, Merfeld DM. Increased roll tilt thresholds are associated with subclinical postural instability in asymptomatic adults aged 21 to 84 years. Front Aging Neurosci 2023; 15:1207711. [PMID: 37637958 PMCID: PMC10448770 DOI: 10.3389/fnagi.2023.1207711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/17/2023] [Indexed: 08/29/2023] Open
Abstract
Background Balance assessments that intentionally alter the reliability of visual and proprioceptive feedback (e.g., standing on foam with eyes closed) have become a standard approach for identifying vestibular mediated balance dysfunction in older adults. However, such assessments cannot discern which specific element of the vestibular system (e.g., semicircular canal, otolith, or combined canal-otolith) underlies the observed age-related changes in balance performance. The present study was designed to determine the associations between specific sources of vestibular noise and quantitative measures of quiet stance postural control measured during standard "vestibular" balance conditions. Methods A group of 52 asymptomatic adults (53.21 ± 19.7, 21 to 84 years) without a history of vestibular or neurologic disorders volunteered for this study. We measured a battery of five vestibular perceptual thresholds that assay vestibular noise with predominant contributions from the vertical canals, lateral canals, utricles, saccules, and the centrally integrated canal-otolith signal. In addition, participants completed two standard balance assessments that were each designed to prioritize the use of vestibular cues for quiet stance postural control-eyes closed on foam (Condition 4 of the Modified Romberg Balance Test) and eyes closed, on a sway referenced support surface (Condition 5 of the Sensory Organization Test). Results In age adjusted models, we found strong positive associations between roll tilt vestibular thresholds, a measure of noise in the centrally integrated canal-otolith signal, and the root mean square distance (RMSD) of the anteroposterior and mediolateral center of pressure (CoP) captured during eyes closed stance on a sway referenced support surface. The strength of the association between roll tilt thresholds and the RMSD of the CoP was between 3-times and 30-times larger than the association between postural sway and each of the other vestibular thresholds measured. Conclusion We posit that noise in the centrally estimated canal-otolith "tilt" signal may be the primary driver of the subclinical postural instability experienced by older adults during the "vestibular" conditions of balance assessments. Additional testing in adults with clinical balance impairment are needed to identify if roll tilt thresholds may also serve as a surrogate metric by which to detect vestibular mediated balance dysfunction and/or fall risk.
Collapse
Affiliation(s)
- Andrew R. Wagner
- Department of Otolaryngology – Head and Neck Surgery, Ohio State University Wexner Medical Center, Columbus, OH, United States
- School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, United States
| | - Megan J. Kobel
- Department of Otolaryngology – Head and Neck Surgery, Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Speech and Hearing Science, The Ohio State University, Columbus, OH, United States
| | - Daniel M. Merfeld
- Department of Otolaryngology – Head and Neck Surgery, Ohio State University Wexner Medical Center, Columbus, OH, United States
- School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, United States
- Department of Speech and Hearing Science, The Ohio State University, Columbus, OH, United States
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
18
|
Kobel MJ, Wagner AR, Merfeld DM. Evaluating vestibular contributions to rotation and tilt perception. Exp Brain Res 2023; 241:1873-1885. [PMID: 37310477 PMCID: PMC11161027 DOI: 10.1007/s00221-023-06650-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/30/2023] [Indexed: 06/14/2023]
Abstract
Vestibular perceptual thresholds provide insights into sensory function and have shown clinical and functional relevance. However, specific sensory contributions to tilt and rotation thresholds have been incompletely characterized. To address this limitation, tilt thresholds (i.e., rotations about earth-horizontal axes) were quantified to assess canal-otolith integration, and rotation thresholds (i.e., rotations about earth-vertical axes) were quantified to assess perception mediated predominantly by the canals. To determine the maximal extent to which non-vestibular sensory cues (e.g., tactile) can contribute to tilt and rotation thresholds, we tested two patients with completely absent vestibular function and compared their data to those obtained from two separate cohorts of young (≤ 40 years), healthy adults. As one primary finding, thresholds for all motions were elevated by approximately 2-35 times in the absence of vestibular function, thus, confirming predominant vestibular contributions to both rotation and tilt self-motion perception. For patients without vestibular function, rotation thresholds showed larger increases relative to healthy adults than tilt thresholds. This suggests that increased extra-vestibular (e.g., tactile or interoceptive) sensory cues may contribute more to the perception of tilt than rotation. In addition, an impact of stimulus frequency was noted, suggesting increased vestibular contributions relative to other sensory systems can be targeted on the basis of stimulus frequency.
Collapse
Affiliation(s)
- Megan J Kobel
- Otolaryngology-Head and Neck Surgery, Ohio State University Wexner Medical Center, Columbus, OH, USA.
| | - Andrew R Wagner
- Otolaryngology-Head and Neck Surgery, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Daniel M Merfeld
- Otolaryngology-Head and Neck Surgery, Ohio State University Wexner Medical Center, Columbus, OH, USA
- Speech and Hearing Science, Ohio State University, Columbus, OH, USA
- Health and Rehabilitation Sciences, Ohio State University, Columbus, OH, USA
- Biomedical Engineering, Ohio State University, Columbus, OH, USA
| |
Collapse
|
19
|
Schellenberg S, Straumann D, Green DA, Schuetz P, Zehnder Y, Swanenburg J. Earth-vertical motion perception assessment using an elevator: a feasibility study. Sci Rep 2023; 13:9450. [PMID: 37296287 PMCID: PMC10256722 DOI: 10.1038/s41598-023-36655-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/07/2023] [Indexed: 06/12/2023] Open
Abstract
A feasible, inexpensive, rapid, and easy-to-use method to measure vestibular vertical movement perception is needed to assess the sacculus-mediated low-frequency otolith function of dizzy patients. To evaluate the feasibility of reaction time assessment in response to vertical motion induced by an elevator in healthy young individuals. We recorded linear acceleration/deceleration reaction times (LA-RT/LD-RT) of 20 healthy (13 female) subjects (mean age: 22 years ± 1 SD) as a measure of vertical vestibular motion perception. LA-RT/LD-RT were defined as the time elapsed from the start of elevator acceleration or deceleration to the time at which subjects in a sitting position indicated perceiving a change in velocity by pushing a button with their thumb. The light reaction time was measured as a reference. All 20 subjects tolerated the assessment with repeated elevator rides and reported no adverse events. Over all experiments, one upward and four downward rides had to be excluded for technical reasons (2.5%). The fraction of premature button presses varied among the four conditions, possibly related to elevator vibration (upward rides: LA-RT-up 66%, LD-RT-up 0%; downward rides: LA-RT-down 12%, LD-RT-down 4%). Thus LD-RT-up yielded the most robust results. The reaction time to earth-vertical deceleration elicited by an elevator provides a consistent indicator of linear vestibular motion perception in healthy humans. The testing procedure is inexpensive and easy to use. Deceleration on upward rides yielded the most robust measurements.
Collapse
Affiliation(s)
- Simona Schellenberg
- Physiotherapy and Occupational Therapy Research Center, Directorate of Research and Education, University Hospital Zurich, Zurich, Switzerland
| | - Dominik Straumann
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
- Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
| | - David Andrew Green
- Space Medicine Team, HRE-OM, European Astronaut Centre, European Space Agency, Cologne, Germany
- KBRwyle Laboratories GmbH, Cologne, Germany
- Centre of Human & Applied Physiological Sciences, King's College London, London, UK
| | - Philipp Schuetz
- Lucerne University of Applied Sciences and Arts, Lucerne, Switzerland
| | - Yves Zehnder
- Lucerne University of Applied Sciences and Arts, Lucerne, Switzerland
| | - Jaap Swanenburg
- Physiotherapy and Occupational Therapy Research Center, Directorate of Research and Education, University Hospital Zurich, Zurich, Switzerland.
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
- Air Force Center, Air Base Dübendorf, UZH Space Hub, Zurich, Switzerland.
| |
Collapse
|
20
|
Lacquaniti F, La Scaleia B, Zago M. Noise and vestibular perception of passive self-motion. Front Neurol 2023; 14:1159242. [PMID: 37181550 PMCID: PMC10169592 DOI: 10.3389/fneur.2023.1159242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/29/2023] [Indexed: 05/16/2023] Open
Abstract
Noise defined as random disturbances is ubiquitous in both the external environment and the nervous system. Depending on the context, noise can degrade or improve information processing and performance. In all cases, it contributes to neural systems dynamics. We review some effects of various sources of noise on the neural processing of self-motion signals at different stages of the vestibular pathways and the resulting perceptual responses. Hair cells in the inner ear reduce the impact of noise by means of mechanical and neural filtering. Hair cells synapse on regular and irregular afferents. Variability of discharge (noise) is low in regular afferents and high in irregular units. The high variability of irregular units provides information about the envelope of naturalistic head motion stimuli. A subset of neurons in the vestibular nuclei and thalamus are optimally tuned to noisy motion stimuli that reproduce the statistics of naturalistic head movements. In the thalamus, variability of neural discharge increases with increasing motion amplitude but saturates at high amplitudes, accounting for behavioral violation of Weber's law. In general, the precision of individual vestibular neurons in encoding head motion is worse than the perceptual precision measured behaviorally. However, the global precision predicted by neural population codes matches the high behavioral precision. The latter is estimated by means of psychometric functions for detection or discrimination of whole-body displacements. Vestibular motion thresholds (inverse of precision) reflect the contribution of intrinsic and extrinsic noise to perception. Vestibular motion thresholds tend to deteriorate progressively after the age of 40 years, possibly due to oxidative stress resulting from high discharge rates and metabolic loads of vestibular afferents. In the elderly, vestibular thresholds correlate with postural stability: the higher the threshold, the greater is the postural imbalance and risk of falling. Experimental application of optimal levels of either galvanic noise or whole-body oscillations can ameliorate vestibular function with a mechanism reminiscent of stochastic resonance. Assessment of vestibular thresholds is diagnostic in several types of vestibulopathies, and vestibular stimulation might be useful in vestibular rehabilitation.
Collapse
Affiliation(s)
- Francesco Lacquaniti
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Systems Medicine, Centre of Space Bio-medicine, University of Rome Tor Vergata, Rome, Italy
| | - Barbara La Scaleia
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Myrka Zago
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Civil Engineering and Computer Science Engineering, Centre of Space Bio-medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
21
|
Allred AR, Clark TK. Vestibular perceptual thresholds for rotation about the yaw, roll, and pitch axes. Exp Brain Res 2023; 241:1101-1115. [PMID: 36871088 DOI: 10.1007/s00221-023-06570-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/07/2023] [Indexed: 03/06/2023]
Abstract
This effort seeks to further assess human perception of self-motion by quantifying and comparing earth-vertical rotational vestibular perceptual thresholds about the yaw, roll, and pitch axes. Early seminal works (Benson Aviat Space Environ Med 60:205-213, 1989) quantified thresholds for yaw, roll, and pitch rotations, using single-cycle sinusoids in angular acceleration with a frequency of 0.3 Hz (3.33 s motion duration) and found yaw thresholds to be significantly lower than roll and pitch thresholds (1.58-1.20 deg/s vs. 2.07 deg/s and 2.04 deg/s, respectively). Our current effort uses modern methods and definitions to reassess if rotational thresholds differ between these three axes of rotation in ten human subjects at 0.3 Hz and additionally across a range of frequencies: 0.1 Hz, 0.3 Hz, and 0.5 Hz. In contrast to the established findings of Benson et al., no statistically significant differences were found between the three rotational axes at 0.3 Hz. Further, no statistically significant differences were found at any of these frequencies. Instead, a consistent pattern was found for yaw, pitch, and roll of increasing thresholds with decreasing rotational frequency, consistent with the brain employing high-pass filter mechanisms for decision-making. We also fill a gap in the literature by extending the quantification of pitch rotation thresholds to 0.1 Hz. Finally, we assessed inter-individual trends between these three frequencies and across all three axes of rotation. In thoroughly considering methodological and other differences between the current and previous studies, we conclude yaw rotation thresholds do not differ from those in roll or pitch.
Collapse
Affiliation(s)
- Aaron R Allred
- Smead Department of Aerospace Engineering Sciences, University of Colorado-Boulder, Boulder, CO, United States.
| | - Torin K Clark
- Smead Department of Aerospace Engineering Sciences, University of Colorado-Boulder, Boulder, CO, United States
| |
Collapse
|
22
|
Pettorossi VE, Occhigrossi C, Panichi R, Botti FM, Ferraresi A, Ricci G, Faralli M. Induction and Cancellation of Self-Motion Misperception by Asymmetric Rotation in the Light. Audiol Res 2023; 13:196-206. [PMID: 36960980 PMCID: PMC10037580 DOI: 10.3390/audiolres13020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Asymmetrical sinusoidal whole-body rotation sequences with half-cycles at different velocities induce self-motion misperception. This is due to an adaptive process of the vestibular system that progressively reduces the perception of slow motion and increases that of fast motion. It was found that perceptual responses were conditioned by four previous cycles of asymmetric rotation in the dark, as the perception of self-motion during slow and fast rotations remained altered for several minutes. Surprisingly, this conditioned misperception remained even when asymmetric stimulation was performed in the light, a state in which vision completely cancels out the perceptual error. This suggests that vision is unable to cancel the misadaptation in the vestibular system but corrects it downstream in the central perceptual processing. Interestingly, the internal vestibular perceptual misperception can be cancelled by a sequence of asymmetric rotations with fast/slow half-cycles in a direction opposite to that of the conditioning asymmetric rotations.
Collapse
Affiliation(s)
- Vito Enrico Pettorossi
- Department of Medicine and Surgery, Section of Human Physiology, University of Perugia, 06132 Perugia, Italy
| | - Chiara Occhigrossi
- Department of Medicine and Surgery, Section of Human Physiology, University of Perugia, 06132 Perugia, Italy
| | - Roberto Panichi
- Department of Medicine and Surgery, Section of Human Physiology, University of Perugia, 06132 Perugia, Italy
| | - Fabio Massimo Botti
- Department of Medicine and Surgery, Section of Human Physiology, University of Perugia, 06132 Perugia, Italy
| | - Aldo Ferraresi
- Department of Medicine and Surgery, Section of Human Physiology, University of Perugia, 06132 Perugia, Italy
| | - Giampietro Ricci
- Department of Medicine and Surgery, Section of Otorhinolaryngology, University of Perugia, 06132 Perugia, Italy
| | - Mario Faralli
- Department of Medicine and Surgery, Section of Otorhinolaryngology, University of Perugia, 06132 Perugia, Italy
| |
Collapse
|
23
|
Noisy galvanic vestibular stimulation improves vestibular perception in bilateral vestibulopathy. J Neurol 2023; 270:938-943. [PMID: 36324034 PMCID: PMC9886588 DOI: 10.1007/s00415-022-11438-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Patients with bilateral vestibulopathy (BVP) suffer from impaired vestibular motion perception that is linked to deficits in spatial memory and navigation. OBJECTIVE To examine the potential therapeutic effect of imperceptible noisy galvanic vestibular stimulation (nGVS) on impaired vestibular perceptual performance in BVP. METHODS In 11 patients with BVP (mean age: 54.0 ± 8.3 years, 7 females), we initially determined the nGVS intensity that optimally stabilizes balance during a static posturographic assessment. Subsequently, effects of optimal nGVS vs. sham stimulation on vestibular motion perception were examined in randomized order. Vestibular perceptual performance was determined as direction recognition thresholds for head-centered roll tilt motion on a 6DOF motion platform in the absence of any visual or auditory motion cues. RESULTS For each patient, an nGVS intensity that optimally stabilized static balance compared to sham stimulation could be identified (mean 0.36 ± 0.16 mA). nGVS at optimal intensity resulted in lowered vestibular perceptual thresholds (0.94 ± 0.30 deg/s) compared to sham stimulation (1.67 ± 1.11 deg/s; p = 0.040). nGVS-induced improvements in vestibular perception were observed in 8 of 11 patients (73%) and were greater in patients with poorer perceptual performance during sham stimulation (R = - 0.791; p = 0.007). CONCLUSIONS nGVS is effective in improving impaired vestibular motion perception in patients with BVP, in particular in those patients with poor baseline perceptual performance. Imperceptible vestibular noise stimulation might thus offer a non-invasive approach to target BVP-related impairments in spatial memory, orientation, and navigation.
Collapse
|
24
|
La Scaleia B, Lacquaniti F, Zago M. Enhancement of Vestibular Motion Discrimination by Small Stochastic Whole-body Perturbations in Young Healthy Humans. Neuroscience 2023; 510:32-48. [PMID: 36535577 DOI: 10.1016/j.neuroscience.2022.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
Noisy galvanic vestibular stimulation has been shown to improve vestibular perception in healthy subjects. Here, we sought to obtain similar results using more natural stimuli consisting of small-amplitude motion perturbations of the whole body. Thirty participants were asked to report the perceived direction of antero-posterior sinusoidal motion on a MOOG platform. We compared the baseline perceptual thresholds with those obtained by applying small, stochastic perturbations at different power levels along the antero-posterior axis, symmetrically distributed around a zero-mean. At the population level, we found that the thresholds for all but the highest level of noise were significantly lower than the baseline threshold. At the individual level, the threshold was lower with at least one noise level than the threshold without noise in 87% of participants. Thus, small, stochastic oscillations of the whole body can increase the probability of recognizing the direction of motion from low, normally subthreshold vestibular signals, possibly due to stochastic resonance mechanisms. We suggest that, just as the external noise of the present experiments, also the spontaneous random oscillations of the head and body associated with standing posture are beneficial by enhancing vestibular thresholds with a mechanism similar to stochastic resonance.
Collapse
Affiliation(s)
- Barbara La Scaleia
- Laboratory of Visuomotor Control and Gravitational Physiology, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy.
| | - Francesco Lacquaniti
- Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Myrka Zago
- Laboratory of Visuomotor Control and Gravitational Physiology, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; Department of Civil Engineering and Computer Science Engineering and Center of Space Biomedicine, University of Rome Tor Vergata, 00133 Rome, Italy.
| |
Collapse
|
25
|
Keriven Serpollet D, Hartnagel D, James Y, Buffat S, Vayatis N, Bargiotas I, Vidal P. Tilt perception is different in the pitch and roll planes in human. Physiol Rep 2023; 11:e15374. [PMID: 36780905 PMCID: PMC9925277 DOI: 10.14814/phy2.15374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/21/2022] [Accepted: 05/27/2022] [Indexed: 02/15/2023] Open
Abstract
Neurophysiological tests probing the vestibulo-ocular, colic and spinal pathways are the gold standard to evaluate the vestibular system in clinics. In contrast, vestibular perception is rarely tested despite its potential usefulness in professional training and for the longitudinal follow-up of professionals dealing with complex man-machine interfaces, such as aircraft pilots. This is explored here using a helicopter flight simulator to probe the vestibular perception of pilots. The vestibular perception of nine professional helicopter pilots was tested using a full flight helicopter simulator. The cabin was tilted six times in roll and six times in pitch (-15°, -10°, -5°, 5°, 10° and 15°) while the pilots had no visual cue. The velocities of the outbound displacement of the cabin were kept below the threshold of the semicircular canal perception. After the completion of each movement, the pilots were asked to put the cabin back in the horizontal plane (still without visual cues). The order of the 12 trials was randomized with two additional control trials where the cabin stayed in the horizontal plane but rotated in yaw (-10° and +10°). Pilots were significantly more precise in roll (average error in roll: 1.15 ± 0.67°) than in pitch (average error in pitch: 2.89 ± 1.06°) (Wilcoxon signed-rank test: p < 0.01). However, we did not find a significant difference either between left and right roll tilts (p = 0.51) or between forward and backward pitch tilts (p = 0.59). Furthermore, we found that the accuracies were significantly biased with respect to the initial tilt. The greater the initial tilt was, the less precise the pilots were, although maintaining the direction of the tilt, meaning that the error can be expressed as a vestibular error gain in the ability to perceive the modification in the orientation. This significant result was found in both roll (Friedman test: p < 0.01) and pitch (p < 0.001). However, the pitch trend error was more prominent (gain = 0.77 vs gain = 0.93) than roll. This study is a first step in the determination of the perceptive-motor profile of pilots, which could be of major use for their training and their longitudinal follow-up. A similar protocol may also be useful in clinics to monitor the aging process of the otolith system with a simplified testing device.
Collapse
Affiliation(s)
- Dimitri Keriven Serpollet
- Training & Simulation, Thales AVS France SASOsnyFrance
- Centre Borelli, Université de Paris, ENS Paris‐Saclay, CNRS, SSAParisFrance
| | - David Hartnagel
- Département Neurosciences et Sciences CognitivesInstitut de Recherche Biomédicale des ArméesBrétigny‐sur‐OrgeFrance
| | - Yannick James
- Training & Simulation, Thales AVS France SASOsnyFrance
| | - Stéphane Buffat
- Laboratoire d'Accidentologie de Biomécanique et du comportement des conducteursGIE Renault‐PSA GroupesNanterreFrance
| | - Nicolas Vayatis
- Centre Borelli, Université de Paris, ENS Paris‐Saclay, CNRS, SSAParisFrance
| | - Ioannis Bargiotas
- Centre Borelli, Université de Paris, ENS Paris‐Saclay, CNRS, SSAParisFrance
| | - Pierre‐Paul Vidal
- Centre Borelli, Université de Paris, ENS Paris‐Saclay, CNRS, SSAParisFrance
| |
Collapse
|
26
|
How much I moved: Robust biases in self-rotation perception. Atten Percept Psychophys 2022; 84:2670-2683. [PMID: 36261764 PMCID: PMC9630243 DOI: 10.3758/s13414-022-02589-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2022] [Indexed: 11/16/2022]
Abstract
Vestibular cues are crucial to sense the linear and angular acceleration of our head in three-dimensional space. Previous literature showed that vestibular information precociously combines with other sensory modalities, such as proprioceptive and visual, to facilitate spatial navigation. Recent studies suggest that auditory cues may improve self-motion perception as well. The present study investigated the ability to estimate passive rotational displacements with and without virtual acoustic landmarks to determine how vestibular and auditory information interact in processing self-motion information. We performed two experiments. In both, healthy participants sat on a Rotational-Translational Chair. They experienced yaw rotations along the earth-vertical axis and performed a self-motion discrimination task. Their goal was to estimate both clockwise and counterclockwise rotations’ amplitude, with no visual information available, reporting whether they felt to be rotated more or less than 45°. According to the condition, vestibular-only or audio-vestibular information was present. Between the two experiments, we manipulated the procedure of presentation of the auditory cues (passive vs. active production of sounds). We computed the point of subjective equality (PSE) as a measure of accuracy and the just noticeable difference (JND) as the precision of the estimations for each condition and direction of rotations. Results in both experiments show a strong overestimation bias of the rotations, regardless of the condition, the direction, and the sound generation conditions. Similar to previously found heading biases, this bias in rotation estimation may facilitate the perception of substantial deviations from the most relevant directions in daily navigation activities.
Collapse
|
27
|
Wagner AR, Kobel MJ, Tajino J, Merfeld DM. Improving self-motion perception and balance through roll tilt perceptual training. J Neurophysiol 2022; 128:619-633. [PMID: 35894439 PMCID: PMC9448335 DOI: 10.1152/jn.00092.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/18/2022] [Accepted: 07/23/2022] [Indexed: 11/22/2022] Open
Abstract
The present study aimed to determine if a vestibular perceptual learning intervention could improve roll tilt self-motion perception and balance performance. Two intervention groups (n = 10 each) performed 1,300 trials of roll tilt at either 0.5 Hz (2 s/motion) or 0.2 Hz (5 s/motion) distributed over 5 days; each intervention group was provided feedback (correct/incorrect) after each trial. Roll tilt perceptual thresholds, measured using 0.2-, 0.5-, and 1-Hz stimuli, as well as quiet stance postural sway, were measured on day 1 and day 6 of the study. The control group (n = 10) who performed no perceptual training, showed stable 0.2-Hz (+1.48%, P > 0.99), 0.5-Hz (-4.0%, P > 0.99), and 1-Hz (-17.48%, P = 0.20) roll tilt thresholds. The 0.2-Hz training group demonstrated significant improvements in both 0.2-Hz (-23.77%, P = 0.003) and 0.5-Hz (-22.2%, P = 0.03) thresholds. The 0.5-Hz training group showed a significant improvement in 0.2-Hz thresholds (-19.13%, P = 0.029), but not 0.5-Hz thresholds (-17.68%, P = 0.052). Neither training group improved significantly at the untrained 1-Hz frequency (P > 0.05). In addition to improvements in perceptual precision, the 0.5-Hz training group showed a decrease in sway when measured during "eyes open, on foam" (dz = 0.57, P = 0.032) and "eyes closed, on foam" (dz = 2.05, P < 0.001) quiet stance balance tasks. These initial data suggest that roll tilt perception can be improved with less than 5 h of training and that vestibular perceptual training may contribute to a reduction in subclinical postural instability.NEW & NOTEWORTHY Roll tilt vestibular perceptual thresholds, an assay of vestibular noise, were recently found to correlate with postural sway. We therefore hypothesized that roll tilt perceptual training would yield improvements in both perceptual precision and balance. Our data show that roll tilt perceptual thresholds and quiet stance postural sway can be significantly improved after less than 5 h of roll tilt perceptual training, supporting the hypothesis that vestibular noise contributes to increased postural sway.
Collapse
Affiliation(s)
- Andrew R Wagner
- Department of Otolaryngology-Head & Neck Surgery, Ohio State University Wexner Medical Center, Columbus, Ohio
- School of Health and Rehabilitation Sciences, Ohio State University, Columbus, Ohio
| | - Megan J Kobel
- Department of Otolaryngology-Head & Neck Surgery, Ohio State University Wexner Medical Center, Columbus, Ohio
- Department of Speech and Hearing Science, Ohio State University, Columbus, Ohio
| | - Junichi Tajino
- Department of Otolaryngology-Head & Neck Surgery, Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Daniel M Merfeld
- Department of Otolaryngology-Head & Neck Surgery, Ohio State University Wexner Medical Center, Columbus, Ohio
- School of Health and Rehabilitation Sciences, Ohio State University, Columbus, Ohio
- Department of Speech and Hearing Science, Ohio State University, Columbus, Ohio
- Department of Biomedical Engineering, Ohio State University, Columbus, Ohio
| |
Collapse
|
28
|
Patel K, Beaver D, Gruber N, Printezis G, Giannopulu I. Mental imagery of whole-body motion along the sagittal-anteroposterior axis. Sci Rep 2022; 12:14345. [PMID: 35999355 PMCID: PMC9399091 DOI: 10.1038/s41598-022-18323-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/09/2022] [Indexed: 12/03/2022] Open
Abstract
Whole-body motor imagery is conceptualised as a mental symbolisation directly and indirectly associated with neural oscillations similar to whole-body motor execution. Motor and somatosensory activity, including vestibular activity, is a typical corticocortical substrate of body motion. Yet, it is not clear how this neural substrate is organised when participants are instructed to imagine moving their body forward or backward along the sagittal-anteroposterior axis. It is the aim of the current study to identify the fingerprint of the neural substrate by recording the cortical activity of 39 participants via a 32 electroencephalography (EEG) device. The participants were instructed to imagine moving their body forward or backward from a first-person perspective. Principal Component Analysis (i.e. PCA) applied to the neural activity of whole-body motor imagery revealed neural interconnections mirroring between forward and backward conditions: beta pre-motor and motor oscillations in the left and right hemisphere overshadowed beta parietal oscillations in forward condition, and beta parietal oscillations in the left and right hemisphere overshadowed beta pre-motor and motor oscillations in backward condition. Although functional significance needs to be discerned, beta pre-motor, motor and somatosensory oscillations might represent specific settings within the corticocortical network and provide meaningful information regarding the neural dynamics of continuous whole-body motion. It was concluded that the evoked multimodal fronto-parietal neural activity would correspond to the neural activity that could be expected if the participants were physically enacting movement of the whole-body in sagittal-anteroposterior plane as they would in their everyday environment.
Collapse
Affiliation(s)
- K Patel
- School of Human Sciences and Humanities, University of Houston, Houston, 77001, USA
| | - D Beaver
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, 4226, Australia
| | - N Gruber
- Department of Mathematics, University of Innsbruck, 6020, Innsbruck, Austria
- VASCage, 6020, Innsbruck, Austria
| | - G Printezis
- Department of Electrical Engineering, Technological University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - I Giannopulu
- Creative Robotics Lab, UNSW, Sydney, 2021, Australia.
- Clinical Research and Technological Innovation, 75016, Paris, France.
| |
Collapse
|
29
|
Han S, Lee J, Yun G, Han SH, Choi S. Motion Effects: Perceptual Space and Synthesis for Specific Perceptual Properties. IEEE TRANSACTIONS ON HAPTICS 2022; 15:626-637. [PMID: 35976838 DOI: 10.1109/toh.2022.3196950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A motion effect, the vestibular stimulus generated by a moving chair, is crucial in improving user experiences in many virtual reality (VR) and entertainment applications. However, the perceptual characteristics of motion effects remain unexplored to a great extent. This paper constructs a perceptual space that accounts for many motion effects based on their perceptual distances and then demonstrates smooth-rough and irregular-regular as its two primary perceptual dimensions. An authoring space is constructed with these two pairs as the axes. We also present methods for synthesizing new motion effects with a specific property in the authoring space. The contributions of this work are with new insights into the perceptual characteristics of motion effects and the first design methods of motion effects achieving desired perceptual properties.
Collapse
|
30
|
Kennedy JP, Zhou Y, Qin Y, Lovett SD, Sheremet A, Burke SN, Maurer AP. A Direct Comparison of Theta Power and Frequency to Speed and Acceleration. J Neurosci 2022; 42:4326-4341. [PMID: 35477905 PMCID: PMC9145239 DOI: 10.1523/jneurosci.0987-21.2022] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 11/21/2022] Open
Abstract
Decades of hippocampal neurophysiology research have linked the hippocampal theta rhythm to voluntary movement. A consistent observation has been a robust correlation between the amplitude (or power) and frequency of hippocampal theta and running speed. Recently, however, it has been suggested that acceleration, not running speed, is the dominating influence on theta frequency. There is an inherent interdependence among these two variables, as acceleration is the rate of change in velocity. Therefore, we investigated theta frequency and amplitude of the local-field potential recorded from the stratum pyramidale, stratum radiatum, and stratum lacunosum moleculare of the CA1 subregion, considering both speed and acceleration in tandem as animals traversed a circular task or performed continuous alternation. In male and female rats volitionally controlling their own running characteristics, we found that running speed carries nearly all of the variability in theta frequency and power, with a minute contribution from acceleration. These results contradicted a recent publication using a speed-clamping task, where acceleration and movement are compelled through the use of a bottomless car (Kropff et al., 2021a). Therefore, we reanalyzed the speed-clamping data replicating a transient increase in theta frequency during acceleration. Compared with track running rats, the speed-clamped animals exhibited lower velocities and acceleration values but still showed a stronger influence of speed on theta frequency relative to acceleration. As navigation is the integration of many sensory inputs that are not necessarily linearly related, we offer caution in making absolute claims regarding hippocampal physiology from correlates garnered from a single behavioral repertoire.SIGNIFICANCE STATEMENT A long-standing, replicable observation has been the increase of hippocampal theta power and frequency with increasing running speed. Recently, however, an experimental approach that clamps the running speed of an animal has suggested that acceleration is the dominant influence. Therefore, we analyzed data from freely behaving rats as well as data from the speed-clamping experiment. In unrestrained behavior, speed remains the dominant behavioral correlate to theta amplitude and frequency. Positive acceleration in the speed-clamp experiment induced a transient increase in theta frequency and power. However, speed retained the dominant influence over theta frequency, changing with velocity in both acceleration and deceleration conditions.
Collapse
Affiliation(s)
- Jack P Kennedy
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - Yuchen Zhou
- Engineering School of Sustainable Infrastructure & Environment (ESSIE), University of Florida, Gainesville, Florida 32611
| | - Y Qin
- Engineering School of Sustainable Infrastructure & Environment (ESSIE), University of Florida, Gainesville, Florida 32611
| | - Sarah D Lovett
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - A Sheremet
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida 32610
- Engineering School of Sustainable Infrastructure & Environment (ESSIE), University of Florida, Gainesville, Florida 32611
| | - S N Burke
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - A P Maurer
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida 32610
- Engineering School of Sustainable Infrastructure & Environment (ESSIE), University of Florida, Gainesville, Florida 32611
- Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
31
|
Carriot J, McAllister G, Hooshangnejad H, Mackrous I, Cullen KE, Chacron MJ. Sensory adaptation mediates efficient and unambiguous encoding of natural stimuli by vestibular thalamocortical pathways. Nat Commun 2022; 13:2612. [PMID: 35551186 PMCID: PMC9098492 DOI: 10.1038/s41467-022-30348-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 04/26/2022] [Indexed: 11/09/2022] Open
Abstract
Sensory systems must continuously adapt to optimally encode stimuli encountered within the natural environment. The prevailing view is that such optimal coding comes at the cost of increased ambiguity, yet to date, prior studies have focused on artificial stimuli. Accordingly, here we investigated whether such a trade-off between optimality and ambiguity exists in the encoding of natural stimuli in the vestibular system. We recorded vestibular nuclei and their target vestibular thalamocortical neurons during naturalistic and artificial self-motion stimulation. Surprisingly, we found no trade-off between optimality and ambiguity. Using computational methods, we demonstrate that thalamocortical neural adaptation in the form of contrast gain control actually reduces coding ambiguity without compromising the optimality of coding under naturalistic but not artificial stimulation. Thus, taken together, our results challenge the common wisdom that adaptation leads to ambiguity and instead suggest an essential role in underlying unambiguous optimized encoding of natural stimuli.
Collapse
Affiliation(s)
- Jerome Carriot
- Department of Physiology, McGill University, Montréal, Canada
| | | | - Hamed Hooshangnejad
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, USA
| | | | - Kathleen E Cullen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, USA.,Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, USA.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, USA.,Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, USA
| | | |
Collapse
|
32
|
Sozzi S, Schieppati M. Balance Adaptation While Standing on a Compliant Base Depends on the Current Sensory Condition in Healthy Young Adults. Front Hum Neurosci 2022; 16:839799. [PMID: 35399363 PMCID: PMC8989851 DOI: 10.3389/fnhum.2022.839799] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/03/2022] [Indexed: 01/06/2023] Open
Abstract
Background Several investigations have addressed the process of balance adaptation to external perturbations. The adaptation during unperturbed stance has received little attention. Further, whether the current sensory conditions affect the adaptation rate has not been established. We have addressed the role of vision and haptic feedback on adaptation while standing on foam. Methods In 22 young subjects, the analysis of geometric (path length and sway area) and spectral variables (median frequency and mean level of both total spectrum and selected frequency windows) of the oscillation of the centre of feet pressure (CoP) identified the effects of vision, light-touch (LT) or both in the anteroposterior (AP) and mediolateral (ML) direction over 8 consecutive 90 s standing trials. Results Adaptation was obvious without vision (eyes closed; EC) and tenuous with vision (eyes open; EO). With trial repetition, path length and median frequency diminished with EC (p < 0.001) while sway area and mean level of the spectrum increased (p < 0.001). The low- and high-frequency range of the spectrum increased and decreased in AP and ML directions, respectively. Touch compared to no-touch enhanced the rate of increase of the low-frequency power (p < 0.05). Spectral differences in distinct sensory conditions persisted after adaptation. Conclusion Balance adaptation occurs during standing on foam. Adaptation leads to a progressive increase in the amplitude of the lowest frequencies of the spectrum and a concurrent decrease in the high-frequency range. Within this common behaviour, touch adds to its stabilising action a modest effect on the adaptation rate. Stabilisation is improved by favouring slow oscillations at the expense of sway minimisation. These findings are preliminary to investigations of balance problems in persons with sensory deficits, ageing, and peripheral or central nervous lesion.
Collapse
Affiliation(s)
- Stefania Sozzi
- Centro Studi Attività Motorie (CSAM), Istituti Clinici Scientifici Maugeri SB (IRCCS), Pavia, Italy
| | | |
Collapse
|
33
|
Blouin J, Pialasse JP, Mouchnino L, Simoneau M. On the Dynamics of Spatial Updating. Front Neurosci 2022; 16:780027. [PMID: 35250442 PMCID: PMC8893203 DOI: 10.3389/fnins.2022.780027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/24/2022] [Indexed: 11/23/2022] Open
Abstract
Most of our knowledge on the human neural bases of spatial updating comes from functional magnetic resonance imaging (fMRI) studies in which recumbent participants moved in virtual environments. As a result, little is known about the dynamic of spatial updating during real body motion. Here, we exploited the high temporal resolution of electroencephalography (EEG) to investigate the dynamics of cortical activation in a spatial updating task where participants had to remember their initial orientation while they were passively rotated about their vertical axis in the dark. After the rotations, the participants pointed toward their initial orientation. We contrasted the EEG signals with those recorded in a control condition in which participants had no cognitive task to perform during body rotations. We found that the amplitude of the P1N1 complex of the rotation-evoked potential (RotEPs) (recorded over the vertex) was significantly greater in the Updating task. The analyses of the cortical current in the source space revealed that the main significant task-related cortical activities started during the N1P2 interval (136–303 ms after rotation onset). They were essentially localized in the temporal and frontal (supplementary motor complex, dorsolateral prefrontal cortex, anterior prefrontal cortex) regions. During this time-window, the right superior posterior parietal cortex (PPC) also showed significant task-related activities. The increased activation of the PPC became bilateral over the P2N2 component (303–470 ms after rotation onset). In this late interval, the cuneus and precuneus started to show significant task-related activities. Together, the present results are consistent with the general scheme that the first task-related cortical activities during spatial updating are related to the encoding of spatial goals and to the storing of spatial information in working memory. These activities would precede those involved in higher order processes also relevant for updating body orientation during rotations linked to the egocentric and visual representations of the environment.
Collapse
Affiliation(s)
- Jean Blouin
- Laboratoire de Neurosciences Cognitives, CNRS, Aix-Marseille Université, Marseille, France
- *Correspondence: Jean Blouin,
| | | | - Laurence Mouchnino
- Laboratoire de Neurosciences Cognitives, CNRS, Aix-Marseille Université, Marseille, France
- Institut Universitaire de France, Paris, France
| | - Martin Simoneau
- Département de Kinésiologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
- Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale du CIUSSS de la Capitale-Nationale, Québec, QC, Canada
| |
Collapse
|
34
|
Wagner AR, Kobel MJ, Merfeld DM. Impacts of Rotation Axis and Frequency on Vestibular Perceptual Thresholds. Multisens Res 2022; 35:259-287. [DOI: 10.1163/22134808-bja10069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/15/2021] [Indexed: 11/19/2022]
Abstract
Abstract
In an effort to characterize the factors influencing the perception of self-motion rotational cues, vestibular self-motion perceptual thresholds were measured in 14 subjects for rotations in the roll and pitch planes, as well as in the planes aligned with the anatomic orientation of the vertical semicircular canals (i.e., left anterior, right posterior; LARP, and right anterior, left posterior; RALP). To determine the multisensory influence of concurrent otolith cues, within each plane of motion, thresholds were measured at four discrete frequencies for rotations about earth-horizontal (i.e., tilts; EH) and earth-vertical axes (i.e., head positioned in the plane of the rotation; EV). We found that the perception of rotations, stimulating primarily the vertical canals, was consistent with the behavior of a high-pass filter for all planes of motion, with velocity thresholds increasing at lower frequencies of rotation. In contrast, tilt (i.e, EH rotation) velocity thresholds, stimulating both the canals and otoliths (i.e., multisensory integration), decreased at lower frequencies and were significantly lower than earth-vertical rotation thresholds at each frequency below 2 Hz. These data suggest that multisensory integration of otolithic gravity cues with semicircular canal rotation cues enhances perceptual precision for tilt motions at frequencies below 2 Hz. We also showed that rotation thresholds, at least partially, were dependent on the orientation of the rotation plane relative to the anatomical alignment of the vertical canals. Collectively these data provide the first comprehensive report of how frequency and axis of rotation influence perception of rotational self-motion cues stimulating the vertical canals.
Collapse
Affiliation(s)
- Andrew R. Wagner
- Otolaryngology — Head & Neck Surgery, Ohio State University Wexner Medical Center, 915 Olentangy River Rd, Columbus, OH 43212, USA
- Health and Rehabilitation Sciences, Ohio State University, Columbus, OH 43210, USA
| | - Megan J. Kobel
- Otolaryngology — Head & Neck Surgery, Ohio State University Wexner Medical Center, 915 Olentangy River Rd, Columbus, OH 43212, USA
- Speech and Hearing Science, Ohio State University, Columbus, OH 43210, USA
| | - Daniel M. Merfeld
- Otolaryngology — Head & Neck Surgery, Ohio State University Wexner Medical Center, 915 Olentangy River Rd, Columbus, OH 43212, USA
- Health and Rehabilitation Sciences, Ohio State University, Columbus, OH 43210, USA
- Speech and Hearing Science, Ohio State University, Columbus, OH 43210, USA
- Biomedical Engineering, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
35
|
Wagner AR, Kobel MJ, Merfeld DM. Impact of Canal-Otolith Integration on Postural Control. Front Integr Neurosci 2022; 15:773008. [PMID: 34970126 PMCID: PMC8713561 DOI: 10.3389/fnint.2021.773008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022] Open
Abstract
Roll tilt vestibular perceptual thresholds, an assay of vestibular noise, have recently been shown to be associated with suboptimal balance performance in healthy older adults. However, despite the strength of this correlation, the use of a categorical (i.e., pass/fail) balance assessment limits insight into the impacts of vestibular noise on postural sway. As a result, an explanation for this correlation has yet to be determined. We hypothesized that the correlation between roll tilt vestibular thresholds and postural control reflects a shared influence of sensory noise. To address this hypothesis, we measured roll tilt perceptual thresholds at multiple frequencies (0.2 Hz, 0.5 Hz, 1 Hz) and compared each threshold to quantitative measures of quiet stance postural control in 33 healthy young adults (mean = 24.9 years, SD = 3.67). Our data showed a significant linear association between 0.5 Hz roll tilt thresholds and the root mean square distance (RMSD) of the center of pressure in the mediolateral (ML; β = 5.31, p = 0.002, 95% CI = 2.1-8.5) but not anteroposterior (AP; β = 5.13, p = 0.016, 95% CI = 1.03-9.23) direction (Bonferroni corrected α of 0.006). In contrast, vestibular thresholds measured at 0.2 Hz and 1 Hz did not show a significant correlation with ML or AP RMSD. In a multivariable regression model, controlling for both 0.2 Hz and 1 Hz thresholds, the significant effect of 0.5 Hz roll tilt thresholds persisted (β = 5.44, p = 0.029, CI = 0.60-10.28), suggesting that the effect cannot be explained by elements shared by vestibular thresholds measured at the three frequencies. These data suggest that vestibular noise is significantly associated with the temporospatial control of quiet stance in the mediolateral plane when visual and proprioceptive cues are degraded (i.e., eyes closed, standing on foam). Furthermore, the selective association of quiet-stance sway with 0.5 Hz roll tilt thresholds, but not thresholds measured at lower (0.2 Hz) or higher (1.0 Hz) frequencies, may reflect the influence of noise that results from the temporal integration of noisy canal and otolith cues.
Collapse
Affiliation(s)
- Andrew R Wagner
- Department of Otolaryngology-Head & Neck Surgery, Ohio State University Wexner Medical Center, Columbus, OH, United States.,School of Health and Rehabilitation Sciences, Ohio State University, Columbus, OH, United States
| | - Megan J Kobel
- Department of Otolaryngology-Head & Neck Surgery, Ohio State University Wexner Medical Center, Columbus, OH, United States.,Department of Speech and Hearing Science, Ohio State University, Columbus, OH, United States
| | - Daniel M Merfeld
- Department of Otolaryngology-Head & Neck Surgery, Ohio State University Wexner Medical Center, Columbus, OH, United States.,School of Health and Rehabilitation Sciences, Ohio State University, Columbus, OH, United States.,Department of Speech and Hearing Science, Ohio State University, Columbus, OH, United States.,Department of Biomedical Engineering, Ohio State University, Columbus, OH, United States
| |
Collapse
|
36
|
Kravets VG, Dixon JB, Ahmed NR, Clark TK. COMPASS: Computations for Orientation and Motion Perception in Altered Sensorimotor States. Front Neural Circuits 2021; 15:757817. [PMID: 34720889 PMCID: PMC8553968 DOI: 10.3389/fncir.2021.757817] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/23/2021] [Indexed: 11/30/2022] Open
Abstract
Reliable perception of self-motion and orientation requires the central nervous system (CNS) to adapt to changing environments, stimuli, and sensory organ function. The proposed computations required of neural systems for this adaptation process remain conceptual, limiting our understanding and ability to quantitatively predict adaptation and mitigate any resulting impairment prior to completing adaptation. Here, we have implemented a computational model of the internal calculations involved in the orientation perception system’s adaptation to changes in the magnitude of gravity. In summary, we propose that the CNS considers parallel, alternative hypotheses of the parameter of interest (in this case, the CNS’s internal estimate of the magnitude of gravity) and uses the associated sensory conflict signals (i.e., difference between sensory measurements and the expectation of them) to sequentially update the posterior probability of each hypothesis using Bayes rule. Over time, an updated central estimate of the internal magnitude of gravity emerges from the posterior probability distribution, which is then used to process sensory information and produce perceptions of self-motion and orientation. We have implemented these hypotheses in a computational model and performed various simulations to demonstrate quantitative model predictions of adaptation of the orientation perception system to changes in the magnitude of gravity, similar to those experienced by astronauts during space exploration missions. These model predictions serve as quantitative hypotheses to inspire future experimental assessments.
Collapse
Affiliation(s)
- Victoria G Kravets
- Bioastronautics Laboratory, Ann and H.J. Smead Department of Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, CO, United States
| | - Jordan B Dixon
- Bioastronautics Laboratory, Ann and H.J. Smead Department of Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, CO, United States
| | - Nisar R Ahmed
- COHRINT Laboratory, Ann and H.J. Smead Department of Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, CO, United States
| | - Torin K Clark
- Bioastronautics Laboratory, Ann and H.J. Smead Department of Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
37
|
Carriot J, Cullen KE, Chacron MJ. The neural basis for violations of Weber's law in self-motion perception. Proc Natl Acad Sci U S A 2021; 118:e2025061118. [PMID: 34475203 PMCID: PMC8433496 DOI: 10.1073/pnas.2025061118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 06/25/2021] [Indexed: 01/18/2023] Open
Abstract
A prevailing view is that Weber's law constitutes a fundamental principle of perception. This widely accepted psychophysical law states that the minimal change in a given stimulus that can be perceived increases proportionally with amplitude and has been observed across systems and species in hundreds of studies. Importantly, however, Weber's law is actually an oversimplification. Notably, there exist violations of Weber's law that have been consistently observed across sensory modalities. Specifically, perceptual performance is better than that predicted from Weber's law for the higher stimulus amplitudes commonly found in natural sensory stimuli. To date, the neural mechanisms mediating such violations of Weber's law in the form of improved perceptual performance remain unknown. Here, we recorded from vestibular thalamocortical neurons in rhesus monkeys during self-motion stimulation. Strikingly, we found that neural discrimination thresholds initially increased but saturated for higher stimulus amplitudes, thereby causing the improved neural discrimination performance required to explain perception. Theory predicts that stimulus-dependent neural variability and/or response nonlinearities will determine discrimination threshold values. Using computational methods, we thus investigated the mechanisms mediating this improved performance. We found that the structure of neural variability, which initially increased but saturated for higher amplitudes, caused improved discrimination performance rather than response nonlinearities. Taken together, our results reveal the neural basis for violations of Weber's law and further provide insight as to how variability contributes to the adaptive encoding of natural stimuli with continually varying statistics.
Collapse
Affiliation(s)
- Jerome Carriot
- Department of Physiology, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Kathleen E Cullen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218
| | - Maurice J Chacron
- Department of Physiology, McGill University, Montréal, QC H3G 1Y6, Canada;
| |
Collapse
|
38
|
Kobel MJ, Wagner AR, Merfeld DM. Impact of gravity on the perception of linear motion. J Neurophysiol 2021; 126:875-887. [PMID: 34320866 PMCID: PMC8461827 DOI: 10.1152/jn.00274.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 11/22/2022] Open
Abstract
Accurate perception of gravity and translation is fundamental for balance, navigation, and motor control. Previous studies have reported that perceptual thresholds for earth-vertical (i.e., parallel to gravity) and earth-horizontal (i.e., perpendicular to gravity) translations are equivalent in healthy adults, suggesting that the nervous system compensates for the presence of gravity. However, past study designs were not able to fully separate the effect of gravity from the potential effects of motion direction and body orientation. To quantify the effect of gravity on translation perception relative to these alternative factors, we measured vestibular perceptual thresholds for three motion directions (inter-aural, naso-occipital, and superior-inferior) and three body orientations (upright, supine, and ear-down). In contrast to prior reports, our data suggest that the nervous system does not universally compensate for the effects of gravity during translation, instead, we show that the colinear effect of gravity significantly decreases the sensitivity to stimuli for motions sensed by the utricles (inter-aural and naso-occipital translation), but this effect was not significant for motions sensed by the saccules (superior-inferior translations). We also identified increased thresholds for superior-inferior translation, suggesting decreased sensitivity of motions sensed predominantly by the saccule. An overall effect of body orientation on perception was seen; however, post hoc analyses suggest that this orientation effect may reflect the impact of gravity on self-motion perception. Overall, our data provide fundamental insights into the manner by which the nervous system processes vestibular self-motion cues, showing that the effect of gravity on translation perception is impacted by the direction of motion.NEW & NOTEWORTHY Perception of gravity and translation are fundamental for self-motion perception, balance, and motor control. The central nervous system must accurately disambiguate peripheral otolith signals encoding both linear acceleration and gravity. In contrast to past reports, we show that perception of translation depends on both motion relative to gravity and motion relative to the head. These results provide fundamental insights into otolith-mediated perception and suggest that the nervous system must compensate for the presence of gravity.
Collapse
Affiliation(s)
- Megan J Kobel
- Department of Otolaryngology-Head & Neck Surgery, Ohio State University Wexner Medical Center, Columbus, Ohio
- Department of Speech and Hearing Science, Ohio State University, Columbus, Ohio
| | - Andrew R Wagner
- Department of Otolaryngology-Head & Neck Surgery, Ohio State University Wexner Medical Center, Columbus, Ohio
- Health and Rehabilitation Sciences, Ohio State University, Columbus, Ohio
| | - Daniel M Merfeld
- Department of Otolaryngology-Head & Neck Surgery, Ohio State University Wexner Medical Center, Columbus, Ohio
- Department of Speech and Hearing Science, Ohio State University, Columbus, Ohio
- Health and Rehabilitation Sciences, Ohio State University, Columbus, Ohio
- Department of Biomedical Engineering, Ohio State University, Columbus, Ohio
| |
Collapse
|
39
|
Diaz-Artiles A, Karmali F. Vestibular Precision at the Level of Perception, Eye Movements, Posture, and Neurons. Neuroscience 2021; 468:282-320. [PMID: 34087393 PMCID: PMC9188304 DOI: 10.1016/j.neuroscience.2021.05.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 11/18/2022]
Abstract
Precision and accuracy are two fundamental properties of any system, including the nervous system. Reduced precision (i.e., imprecision) results from the presence of neural noise at each level of sensory, motor, and perceptual processing. This review has three objectives: (1) to show the importance of studying vestibular precision, and specifically that studying accuracy without studying precision ignores fundamental aspects of the vestibular system; (2) to synthesize key hypotheses about precision in vestibular perception, the vestibulo-ocular reflex, posture, and neurons; and (3) to show that groups of studies that are thoughts to be distinct (e.g., perceptual thresholds, subjective visual vertical variability, neuronal variability) are actually "two sides of the same coin" - because the methods used allow results to be related to the standard deviation of a Gaussian distribution describing the underlying neural noise. Vestibular precision varies with age, stimulus amplitude, stimulus frequency, body orientation, motion direction, pathology, medication, and electrical/mechanical vestibular stimulation, but does not vary with sex. The brain optimizes precision during integration of vestibular cues with visual, auditory, and/or somatosensory cues. Since a common concern with precision metrics is time required for testing, we describe approaches to optimize data collection and provide evidence that fatigue and session effects are minimal. Finally, we summarize how precision is an individual trait that is correlated with clinical outcomes in patients as well as with performance in functional tasks like balance. These findings highlight the importance of studying vestibular precision and accuracy, and that knowledge gaps remain.
Collapse
Affiliation(s)
- Ana Diaz-Artiles
- Bioastronautics and Human Performance Laboratory, Department of Aerospace Engineering, Department of Health and Kinesiology, Texas A&M University, College Station, TX 77843-3141, USA. https://bhp.engr.tamu.edu
| | - Faisal Karmali
- Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA; Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston MA, USA.
| |
Collapse
|
40
|
Lee TL, Shayman CS, Oh Y, Peterka RJ, Hullar TE. Reliability of Vestibular Perceptual Threshold Testing About the Yaw Axis. Ear Hear 2021; 41:1772-1774. [PMID: 33136650 DOI: 10.1097/aud.0000000000000859] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Vestibular reflexes have traditionally formed the cornerstone of vestibular evaluation, but perceptual tests have recently gained attention for use in research studies and potential clinical applications. However, the unknown reliability of perceptual thresholds limits their current importance. This is addressed here by establishing the test-retest reliability of vestibular perceptual testing. DESIGN Perceptual detection thresholds to earth-vertical, yaw-axis rotations were collected in 15 young healthy people. Participants were tested at two time intervals (baseline, 5 to 14 days later) using an adaptive psychophysical procedure. RESULTS Thresholds to 1 Hz rotations ranged from 0.69 to 2.99°/s (mean: 1.49°/s; SD: 0.63). They demonstrated an excellent intraclass correlation (0.92; 95% confidence interval: 0.77 to 0.97) with a minimum detectable difference of 0.45°/s. CONCLUSIONS The excellent test-retest reliability of perceptual vestibular testing supports its use as a research tool and motivates further exploration for its use as a novel clinical technique.
Collapse
Affiliation(s)
- Tiffany L Lee
- School of Medicine, Oregon Health and Science University, Portland Oregon, USA
- Department of Otolaryngology-Head and Neck Surgery, Oregon Health and Science University, Portland, Oregon, USA
| | - Corey S Shayman
- Department of Otolaryngology-Head and Neck Surgery, Oregon Health and Science University, Portland, Oregon, USA
| | - Yonghee Oh
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, Florida, USA
| | - Robert J Peterka
- Department of Neurology, Oregon Health and Science University, Portland, Oregon, USA
- National Center for Rehabilitative Auditory Research, VA Portland Health Care System, Portland, Oregon, USA
| | - Timothy E Hullar
- Department of Otolaryngology-Head and Neck Surgery, Oregon Health and Science University, Portland, Oregon, USA
- Department of Neurology, Oregon Health and Science University, Portland, Oregon, USA
- National Center for Rehabilitative Auditory Research, VA Portland Health Care System, Portland, Oregon, USA
| |
Collapse
|
41
|
van Stiphout L, Lucieer F, Pleshkov M, Van Rompaey V, Widdershoven J, Guinand N, Pérez Fornos A, Kingma H, van de Berg R. Bilateral vestibulopathy decreases self-motion perception. J Neurol 2021; 269:5216-5228. [PMID: 34263351 PMCID: PMC9467944 DOI: 10.1007/s00415-021-10695-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 03/19/2021] [Accepted: 06/29/2021] [Indexed: 11/25/2022]
Abstract
Objective Current diagnostic criteria for bilateral vestibulopathy (BV) primarily involve measurements of vestibular reflexes. Perceptual self-motion thresholds however, are not routinely measured and their clinical value in this specific population is not yet fully determined. Objectives of this study were (1) to compare perceptual self-motion thresholds between BV patients and control subjects, and (2) to explore patterns of self-motion perception performance and vestibular function in BV patients. Methods Thirty-seven BV patients and 34 control subjects were included in this study. Perceptual self-motion thresholds were measured in both groups using a CAREN platform (Motek Medical BV, Amsterdam, The Netherlands). Vestibular function was evaluated (only in BV patients) by the caloric test, torsion swing test, video head impulse test of all semicircular canals, and cervical- and ocular vestibular-evoked myogenic potentials. Differences in thresholds between both groups were analyzed. Hierarchical cluster analysis was performed to visualize patterns between self-motion perception and vestibular function within the group of BV patients. Results Perceptual self-motion thresholds were significantly higher in BV patients compared to control subjects, regarding nearly all rotations and translations (depending on the age group) (p ≤ 0.001). Cluster analysis showed that within the group of BV patients, higher perceptual self-motion thresholds were generally associated with lower vestibular test results (significant for yaw rotation, caloric test, torsion swing test, and video head impulse test (p ≤ 0.001)). Conclusion Self-motion perception is significantly decreased in BV patients compared to control subjects regarding nearly all rotations and translations. Furthermore, decreased self-motion perception is generally associated with lower residual vestibular function in BV patients. Trial registration Trial registration number NL52768.068.15/METC Supplementary Information The online version contains supplementary material available at 10.1007/s00415-021-10695-3.
Collapse
Affiliation(s)
- Lisa van Stiphout
- Department of Otorhinolaryngology and Head and Neck Surgery, Division of Balance Disorders, School for Mental Health and Neuroscience, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands.
| | - Florence Lucieer
- Department of Otorhinolaryngology and Head and Neck Surgery, Division of Balance Disorders, School for Mental Health and Neuroscience, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
| | - Maksim Pleshkov
- Department of Otorhinolaryngology and Head and Neck Surgery, Division of Balance Disorders, School for Mental Health and Neuroscience, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands.,Faculty of Physics, Tomsk State Research University, Tomsk, Russian Federation
| | - Vincent Van Rompaey
- Department of Otorhinolaryngology and Head and Neck Surgery, Faculty of Medicine and Health Sciences, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Josine Widdershoven
- Department of Otorhinolaryngology and Head and Neck Surgery, Division of Balance Disorders, School for Mental Health and Neuroscience, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands.,Department of Otorhinolaryngology and Head and Neck Surgery, Faculty of Medicine and Health Sciences, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Nils Guinand
- Service of Otorhinolaryngology Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Angélica Pérez Fornos
- Service of Otorhinolaryngology Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Herman Kingma
- Department of Otorhinolaryngology and Head and Neck Surgery, Division of Balance Disorders, School for Mental Health and Neuroscience, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands.,Faculty of Physics, Tomsk State Research University, Tomsk, Russian Federation
| | - Raymond van de Berg
- Department of Otorhinolaryngology and Head and Neck Surgery, Division of Balance Disorders, School for Mental Health and Neuroscience, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands.,Faculty of Physics, Tomsk State Research University, Tomsk, Russian Federation
| |
Collapse
|
42
|
Rodriguez R, Crane BT. Effect of timing delay between visual and vestibular stimuli on heading perception. J Neurophysiol 2021; 126:304-312. [PMID: 34191637 DOI: 10.1152/jn.00351.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Heading direction is perceived based on visual and inertial cues. The current study examined the effect of their relative timing on the ability of offset visual headings to influence inertial perception. Seven healthy human subjects experienced 2 s of translation along a heading of 0°, ±35°, ±70°, ±105°, or ±140°. These inertial headings were paired with 2-s duration visual headings that were presented at relative offsets of 0°, ±30°, ±60°, ±90°, or ±120°. The visual stimuli were also presented at 17 temporal delays ranging from -500 ms (visual lead) to 2,000 ms (visual delay) relative to the inertial stimulus. After each stimulus, subjects reported the direction of the inertial stimulus using a dial. The bias of the inertial heading toward the visual heading was robust at ±250 ms when examined across subjects during this period: 8.0° ± 0.5° with a 30° offset, 12.2° ± 0.5° with a 60° offset, 11.7° ± 0.6° with a 90° offset, and 9.8° ± 0.7° with a 120° offset (mean bias toward visual ± SE). The mean bias was much diminished with temporal misalignments of ±500 ms, and there was no longer any visual influence on the inertial heading when the visual stimulus was delayed by 1,000 ms or more. Although the amount of bias varied between subjects, the effect of delay was similar.NEW & NOTEWORTHY The effect of timing on visual-inertial integration on heading perception has not been previously examined. This study finds that visual direction influence inertial heading perception when timing differences are within 250 ms. This suggests visual-inertial stimuli can be integrated over a wider range than reported for visual-auditory integration and may be due to the unique nature of inertial sensation, which can only sense acceleration while the visual system senses position but encodes velocity.
Collapse
Affiliation(s)
- Raul Rodriguez
- Department of Biomedical Engineering, University of Rochester, Rochester, New York
| | - Benjamin T Crane
- Department of Biomedical Engineering, University of Rochester, Rochester, New York.,Department of Otolaryngology, University of Rochester, Rochester, New York.,Department of Neuroscience, University of Rochester, Rochester, New York
| |
Collapse
|
43
|
Faralli M, Ori M, Ricci G, Roscini M, Panichi R, Pettorossi VE. Disruption of self-motion perception without vestibular reflex alteration in ménière's disease. J Vestib Res 2021; 32:193-203. [PMID: 34151876 DOI: 10.3233/ves-201520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Self-motion misperception has been observed in vestibular patients during asymmetric body oscillations. This misperception is correlated with the patient's vestibular discomfort. OBJECTIVE To investigate whether or not self-motion misperception persists in post-ictal patients with Ménière's disease (MD). METHODS Twenty-eight MD patients were investigated while in the post-ictal interval. Self-motion perception was studied by examining the displacement of a memorized visual target after sequences of opposite directed fast-slow asymmetric whole body rotations in the dark. The difference in target representation was analyzed and correlated with the Dizziness Handicap Inventory (DHI) score. The vestibulo-ocular reflex (VOR) and clinical tests for ocular reflex were also evaluated. RESULTS All MD patients showed a noticeable difference in target representation after asymmetric rotation depending on the direction of the fast/slow rotations. This side difference suggests disruption of motion perception. The DHI score was correlated with the amount of motion misperception. In contrast, VOR and clinical trials were altered in only half of these patients. CONCLUSIONS Asymmetric rotation reveals disruption of self-motion perception in MD patients during the post-ictal interval, even in the absence of ocular reflex impairment. Motion misperception may cause persistent vestibular discomfort in these patients.
Collapse
Affiliation(s)
- Mario Faralli
- Department of Surgery and Biomedical Sciences, Section of Otorhinolaryngology, University of Perugia, Italy
| | - Michele Ori
- Department of Surgery and Biomedical Sciences, Section of Otorhinolaryngology, University of Perugia, Italy
| | - Giampietro Ricci
- Department of Surgery and Biomedical Sciences, Section of Otorhinolaryngology, University of Perugia, Italy
| | - Mauro Roscini
- Department of Medicine and Surgery, Section of Human Physiology and Biochemistry, University of Perugia, Italy
| | - Roberto Panichi
- Department of Medicine and Surgery, Section of Human Physiology and Biochemistry, University of Perugia, Italy
| | - Vito Enrico Pettorossi
- Department of Medicine and Surgery, Section of Human Physiology and Biochemistry, University of Perugia, Italy
| |
Collapse
|
44
|
Statistical approaches to identifying lapses in psychometric response data. Psychon Bull Rev 2021; 28:1433-1457. [PMID: 33825094 DOI: 10.3758/s13423-021-01876-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2021] [Indexed: 11/08/2022]
Abstract
Psychometric curve fits relate physical stimuli to an observer's performance. In experiments an observer may "lapse" and respond with a random guess, which may negatively impact (e.g., bias) the psychometric fit parameters. A lapse-rate model has been popularized by Wichmann and Hill, which reduces the impact of lapses on other estimated parameters by adding a parameter to model the lapse rate. Since lapses are discrete events, we developed a discrete lapse theory and tested a "lapse identification" algorithm to identify individual outlier trials (i.e., potential lapses) based upon an approximate statistical criterion and discard these trials. Specifically, we focused on stimuli sampled using an adaptive staircase for a one-interval, direction-recognition task (i.e., psychometric function ranging from 0 to 1 and the spread of the curve corresponds to the threshold, which is often a parameter of interest for many fitted psychometric functions). Through simulations, we found that as the lapse rate increased the threshold became substantially overestimated, consistent with earlier analyses. While the lapse-rate model reduced the overestimation of threshold with many lapses, with lower lapse rates it yielded substantial threshold underestimation, though less so when fitting many (e.g., 1,000) trials. In comparison, the lapse-identification algorithm yielded accurate threshold estimates across a wide range of lapse rates (from 0 to 5%), which is critical since the lapse rate is seldom known. We further demonstrate the performance of the lapse-identification algorithm to be suitable for a variety of experimental conditions and conclude with some considerations of its use. In particular, we suggest using the lapse-identification algorithm unless the experiment has many trials (e.g., >500) or if somehow the lapse rate is known to be high (e.g., ≥5%), for which the lapse-rate model approaches remain preferred.
Collapse
|
45
|
Kobel MJ, Wagner AR, Merfeld DM, Mattingly JK. Vestibular Thresholds: A Review of Advances and Challenges in Clinical Applications. Front Neurol 2021; 12:643634. [PMID: 33679594 PMCID: PMC7933227 DOI: 10.3389/fneur.2021.643634] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/01/2021] [Indexed: 12/15/2022] Open
Abstract
Vestibular disorders pose a substantial burden on the healthcare system due to a high prevalence and the severity of symptoms. Currently, a large portion of patients experiencing vestibular symptoms receive an ambiguous diagnosis or one that is based solely on history, unconfirmed by any objective measures. As patients primarily experience perceptual symptoms (e.g., dizziness), recent studies have investigated the use of vestibular perceptual thresholds, a quantitative measure of vestibular perception, in clinical populations. This review provides an overview of vestibular perceptual thresholds and the current literature assessing use in clinical populations as a potential diagnostic tool. Patients with peripheral and central vestibular pathologies, including bilateral vestibulopathy and vestibular migraine, show characteristic changes in vestibular thresholds. Vestibular perceptual thresholds have also been found to detect subtle, sub-clinical declines in vestibular function in asymptomatic older adults, suggesting a potential use of vestibular thresholds to augment or complement existing diagnostic methods in multiple populations. Vestibular thresholds are a reliable, sensitive, and specific assay of vestibular precision, however, continued research is needed to better understand the possible applications and limitations, especially with regard to the diagnosis of vestibular disorders.
Collapse
Affiliation(s)
- Megan J Kobel
- Department of Otolaryngology - Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Department of Speech and Hearing Science, The Ohio State University, Columbus, OH, United States
| | - Andrew R Wagner
- Department of Otolaryngology - Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Department of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, United States
| | - Daniel M Merfeld
- Department of Otolaryngology - Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Jameson K Mattingly
- Department of Otolaryngology - Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
46
|
Karmali F, Goodworth AD, Valko Y, Leeder T, Peterka RJ, Merfeld DM. The role of vestibular cues in postural sway. J Neurophysiol 2021; 125:672-686. [PMID: 33502934 DOI: 10.1152/jn.00168.2020] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Controlling posture requires continuous sensory feedback about body motion and orientation, including from the vestibular organs. Little is known about the role of tilt vs. translation vs. rotation vestibular cues. We examined whether intersubject differences in vestibular function were correlated with intersubject differences in postural control. Vestibular function was assayed using vestibular direction-recognition perceptual thresholds, which determine the smallest motion that can be reliably perceived by a subject seated on a motorized platform in the dark. In study A, we measured thresholds for lateral translation, vertical translation, yaw rotation, and head-centered roll tilts. In study B, we measured thresholds for roll, pitch, and left anterior-right posterior and right anterior-left posterior tilts. Center-of-pressure (CoP) sway was measured in sensory organization tests (study A) and Romberg tests (study B). We found a strong positive relationship between CoP sway and lateral translation thresholds but not CoP sway and other thresholds. This finding suggests that the vestibular encoding of lateral translation may contribute substantially to balance control. Since thresholds assay sensory noise, our results support the hypothesis that vestibular noise contributes to spontaneous postural sway. Specifically, we found that lateral translation thresholds explained more of the variation in postural sway in postural test conditions with altered proprioceptive cues (vs. a solid surface), consistent with postural sway being more dependent on vestibular noise when the vestibular contribution to balance is higher. These results have potential implications for vestibular implants, balance prostheses, and physical therapy exercises.NEW & NOTEWORTHY Vestibular feedback is important for postural control, but little is known about the role of tilt cues vs. translation cues vs. rotation cues. We studied healthy human subjects with no known vestibular pathology or symptoms. Our findings showed that vestibular encoding of lateral translation correlated with medial-lateral postural sway, consistent with lateral translation cues contributing to balance control. This adds support to the hypothesis that vestibular noise contributes to spontaneous postural sway.
Collapse
Affiliation(s)
- Faisal Karmali
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts.,Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts
| | - Adam D Goodworth
- Kinesiology Department, Westmont College, Santa Barbara, California
| | - Yulia Valko
- Departments of Ophthalmology and Neurology, University Hospital Zurich, University of Zurich, Switzerland
| | - Tania Leeder
- Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts
| | - Robert J Peterka
- Department of Neurology, Oregon Health and Science University, Portland, Oregon.,National Center for Rehabilitative Auditory Research, Veterans Affairs Portland Health Care System, Portland, Oregon
| | - Daniel M Merfeld
- Department of Otolaryngology - Head and Neck Surgery, The Ohio State University, Columbus, Ohio
| |
Collapse
|
47
|
Roll tilt self-motion direction discrimination training: First evidence for perceptual learning. Atten Percept Psychophys 2020; 82:1987-1999. [PMID: 31898068 PMCID: PMC7297830 DOI: 10.3758/s13414-019-01967-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Perceptual learning, the ability to improve the sensitivity of sensory perception through training, has been shown to exist in all sensory systems but the vestibular system. A previous study found no improvement of passive self-motion thresholds in the dark after intense direction discrimination training of either yaw rotations (stimulating semicircular canals) or y-translation (stimulating otoliths). The goal of the present study was to investigate whether perceptual learning of self-motion in the dark would occur when there is a simultaneous otolith and semicircular canal input, as is the case with roll tilt motion stimuli. Blindfolded subjects (n = 10) trained on a direction discrimination task with 0.2-Hz roll tilt motion stimuli (9 h of training, 1,800 trials). Before and after training, motion thresholds were measured in the dark for the trained motion and for three transfer conditions. We found that roll tilt sensitivity in the 0.2-Hz roll tilt condition was increased (i.e., thresholds decreased) after training but not for controls who were not exposed to training. This is the first demonstration of perceptual learning of passive self-motion direction discrimination in the dark. The results have potential therapeutic relevance as 0.2-Hz roll thresholds have been associated with poor performance on a clinical balance test that has been linked to more than a fivefold increase in falls.
Collapse
|
48
|
Beylergil SB, Petersen M, Gupta P, Elkasaby M, Kilbane C, Shaikh AG. Severity‐Dependent Effects of Parkinson's Disease on Perception of Visual and Vestibular Heading. Mov Disord 2020; 36:360-369. [DOI: 10.1002/mds.28352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/22/2022] Open
Affiliation(s)
- Sinem Balta Beylergil
- Department of Biomedical Engineering Case Western Reserve University Cleveland Ohio USA
- National VA Parkinson Consortium Center, Neurology Service, Daroff‐Dell'Osso Ocular Motility and Vestibular Laboratory Louis Stokes Cleveland VA Medical Center Cleveland Ohio USA
| | - Mikkel Petersen
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience Aarhus University Aarhus Denmark
| | - Palak Gupta
- Department of Biomedical Engineering Case Western Reserve University Cleveland Ohio USA
- National VA Parkinson Consortium Center, Neurology Service, Daroff‐Dell'Osso Ocular Motility and Vestibular Laboratory Louis Stokes Cleveland VA Medical Center Cleveland Ohio USA
| | - Mohamed Elkasaby
- Department of Neurology Case Western Reserve University Cleveland Ohio USA
- Movement Disorders Center, Neurological Institute University Hospitals Cleveland Ohio USA
| | - Camilla Kilbane
- Department of Neurology Case Western Reserve University Cleveland Ohio USA
- Movement Disorders Center, Neurological Institute University Hospitals Cleveland Ohio USA
| | - Aasef G. Shaikh
- Department of Biomedical Engineering Case Western Reserve University Cleveland Ohio USA
- National VA Parkinson Consortium Center, Neurology Service, Daroff‐Dell'Osso Ocular Motility and Vestibular Laboratory Louis Stokes Cleveland VA Medical Center Cleveland Ohio USA
- Department of Neurology Case Western Reserve University Cleveland Ohio USA
- Movement Disorders Center, Neurological Institute University Hospitals Cleveland Ohio USA
| |
Collapse
|
49
|
Cuturi LF, Torazza D, Campus C, Merello A, Lorini C, Crepaldi M, Sandini G, Gori M. The RT-Chair: a Novel Motion Simulator to Measure Vestibular Perception. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:3318-3322. [PMID: 33018714 DOI: 10.1109/embc44109.2020.9176295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Vestibular perception is useful to maintain heading direction and successful spatial navigation. In this study, we present a novel equipment capable of delivering both rotational and translational movements, namely the RT-Chair. The system comprises two motors and it is controlled by the user via MATLAB. To validate the measurability of vestibular perception with the RT-chair, we ran a threshold measurement experiment with healthy participants. Our results show thresholds comparable to previous literature, thus confirming the validity of the system to measure vestibular perception.
Collapse
|
50
|
Difference Thresholds for the Perception of Sinusoidal Vertical Stimuli of Whole-Body Vibrations in Ranges of Amplitude and Frequency Relevant to Ride Comfort. VIBRATION 2020. [DOI: 10.3390/vibration3020010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Minor differences in the vibration characteristics of a vehicle may greatly influence the comfort experienced by the driver. Therefore, such characteristics are significant in the process of vehicle development. In this experimental study, just-noticeable differences were determined for sinusoidal vertical whole-body vibrations at the frequencies 1.3 Hz and 6.0 Hz, and for the vibration amplitudes 0.2 m/s², 0.5 m/s² and 1.2 m/s². The stimulation set up was realised using a test rig constituting a seating position similar to that in a real vehicle environment. A transformed one-up-three-down method, in conjunction with a two-interval forced choice procedure, was used to determine difference thresholds, in accordance with Weber’s Law, for 14 test subjects. Median relative difference thresholds in the range of 6.7% to 11.0% were observed, and were examined for statistical significance (α < 0.05) and practical importance on amplitude and frequency, with respect to this law. The results showed a frequency-dependence at the lowest vibration amplitude and an amplitude-dependence for both frequencies from a statistical point of view. However, the amplitude-dependence at 6.0 Hz was considered as negligible for practical use.
Collapse
|