1
|
Incontro S, Musella ML, Sammari M, Di Scala C, Fantini J, Debanne D. Lipids shape brain function through ion channel and receptor modulations: physiological mechanisms and clinical perspectives. Physiol Rev 2025; 105:137-207. [PMID: 38990068 DOI: 10.1152/physrev.00004.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Lipids represent the most abundant molecular type in the brain, with a fat content of ∼60% of the dry brain weight in humans. Despite this fact, little attention has been paid to circumscribe the dynamic role of lipids in brain function and disease. Membrane lipids such as cholesterol, phosphoinositide, sphingolipids, arachidonic acid, and endocannabinoids finely regulate both synaptic receptors and ion channels that ensure critical neural functions. After a brief introduction on brain lipids and their respective properties, we review here their role in regulating synaptic function and ion channel activity, action potential propagation, neuronal development, and functional plasticity and their contribution in the development of neurological and neuropsychiatric diseases. We also provide possible directions for future research on lipid function in brain plasticity and diseases.
Collapse
Affiliation(s)
| | | | - Malika Sammari
- UNIS, INSERM, Aix-Marseille Université, Marseille, France
| | | | | | | |
Collapse
|
2
|
Qi Y, Sun J, Wang H, Yu H, Jin X, Feng X, Wang Y. Effects of arsenic exposure on the PI3K/Akt/NF-κB signaling pathway in the hippocampus of offspring mice at different developmental stages. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116830. [PMID: 39111240 DOI: 10.1016/j.ecoenv.2024.116830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/02/2024] [Accepted: 07/31/2024] [Indexed: 09/11/2024]
Abstract
The primary purpose of present study was to explore the effects of arsenic exposure on the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/nuclear transcription factor-κB (NF-κB) signaling pathway in the hippocampus of offspring mice at different developmental stages. Sodium arsenite (NaAsO2) at doses of 0, 15, 30 or 60 mg/L administered to female mice and their pups. The nuclear translocation levels of NF-κB were assessed by EMSA. Real-time RT-PCR was used to measure Akt, NF-κB and PI3K mRNA levels. Protein expressions of PI3K, p-Akt, inhibitor kappa B kinase (IKK), p-NF-κB, protein kinase A (PKA), inhibitor kappa B (IκB), and cAMP response element-binding protein (CREB) were measured by Western blot. Results disclosed that exposure to 60 mg/L NaAsO2 could suppress NF-κB levels of nuclear translocation of postnatal day (PND) 20 and PND 40 mice. Arsenic downregulated the transcriptional and translational levels of PI3K, Akt and NF-κB. Additionally, protein expressions of p-IKK, p-IκB, PKA and p-CREB also reduced. Taken together, results of present study indicated that arsenic could downregulate the PI3K/Akt/NF-κB signaling pathway, particularly on PND 40, which might be involved in the cognitive impairments.
Collapse
Affiliation(s)
- Yingying Qi
- Department of Occupational and Environmental Health, School of Public Health, Shenyang Medical College, Shenyang, Liaoning, People's Republic of China; Zhuhai Center for Chronic Disease Control(the Third Hospital of Zhuhai), People's Republic of China
| | - Jiaqi Sun
- Department of Occupational and Environmental Health, School of Public Health, Shenyang Medical College, Shenyang, Liaoning, People's Republic of China
| | - Huan Wang
- Department of Occupational and Environmental Health, School of Public Health, Shenyang Medical College, Shenyang, Liaoning, People's Republic of China; Key Laboratory of Environment and Population Health of the Educational Department of Liaoning Province, Shenyang, People's Republic of China
| | - Haiyang Yu
- Key Laboratory of Environment and Population Health of the Educational Department of Liaoning Province, Shenyang, People's Republic of China; Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang, Liaoning, People's Republic of China
| | - Xiaoxia Jin
- Department of Occupational and Environmental Health, School of Public Health, Shenyang Medical College, Shenyang, Liaoning, People's Republic of China; Key Laboratory of Environment and Population Health of the Educational Department of Liaoning Province, Shenyang, People's Republic of China
| | - Xu Feng
- Department of Health Statistics, School of Public Health, Shenyang Medical College, Shenyang, Liaoning, People's Republic of China
| | - Yan Wang
- Department of Occupational and Environmental Health, School of Public Health, Shenyang Medical College, Shenyang, Liaoning, People's Republic of China; Key Laboratory of Environment and Population Health of the Educational Department of Liaoning Province, Shenyang, People's Republic of China.
| |
Collapse
|
3
|
Doroszkiewicz J, Mroczko J, Winkel I, Mroczko B. Metabolic and Immune System Dysregulation: Unraveling the Connections between Alzheimer's Disease, Diabetes, Inflammatory Bowel Diseases, and Rheumatoid Arthritis. J Clin Med 2024; 13:5057. [PMID: 39274269 PMCID: PMC11396443 DOI: 10.3390/jcm13175057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
Alzheimer's disease (AD), diabetes mellitus (DM), inflammatory bowel diseases (IBD), and rheumatoid arthritis (RA) are chronic conditions affecting millions globally. Despite differing clinical symptoms, these diseases share pathophysiological mechanisms involving metabolic and immune system dysregulation. This paper examines the intricate connections between these disorders, focusing on shared pathways such as insulin resistance, lipid metabolism dysregulation, oxidative stress, and chronic inflammation. An important aspect is the role of amyloid-beta plaques and tau protein tangles, which are hallmark features of AD. These protein aggregates are influenced by metabolic dysfunction and inflammatory processes similar to those seen in DM, RA, and IBD. This manuscript explores how amyloid and tau pathologies may be exacerbated by shared metabolic and immune dysfunction. Additionally, this work discusses the gut-brain axis and the influence of gut microbiota in mediating disease interactions. Understanding these commonalities opens new avenues for multi-targeted therapeutic approaches that address the root causes rather than merely the symptoms of these conditions. This integrative perspective could lead to more effective interventions and improved patient outcomes, emphasizing the importance of a unified approach in managing these interconnected diseases.
Collapse
Affiliation(s)
- Julia Doroszkiewicz
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Jan Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Izabela Winkel
- Dementia Disorders Centre, Medical University of Wroclaw, 50-425 Scinawa, Poland
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
4
|
López-García S, López-Merino E, Fernández-Rodrigo A, Zamorano-González P, Gutiérrez-Eisman S, Jiménez-Sánchez R, Esteban JA. PI3K couples long-term synaptic potentiation with cofilin recruitment and actin polymerization in dendritic spines via its regulatory subunit p85α. Cell Mol Life Sci 2024; 81:358. [PMID: 39158722 PMCID: PMC11335278 DOI: 10.1007/s00018-024-05394-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/16/2024] [Accepted: 08/02/2024] [Indexed: 08/20/2024]
Abstract
Long-term synaptic plasticity is typically associated with morphological changes in synaptic connections. However, the molecular mechanisms coupling functional and structural aspects of synaptic plasticity are still poorly defined. The catalytic activity of type I phosphoinositide-3-kinase (PI3K) is required for specific forms of synaptic plasticity, such as NMDA receptor-dependent long-term potentiation (LTP) and mGluR-dependent long-term depression (LTD). On the other hand, PI3K signaling has been linked to neuronal growth and synapse formation. Consequently, PI3Ks are promising candidates to coordinate changes in synaptic strength with structural remodeling of synapses. To investigate this issue, we targeted individual regulatory subunits of type I PI3Ks in hippocampal neurons and employed a combination of electrophysiological, biochemical and imaging techniques to assess their role in synaptic plasticity. We found that a particular regulatory isoform, p85α, is selectively required for LTP. This specificity is based on its BH domain, which engages the small GTPases Rac1 and Cdc42, critical regulators of the actin cytoskeleton. Moreover, cofilin, a key regulator of actin dynamics that accumulates in dendritic spines after LTP induction, failed to do so in the absence of p85α or when its BH domain was overexpressed as a dominant negative construct. Finally, in agreement with this convergence on actin regulatory mechanisms, the presence of p85α in the PI3K complex determined the extent of actin polymerization in dendritic spines during LTP. Therefore, this study reveals a molecular mechanism linking structural and functional synaptic plasticity through the coordinate action of PI3K catalytic activity and a specific isoform of the regulatory subunits.
Collapse
Affiliation(s)
- Sergio López-García
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Esperanza López-Merino
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Alba Fernández-Rodrigo
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Pablo Zamorano-González
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
- Current address: Universidad de Málaga, Málaga, Spain
| | - Silvia Gutiérrez-Eisman
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Raquel Jiménez-Sánchez
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - José A Esteban
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.
| |
Collapse
|
5
|
García-Magro N, Mesa-Lombardo A, Barros-Zulaica N, Nuñez Á. Impairment of synaptic plasticity in the primary somatosensory cortex in a model of diabetic mice. Front Cell Neurosci 2024; 18:1444395. [PMID: 39139399 PMCID: PMC11319126 DOI: 10.3389/fncel.2024.1444395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Abstract
Type 1 and type 2 diabetic patients experience alterations in the Central Nervous System, leading to cognitive deficits. Cognitive deficits have been also observed in animal models of diabetes such as impaired sensory perception, as well as deficits in working and spatial memory functions. It has been suggested that a reduction of insulin-like growth factor-I (IGF-I) and/or insulin levels may induce these neurological disorders. We have studied synaptic plasticity in the primary somatosensory cortex of young streptozotocin (STZ)-diabetic mice. We focused on the influence of reduced IGF-I brain levels on cortical synaptic plasticity. Unit recordings were conducted in layer 2/3 neurons of the primary somatosensory (S1) cortex in both control and STZ-diabetic mice under isoflurane anesthesia. Synaptic plasticity was induced by repetitive whisker stimulation. Results showed that repetitive stimulation of whiskers (8 Hz induction train) elicited a long-term potentiation (LTP) in layer 2/3 neurons of the S1 cortex of control mice. In contrast, the same induction train elicited a long-term depression (LTD) in STZ-diabetic mice that was dependent on NMDA and metabotropic glutamatergic receptors. The reduction of IGF-I brain levels in diabetes could be responsible of synaptic plasticity impairment, as evidenced by improved response facilitation in STZ-diabetic mice following the application of IGF-I. This hypothesis was further supported by immunochemical techniques, which revealed a reduction in IGF-I receptors in the layer 2/3 of the S1 cortex in STZ-diabetic animals. The observed synaptic plasticity impairments in STZ-diabetic animals were accompanied by decreased performance in a whisker discrimination task, along with reductions in IGF-I, GluR1, and NMDA receptors observed in immunochemical studies. In conclusion, impaired synaptic plasticity in the S1 cortex may stem from reduced IGF-I signaling, leading to decreased intracellular signal pathways and thus, glutamatergic receptor numbers in the cellular membrane.
Collapse
Affiliation(s)
- Nuria García-Magro
- Department of Anatomy, Faculty of Health Science, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - Alberto Mesa-Lombardo
- Department of Anatomy, Histology and Neuroscience, Medical School, Autónoma University of Madrid, Madrid, Spain
| | - Natali Barros-Zulaica
- Blue Brain Project, Ecole Polytechnique Fédérale de Lausanne, Campus Biotech, Geneva, Switzerland
| | - Ángel Nuñez
- Department of Anatomy, Histology and Neuroscience, Medical School, Autónoma University of Madrid, Madrid, Spain
| |
Collapse
|
6
|
Albar NY, Hassaballa H, Shikh H, Albar Y, Ibrahim AS, Mousa AH, Alshanberi AM, Elgebaly A, Bahbah EI. The interaction between insulin resistance and Alzheimer's disease: a review article. Postgrad Med 2024; 136:377-395. [PMID: 38804907 DOI: 10.1080/00325481.2024.2360887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Insulin serves multiple functions as a growth-promoting hormone in peripheral tissues. It manages glucose metabolism by promoting glucose uptake into cells and curbing the production of glucose in the liver. Beyond this, insulin fosters cell growth, drives differentiation, aids protein synthesis, and deters degradative processes like glycolysis, lipolysis, and proteolysis. Receptors for insulin and insulin-like growth factor-1 are widely expressed in the central nervous system. Their widespread presence in the brain underscores the varied and critical functions of insulin signaling there. Insulin aids in bolstering cognition, promoting neuron extension, adjusting the release and absorption of catecholamines, and controlling the expression and positioning of gamma-aminobutyric acid (GABA). Importantly, insulin can effortlessly traverse the blood-brain barrier. Furthermore, insulin resistance (IR)-induced alterations in insulin signaling might hasten brain aging, impacting its plasticity and potentially leading to neurodegeneration. Two primary pathways are responsible for insulin signal transmission: the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway, which oversees metabolic responses, and the mitogen-activated protein kinase (MAPK) pathway, which guides cell growth, survival, and gene transcription. This review aimed to explore the potential shared metabolic traits between Alzheimer's disease (AD) and IR disorders. It delves into the relationship between AD and IR disorders, their overlapping genetic markers, and shared metabolic indicators. Additionally, it addresses existing therapeutic interventions targeting these intersecting pathways.
Collapse
Affiliation(s)
- Nezar Y Albar
- Internal Medicine Department, Dr. Samir Abbas Hospital, Jeddah, Saudi Arabia
| | | | - Hamza Shikh
- Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| | - Yassin Albar
- Fakeeh College of Medical Sciences, Jeddah, Saudi Arabia
| | | | - Ahmed Hafez Mousa
- Department of Neurosurgery, Postgraduate Medical Education, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Department of Neurosurgery, Rashid Hospital, Dubai Academic Health Cooperation, Dubai, United Arab Emirates
| | - Asim Muhammed Alshanberi
- Department of Community Medicine and Pilgrims Health Care, Umm Alqura University, Makkah, Saudi Arabia
- Medicine Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Ahmed Elgebaly
- Smart Health Academic Unit, University of East London, London, UK
| | - Eshak I Bahbah
- Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| |
Collapse
|
7
|
Recinella L, Libero ML, Veschi S, Piro A, Marconi GD, Diomede F, Chiavaroli A, Orlando G, Ferrante C, Florio R, Lamolinara A, Cai R, Sha W, Schally AV, Salvatori R, Brunetti L, Leone S. Effects of GHRH Deficiency and GHRH Antagonism on Emotional Disorders in Mice. Cells 2023; 12:2615. [PMID: 37998350 PMCID: PMC10670114 DOI: 10.3390/cells12222615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Growth hormone (GH)-releasing hormone (GHRH) has been suggested to play a crucial role in brain function. We aimed to further investigate the effects of a novel GHRH antagonist of the Miami (MIA) series, MIA-602, on emotional disorders and explore the relationships between the endocrine system and mood disorders. In this context, the effects induced by MIA-602 were also analyzed in comparison to vehicle-treated mice with GH deficiency due to generalized ablation of the GHRH gene (GHRH knock out (GHRHKO)). We show that the chronic subcutaneous administration of MIA-602 to wild type (+/+) mice, as well as generalized ablation of the GHRH gene, is associated with anxiolytic and antidepressant behavior. Moreover, immunohistochemical and Western blot analyses suggested an evident activation of Nrf2, HO1, and NQO1 in the prefrontal cortex of both +/+ mice treated with MIA-602 (+/+ MIA-602) and homozygous GHRHKO (-/- control) animals. Finally, we also found significantly decreased COX-2, iNOS, NFkB, and TNF-α gene expressions, as well as increased P-AKT and AKT levels in +/+ MIA-602 and -/- control animals compared to +/+ mice treated with vehicle (+/+ control). We hypothesize that the generalized ablation of the GHRH gene leads to a dysregulation of neural pathways, which is mimicked by GHRH antagonist treatment.
Collapse
Affiliation(s)
- Lucia Recinella
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (S.V.); (A.P.); (A.C.); (G.O.); (C.F.); (R.F.); (S.L.)
| | - Maria Loreta Libero
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (S.V.); (A.P.); (A.C.); (G.O.); (C.F.); (R.F.); (S.L.)
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain
| | - Serena Veschi
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (S.V.); (A.P.); (A.C.); (G.O.); (C.F.); (R.F.); (S.L.)
| | - Anna Piro
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (S.V.); (A.P.); (A.C.); (G.O.); (C.F.); (R.F.); (S.L.)
| | - Guya Diletta Marconi
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (G.D.M.); (F.D.)
| | - Francesca Diomede
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (G.D.M.); (F.D.)
| | - Annalisa Chiavaroli
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (S.V.); (A.P.); (A.C.); (G.O.); (C.F.); (R.F.); (S.L.)
| | - Giustino Orlando
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (S.V.); (A.P.); (A.C.); (G.O.); (C.F.); (R.F.); (S.L.)
| | - Claudio Ferrante
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (S.V.); (A.P.); (A.C.); (G.O.); (C.F.); (R.F.); (S.L.)
| | - Rosalba Florio
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (S.V.); (A.P.); (A.C.); (G.O.); (C.F.); (R.F.); (S.L.)
| | - Alessia Lamolinara
- Department of Neuroscience Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy;
| | - Renzhi Cai
- Veterans Affairs Medical Center, Miami, FL 33125, USA; (R.C.); (W.S.); (A.V.S.)
- Division of Medical/Oncology and Endocrinology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Wei Sha
- Veterans Affairs Medical Center, Miami, FL 33125, USA; (R.C.); (W.S.); (A.V.S.)
- Division of Medical/Oncology and Endocrinology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Andrew V. Schally
- Veterans Affairs Medical Center, Miami, FL 33125, USA; (R.C.); (W.S.); (A.V.S.)
- Division of Medical/Oncology and Endocrinology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Roberto Salvatori
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Luigi Brunetti
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (S.V.); (A.P.); (A.C.); (G.O.); (C.F.); (R.F.); (S.L.)
| | - Sheila Leone
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (S.V.); (A.P.); (A.C.); (G.O.); (C.F.); (R.F.); (S.L.)
| |
Collapse
|
8
|
Activation of the PI3K/AKT/mTOR Pathway in Cajal–Retzius Cells Leads to Their Survival and Increases Susceptibility to Kainate-Induced Seizures. Int J Mol Sci 2023; 24:ijms24065376. [PMID: 36982451 PMCID: PMC10048971 DOI: 10.3390/ijms24065376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/15/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Cajal–Retzius cells (CRs) are a class of transient neurons in the mammalian cortex that play a critical role in cortical development. Neocortical CRs undergo almost complete elimination in the first two postnatal weeks in rodents and the persistence of CRs during postnatal life has been detected in pathological conditions related to epilepsy. However, it is unclear whether their persistence is a cause or consequence of these diseases. To decipher the molecular mechanisms involved in CR death, we investigated the contribution of the PI3K/AKT/mTOR pathway as it plays a critical role in cell survival. We first showed that this pathway is less active in CRs after birth before massive cell death. We also explored the spatio-temporal activation of both AKT and mTOR pathways and reveal area-specific differences along both the rostro–caudal and medio–lateral axes. Next, using genetic approaches to maintain an active pathway in CRs, we found that the removal of either PTEN or TSC1, two negative regulators of the pathway, lead to differential CR survivals, with a stronger effect in the Pten model. Persistent cells in this latter mutant are still active. They express more Reelin and their persistence is associated with an increase in the duration of kainate-induced seizures in females. Altogether, we show that the decrease in PI3K/AKT/mTOR activity in CRs primes these cells to death by possibly repressing a survival pathway, with the mTORC1 branch contributing less to the phenotype.
Collapse
|
9
|
5-HT-dependent synaptic plasticity of the prefrontal cortex in postnatal development. Sci Rep 2022; 12:21015. [PMID: 36470912 PMCID: PMC9723183 DOI: 10.1038/s41598-022-23767-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/04/2022] [Indexed: 12/12/2022] Open
Abstract
Important functions of the prefrontal cortex (PFC) are established during early life, when neurons exhibit enhanced synaptic plasticity and synaptogenesis. This developmental stage drives the organization of cortical connectivity, responsible for establishing behavioral patterns. Serotonin (5-HT) emerges among the most significant factors that modulate brain activity during postnatal development. In the PFC, activated 5-HT receptors modify neuronal excitability and interact with intracellular signaling involved in synaptic modifications, thus suggesting that 5-HT might participate in early postnatal plasticity. To test this hypothesis, we employed intracellular electrophysiological recordings of PFC layer 5 neurons to study the modulatory effects of 5-HT on plasticity induced by theta-burst stimulation (TBS) in two postnatal periods of rats. Our results indicate that 5-HT is essential for TBS to result in synaptic changes during the third postnatal week, but not later. TBS coupled with 5-HT2A or 5-HT1A and 5-HT7 receptors stimulation leads to long-term depression (LTD). On the other hand, TBS and synergic activation of 5-HT1A, 5-HT2A, and 5-HT7 receptors lead to long-term potentiation (LTP). Finally, we also show that 5-HT dependent synaptic plasticity of the PFC is impaired in animals that are exposed to early-life chronic stress.
Collapse
|
10
|
Sánchez-Castillo C, Cuartero MI, Fernández-Rodrigo A, Briz V, López-García S, Jiménez-Sánchez R, López JA, Graupera M, Esteban JA. Functional specialization of different PI3K isoforms for the control of neuronal architecture, synaptic plasticity, and cognition. SCIENCE ADVANCES 2022; 8:eabq8109. [PMID: 36417513 PMCID: PMC9683729 DOI: 10.1126/sciadv.abq8109] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Neuronal connectivity and activity-dependent synaptic plasticity are fundamental properties that support brain function and cognitive performance. Phosphatidylinositol 3-kinase (PI3K) intracellular signaling controls multiple mechanisms mediating neuronal growth, synaptic structure, and plasticity. However, it is still unclear how these pleiotropic functions are integrated at molecular and cellular levels. To address this issue, we used neuron-specific virally delivered Cre expression to delete either p110α or p110β (the two major catalytic isoforms of type I PI3K) from the hippocampus of adult mice. We found that dendritic and postsynaptic structures are almost exclusively supported by p110α activity, whereas p110β controls neurotransmitter release and metabotropic glutamate receptor-dependent long-term depression at the presynaptic terminal. In addition to these separate functions, p110α and p110β jointly contribute to N-methyl-d-aspartate receptor-dependent postsynaptic long-term potentiation. This molecular and functional specialization is reflected in different proteomes controlled by each isoform and in distinct behavioral alterations for learning/memory and sociability in mice lacking p110α or p110β.
Collapse
Affiliation(s)
- Carla Sánchez-Castillo
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - María I. Cuartero
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Alba Fernández-Rodrigo
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Víctor Briz
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Sergio López-García
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Raquel Jiménez-Sánchez
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Juan A. López
- Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Mariona Graupera
- Endothelial Pathobiology and Microenviroment Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - José A. Esteban
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| |
Collapse
|
11
|
Transcriptome and chromatin alterations in social fear indicate association of MEG3 with successful extinction of fear. Mol Psychiatry 2022; 27:4064-4076. [PMID: 35338311 PMCID: PMC9718683 DOI: 10.1038/s41380-022-01481-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 02/07/2023]
Abstract
Social anxiety disorder is characterized by a persistent fear and avoidance of social situations, but available treatment options are rather unspecific. Using an established mouse social fear conditioning (SFC) paradigm, we profiled gene expression and chromatin alterations after the acquisition and extinction of social fear within the septum, a brain region important for social fear and social behaviors. Here, we particularly focused on the successful versus unsuccessful outcome of social fear extinction training, which corresponds to treatment responsive versus resistant patients in the clinics. Validation of coding and non-coding RNAs revealed specific isoforms of the long non-coding RNA (lncRNA) Meg3 regulated, depending on the success of social fear extinction. Moreover, PI3K/AKT was differentially activated with extinction success in SFC-mice. In vivo knockdown of specific Meg3 isoforms increased baseline activity of PI3K/AKT signaling, and mildly delayed social fear extinction. Using ATAC-Seq and CUT&RUN, we found alterations in the chromatin structure of specific genes, which might be direct targets of lncRNA Meg3.
Collapse
|
12
|
Behl T, Arora A, Sehgal A, Singh S, Sharma N, Bhatia S, Al-Harrasi A, Bungau S, Mostafavi E. Molecular and Biochemical Pathways Encompassing Diabetes Mellitus and Dementia. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:542-556. [PMID: 34758720 DOI: 10.2174/1871527320666211110115257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/25/2021] [Accepted: 09/15/2021] [Indexed: 11/22/2022]
Abstract
Diabetes mellitus is a major metabolic disorder that has now emerged as an epidemic, and it affects the brain through an array of pathways. Diabetes mellitus patients can develop pathological changes in the brain, which eventually take the shape of mild cognitive impairment progressing to Alzheimer's Disease. A number of preclinical and clinical studies demonstrate this fact, and it comes out to be those molecular pathways such as amyloidogenesis, oxidative stress, inflammation, and impaired insulin signaling are identical in diabetes mellitus and dementia. However, the critical player involved in the vicious cycle of diabetes mellitus and dementia is insulin, whose signaling, when impaired in diabetes mellitus (both type 1 and 2), leads to a decline in cognition, although other pathways are also essential contributors. Moreover, it is not only that diabetes mellitus patients indicate cognitive decline at a later stage; many Alzheimer's Disease patients also reflect symptoms of diabetes mellitus, thus creating a vicious cycle inculcating a web of complex molecular mechanisms and hence categorizing Alzheimer's Disease as 'brain diabetes'. Thus, it is practical to suggest that anti-diabetic drugs are beneficial in Alzheimer's Disease; but only smaller trials, not the larger ones, have showcased positive outcomes mainly because of the late onset of therapy. Therefore, it is extremely important to develop more of such molecules that target insulin in dementia patients along with such methods that diagnose impaired insulin signaling and the associated cognitive decline so that early therapy may be initiated and the progression of the disease be prevented.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab. India
| | - Arpita Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab. India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab. India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab. India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab. India
| | - Saurabh Bhatia
- Amity Institute of Pharmacy, Amity University, Haryana. India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa. Oman
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea. Romania
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA. United States
| |
Collapse
|
13
|
Insulin and Insulin Resistance in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22189987. [PMID: 34576151 PMCID: PMC8472298 DOI: 10.3390/ijms22189987] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 02/08/2023] Open
Abstract
Insulin plays a range of roles as an anabolic hormone in peripheral tissues. It regulates glucose metabolism, stimulates glucose transport into cells and suppresses hepatic glucose production. Insulin influences cell growth, differentiation and protein synthesis, and inhibits catabolic processes such as glycolysis, lipolysis and proteolysis. Insulin and insulin-like growth factor-1 receptors are expressed on all cell types in the central nervous system. Widespread distribution in the brain confirms that insulin signaling plays important and diverse roles in this organ. Insulin is known to regulate glucose metabolism, support cognition, enhance the outgrowth of neurons, modulate the release and uptake of catecholamine, and regulate the expression and localization of gamma-aminobutyric acid (GABA). Insulin is also able to freely cross the blood–brain barrier from the circulation. In addition, changes in insulin signaling, caused inter alia insulin resistance, may accelerate brain aging, and affect plasticity and possibly neurodegeneration. There are two significant insulin signal transduction pathways: the PBK/AKT pathway which is responsible for metabolic effects, and the MAPK pathway which influences cell growth, survival and gene expression. The aim of this study is to describe the role played by insulin in the CNS, in both healthy people and those with pathologies such as insulin resistance and Alzheimer’s disease.
Collapse
|
14
|
Song S, Kim J, Park K, Lee J, Park S, Lee S, Kim J, Hong I, Song B, Choi S. GSK-3β activation is required for ZIP-induced disruption of learned fear. Sci Rep 2020; 10:18227. [PMID: 33106552 PMCID: PMC7588416 DOI: 10.1038/s41598-020-75130-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/05/2020] [Indexed: 11/12/2022] Open
Abstract
The myristoylated zeta inhibitory peptide (ZIP), which was originally developed as a protein kinase C/Mζ (PKCζ/PKMζ) inhibitor, is known to produce the loss of different forms of memories. However, ZIP induces memory loss even in the absence of PKMζ, and its mechanism of action, therefore, remains elusive. Here, through a kinome-wide screen, we found that glycogen synthase kinase 3 beta (GSK-3β) was robustly activated by ZIP in vitro. ZIP induced depotentiation (a cellular substrate of memory erasure) of conditioning-induced potentiation at LA synapses, and the ZIP-induced depotentiation was prevented by a GSK-3β inhibitor, 6-bromoindirubin-3-acetoxime (BIO-acetoxime). Consistently, GSK-3β inhibition by BIO-acetoxime infusion or GSK-3β knockdown by GSK-3β shRNA in the LA attenuated ZIP-induced disruption of learned fear. Furthermore, conditioned fear was decreased by expression of a non-inhibitable form of GSK-3β in the LA. Our findings suggest that GSK-3β activation is a critical step for ZIP-induced disruption of memory.
Collapse
Affiliation(s)
- Sukwoon Song
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jihye Kim
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kyungjoon Park
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
| | - Junghwa Lee
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sewon Park
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sukwon Lee
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Jeongyeon Kim
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Ingie Hong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Beomjong Song
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan.
| | - Sukwoo Choi
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Cannabidiol anticonvulsant effect is mediated by the PI3Kγ pathway. Neuropharmacology 2020; 176:108156. [DOI: 10.1016/j.neuropharm.2020.108156] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/21/2022]
|
16
|
Abstract
Tau protein which was discovered in 1975 [310] became of great interest when it was identified as the main component of neurofibrillary tangles (NFT), a pathological feature in the brain of patients with Alzheimer's disease (AD) [39, 110, 232]. Tau protein is expressed mainly in the brain as six isoforms generated by alternative splicing [46, 97]. Tau is a microtubule associated proteins (MAPs) and plays a role in microtubules assembly and stability, as well as diverse cellular processes such as cell morphogenesis, cell division, and intracellular trafficking [49]. Additionally, Tau is involved in much larger neuronal functions particularly at the level of synapses and nuclei [11, 133, 280]. Tau is also physiologically released by neurons [233] even if the natural function of extracellular Tau remains to be uncovered (see other chapters of the present book).
Collapse
|
17
|
Zhong J, Li G, Xu H, Wang Y, Shi M. Baicalin ameliorates chronic mild stress-induced depression-like behaviors in mice and attenuates inflammatory cytokines and oxidative stress. ACTA ACUST UNITED AC 2019; 52:e8434. [PMID: 31241715 PMCID: PMC6596363 DOI: 10.1590/1414-431x20198434] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 04/16/2019] [Indexed: 02/07/2023]
Abstract
The natural flavonoid glycoside baicalin (BA) produces a variety of pharmaceutical effects, particularly for psychiatric/neurological disorders. This study evaluated the behavioral and neuroprotective effects of BA in mice subjected to chronic unpredictable mild stress, a model of depression. BA (25 and 50 mg/kg) significantly increased sucrose consumption and reduced immobility times in the tail suspension and forced swim tests, demonstrating that BA alleviated depression-like behaviors. Moreover, BA reduced the levels of inflammatory cytokines, such as interleukin 1β, interleukin 6, and tumor necrosis factor α, in serum and in the hippocampus. BA also abrogated increases in NMDAR/NR2B and Ca2+/calmodulin-dependent protein kinase II, and the decrease in phosphorylated ERK and reactive oxygen species production in mice subjected to chronic unpredictable mild stress. These findings suggested that the antidepressive effects of BA are due to the regulation of an NMDAR/NR2B-ERK1/2-related pathway and inhibition of inflammatory cytokines and oxidative stress. Thus, BA represents a potential candidate drug for patients suffering from depression.
Collapse
Affiliation(s)
- Juying Zhong
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Gonghua Li
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hong Xu
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yan Wang
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Mingming Shi
- Department of Pharmacy, Elderly Care Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
18
|
Li D, Jing D, Liu Z, Chen Y, Huang F, Behnisch T. Enhanced Expression of Secreted α-Klotho in the Hippocampus Alters Nesting Behavior and Memory Formation in Mice. Front Cell Neurosci 2019; 13:133. [PMID: 31001090 PMCID: PMC6454015 DOI: 10.3389/fncel.2019.00133] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/18/2019] [Indexed: 12/30/2022] Open
Abstract
The klotho gene family consists of α-, β-, and γ-Klotho, which encode type I single-pass transmembrane proteins with large extracellular domains. α-Klotho exists as a full-length membrane-bound and as a soluble form after cleavage of the extracellular domain. Due to gene splicing, a short extracellular Klotho form can be expressed and secreted. Inactivation of α-Klotho leads to a phenotype that resembles accelerated aging, as the expression level of the α-Klotho protein in the hippocampal formation of mice decreases with age. Here, we show that intrahippocampal viral expression of secreted human α-Klotho alters social behavior and memory formation. Interestingly, overexpression of secreted human α-Klotho in the CA1 changed the nest-building behavior and improved object recognition, object location and passive avoidance memory. Moreover, α-Klotho overexpression increased hippocampal synaptic transmission in response to standardized stimulation strengths, altered paired-pulse facilitation of synaptic transmission, and enhanced activity-dependent synaptic plasticity. These results indicate that memory formation benefits from an augmented level of secreted α-Klotho.
Collapse
Affiliation(s)
- Dongxue Li
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Dongqing Jing
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Ziyang Liu
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Ying Chen
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Fang Huang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Thomas Behnisch
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Neuroprotective Actions of Glucagon-Like Peptide-1 (GLP-1) Analogues in Alzheimer's and Parkinson's Diseases. CNS Drugs 2019; 33:209-223. [PMID: 30511349 DOI: 10.1007/s40263-018-0593-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The current absence of effective treatments for Alzheimer's disease (AD) and Parkinson's disease (PD) reflects an incomplete knowledge of the underlying disease processes. Considerable efforts have been made to investigate the central pathological features of these diseases, giving rise to numerous attempts to develop compounds that interfere with such features. However, further characterization of the molecular targets within the interconnected AD and PD pathways is still required. Impaired brain insulin signaling has emerged as a feature that contributes to neuronal dysfunction in both AD and PD, leading to strategies aiming at restoring this pathway in the brain. Long-acting glucagon-like peptide-1 (GLP-1) analogues marketed for treatment of type 2 diabetes mellitus have been tested and have shown encouraging protective actions in experimental models of AD and PD as well as in initial clinical trials. We review studies revealing the neuroprotective actions of GLP-1 analogues in pre-clinical models of AD and PD and promising results from recent clinical trials.
Collapse
|
20
|
Zhang T, Shi Z, Wang Y, Wang L, Zhang B, Chen G, Wan Q, Chen L. Akt3 deletion in mice impairs spatial cognition and hippocampal CA1 long long-term potentiation through downregulation of mTOR. Acta Physiol (Oxf) 2019; 225:e13167. [PMID: 30053339 DOI: 10.1111/apha.13167] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 07/20/2018] [Accepted: 07/24/2018] [Indexed: 11/30/2022]
Abstract
AIM Loss-of-function mutation of Akt3 in humans has been associated with microcephaly and cognitive defects. Two Akt isoforms, Akt1 and Akt3, are highly expressed in hippocampal pyramidal cells. We explored the roles of Akt1 and Akt3, respectively, in spatial cognition and underlying mechanisms. METHODS We used Akt1 knockout (Akt1-KO) and Akt3 knockout (Akt3-KO) mice to examine the influence of Akt1 and Akt3 deficiency on spatial memory, as well as induction and maintenance of hippocampal CA1 NMDA receptor-dependent and protein synthesis-dependent long-term potentiation (LTP). RESULTS Long-term spatial memory was impaired in Akt3-KO mice, but not in Akt1-KO mice, as assessed by the Morris water maze task. Akt3-KO and Akt1-KO mice displayed reductions in brain size without concurrent changes in the number of pyramidal cells or basal properties of synaptic transmission. One-train high-frequency stimulation (HFS × 1) induced NMDA receptor-dependent LTP in Akt3-KO mice and Akt1-KO mice. Four-train HFS (HFS × 4) induced rapamycin-sensitive long-LTP in Akt1-KO mice, but not Akt3-KO mice. Basal level of mTOR phosphorylation was reduced in Akt3-KO mice rather than Akt1-KO mice. HFS × 4 induced an elevation of mTOR and p70S6K phosphorylation in Akt1-KO mice, which led to enhanced 4EBP2 and eIF4E phosphorylation along with an increase in AMPA receptor protein. However, the same protocol of HFS × 4 failed to trigger the mTOR-p70S6K signalling cascade or increase 4EBP2 and eIF4E phosphorylation in Akt3-KO mice. CONCLUSION The Akt3 deficiency via inactivation of mTOR suppresses HFS × 4-induced mTOR-p70S6K signalling to reduce phosphorylation of 4EBP and eIF4E, which impairs protein synthesis-dependent long-LTP and long-term spatial cognitive function.
Collapse
Affiliation(s)
- Tingting Zhang
- State Key Lab of Reproductive Medicine; Nanjing Medical University; Nanjing China
- Department of Physiology; Nanjing Medical University; Nanjing China
| | - Zhaochun Shi
- Department of Neurology; First Affiliated Hospital of Nanjing Medical University; Nanjing China
| | - Ya Wang
- Department of Physiology; Nanjing Medical University; Nanjing China
| | - Ling Wang
- Department of Physiology; Nanjing Medical University; Nanjing China
| | - Baofeng Zhang
- Department of Physiology; Nanjing Medical University; Nanjing China
| | - Guiquan Chen
- State Key Laboratory of Pharmaceutical Biotechnology; MOE Key Laboratory of Model Animal for Disease Study; Model Animal Research Center; Nanjing University; Nanjing China
| | - Qi Wan
- Department of Neurology; First Affiliated Hospital of Nanjing Medical University; Nanjing China
| | - Ling Chen
- State Key Lab of Reproductive Medicine; Nanjing Medical University; Nanjing China
- Department of Physiology; Nanjing Medical University; Nanjing China
| |
Collapse
|
21
|
Liu G, Feng D, Wang J, Zhang H, Peng Z, Cai M, Yang J, Zhang R, Wang H, Wu S, Tan Q. rTMS Ameliorates PTSD Symptoms in Rats by Enhancing Glutamate Transmission and Synaptic Plasticity in the ACC via the PTEN/Akt Signalling Pathway. Mol Neurobiol 2018; 55:3946-3958. [PMID: 28550530 DOI: 10.1007/s12035-017-0602-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/04/2017] [Indexed: 02/02/2023]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a novel physiological therapy that has been adopted to clinically treat psychiatric disorders. Our previous study indicated the potential therapeutic effect of rTMS on posttraumatic stress disorder (PTSD). However, the exact molecular mechanism is elusive. Currently, using the single prolonged stress (SPS) rat model for PTSD, we investigated the glutamatergic transmission and neural plasticity changes in the anterior cingulate cortex (ACC) after SPS induction and explored the protective effects and mechanism of rTMS treatment. We found that high-frequency rTMS (HrTMS, 15 Hz) treatment significantly relieved the impaired glutamatergic receptors in the ACC after SPS treatment by significantly increasing NMDAR and AMPAR expression. Simultaneously, HrTMS blocked inhibited neuronal phosphatase and tensin homologue on chromosome 10 (PTEN)/Akt signalling in the ACC after SPS treatment by decreasing PTEN expression and increasing Akt phosphorylation, which is critically involved in the regulation of memory and synaptic plasticity. The PTEN inhibitors bpV and small interfering RNA and the Akt inhibitor wortmannin were stereotaxically administered to the ACC after SPS treatment to advance the mechanistic study. Analysis by Western blot, double immunofluorescence, Golgi staining and behavioural tests demonstrated that the effects of rTMS on PTEN/Akt activation, glutamatergic receptor expression, neuronal synaptic plasticity and PTSD-related behaviours induced by SPS treatment were enhanced by PTEN inhibition and blocked by Akt inhibition in the ACC. Our study provides convincing evidence for the effectiveness of rTMS treatment on PTSD and suggests that its potential mechanism involves remodelling neuronal synaptic plasticity via the PTEN/Akt signalling pathway.
Collapse
Affiliation(s)
- Gaohua Liu
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Dayun Feng
- Department of Neurobiology and Institute of Neuroscience, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Jian Wang
- Department of Cardiac Surgery, General Hospital of Chengdu Military Region, Chengdu, 610083, People's Republic of China
| | - Haifeng Zhang
- Department of Neurobiology and Institute of Neuroscience, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Zhengwu Peng
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Min Cai
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Jing Yang
- Department of Neurobiology and Institute of Neuroscience, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Ruiguo Zhang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Shengxi Wu
- Department of Neurobiology and Institute of Neuroscience, Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
| | - Qingrong Tan
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
| |
Collapse
|
22
|
Brain STAT5 signaling modulates learning and memory formation. Brain Struct Funct 2018; 223:2229-2241. [PMID: 29460051 DOI: 10.1007/s00429-018-1627-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 02/12/2018] [Indexed: 01/02/2023]
Abstract
The signal transducer and activator of transcription 5 (STAT5) is a transcription factor recruited by numerous cytokines. STAT5 is important for several physiological functions, including body and tissue growth, mammary gland development, immune system and lipid metabolism. However, the role of STAT5 signaling for brain functions is still poorly investigated, especially regarding cognitive aspects. Therefore, the objective of the present study was to investigate whether brain STAT5 signaling modulates learning and memory formation. For this purpose, brain-specific STAT5 knockout (STAT5 KO) mice were studied in well-established memory tests. Initially, we confirmed a robust reduction in STAT5a and STAT5b mRNA levels in different brain structures of STAT5 KO mice. STAT5 KO mice showed no significant alterations in metabolism, growth, somatotropic axis and spontaneous locomotor activity. In contrast, brain-specific STAT5 ablation impaired learning and memory formation in the novel object recognition, Barnes maze and contextual fear conditioning tests. To unravel possible mechanisms that might underlie the memory deficits of STAT5 KO mice, we assessed neurogenesis in the hippocampus, but no significant differences were observed between groups. On the other hand, reduced insulin-like growth factor-1 (IGF-1) mRNA expression was found in the hippocampus and hypothalamus of STAT5 KO mice. These findings collectively indicate that brain STAT5 signaling is required to attain normal learning and memory. Therefore, STAT5 is an important downstream cellular mechanism shared by several cytokines to regulate cognitive functions.
Collapse
|
23
|
Farr SA, Sandoval KE, Niehoff ML, Witt KA, Kumar VB, Morley JE. Peripheral Administration of GSK-3β Antisense Oligonucleotide Improves Learning and Memory in SAMP8 and Tg2576 Mouse Models of Alzheimer's Disease. J Alzheimers Dis 2018; 54:1339-1348. [PMID: 27589526 DOI: 10.3233/jad-160416] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Glycogen synthase kinase (GSK)-3β is a multifunctional protein that has been implicated in the pathological characteristics of Alzheimer's disease (AD), including the heightened levels of neurofibrillary tangles, amyloid-beta (Aβ), and neurodegeneration. We have previously shown that an antisense oligonucleotide directed at the Tyr 216 site on GSK-3β (GAO) when injected centrally can decrease GSK-3β levels, improve learning and memory, and decrease oxidative stress. In addition, we showed that GAO can cross the blood-brain barrier. Herein the impact of peripherally administered GAO in both the non-transgenic SAMP8 and transgenic Tg2576 (APPswe) models of AD were examined respective to learning and memory. Brain tissues were then evaluated for expression changes in the phosphorylated-Tyr 216 residue, which leads to GSK-3β activation, and the phosphorylated-Ser9 residue, which reduces GSK-3β activity. SAMP8 GAO-treated mice showed improved acquisition and retention using aversive T-maze, and improved declarative memory as measured by the novel object recognition (NOR) test. Expression of the phosphorylated-Tyr 216 was decreased and the phosphorylated-Ser9 was increased in GAO-treated SAMP8 mice. Tg2576 GAO-treated mice improved acquisition and retention in both the T-maze and NOR tests, with an increased phosphorylated-Ser9 GSK-3β expression. Results demonstrate that peripheral administration of GAO improves learning and memory, corresponding with alterations in GSK-3β phosphorylation state. This study supports peripherally administered GAO as a viable means to mediate GSK-3β activity within the brain and a possible treatment for AD.
Collapse
Affiliation(s)
- Susan A Farr
- Research & Development Service, VA Medical Center, St. Louis, Missouri, USA.,Division of Geriatric Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Karin E Sandoval
- Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois, USA
| | - Michael L Niehoff
- Division of Geriatric Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Ken A Witt
- Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois, USA
| | - Vijaya B Kumar
- Research & Development Service, VA Medical Center, St. Louis, Missouri, USA.,Division of Geriatric Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - John E Morley
- Division of Geriatric Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, USA.,Division of Endocrinology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
24
|
Gratuze M, Joly-Amado A, Vieau D, Buée L, Blum D. Mutual Relationship between Tau and Central Insulin Signalling: Consequences for AD and Tauopathies? Neuroendocrinology 2018; 107:181-195. [PMID: 29439247 DOI: 10.1159/000487641] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/13/2018] [Indexed: 12/30/2022]
Abstract
Alzheimer disease (AD) is a progressive neurodegenerative disorder mainly characterized by cognitive deficits and neuropathological changes such as Tau lesions and amyloid plaques, but also associated with non-cognitive symptomatology. Metabolic and neuroendocrine abnormalities, such as alterations in body weight, brain insulin impairments, and lower brain glucose metabolism, which often precede clinical diagnosis, have been extensively reported in AD patients. However, the origin of these symptoms and their relation to pathology and cognitive impairments remain misunderstood. Insulin is a hormone involved in the control of energy homeostasis both peripherally and centrally, and insulin-resistant state has been linked to increased risk of dementia. It is now well established that insulin resistance can exacerbate Tau lesions, mainly by disrupting the balance between Tau kinases and phosphatases. On the other hand, the emerging literature indicates that Tau protein can also modulate insulin signalling in the brain, thus creating a detrimental vicious circle. The following review will highlight our current understanding of the role of insulin in the brain and its relation to Tau protein in the context of AD and tauopathies. Considering that insulin signalling is prone to be pharmacologically targeted at multiple levels, it constitutes an appealing approach to improve both insulin brain sensitivity and mitigate brain pathology with expected positive outcome in terms of cognition.
Collapse
Affiliation(s)
- Maud Gratuze
- Centre de Recherche du Centre Hospitalier de l'Université Laval de Québec, Axe Neurosciences, Université Laval, Québec, Québec, Canada
| | - Aurélie Joly-Amado
- Byrd Alzheimer's Institute, Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA
| | - Didier Vieau
- Université de Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc, "Alzheimer and Tauopathies,", Lille, France
| | - Luc Buée
- Université de Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc, "Alzheimer and Tauopathies,", Lille, France
| | - David Blum
- Université de Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc, "Alzheimer and Tauopathies,", Lille, France
| |
Collapse
|
25
|
Prom-Wormley EC, Ebejer J, Dick DM, Bowers MS. The genetic epidemiology of substance use disorder: A review. Drug Alcohol Depend 2017; 180:241-259. [PMID: 28938182 PMCID: PMC5911369 DOI: 10.1016/j.drugalcdep.2017.06.040] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 06/20/2017] [Accepted: 06/23/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Substance use disorder (SUD) remains a significant public health issue. A greater understanding of how genes and environment interact to regulate phenotypes comprising SUD will facilitate directed treatments and prevention. METHODS The literature studying the neurobiological correlates of SUD with a focus on the genetic and environmental influences underlying these mechanisms was reviewed. Results from twin/family, human genetic association, gene-environment interaction, epigenetic literature, phenome-wide association studies are summarized for alcohol, nicotine, cannabinoids, cocaine, and opioids. RESULTS There are substantial genetic influences on SUD that are expected to influence multiple neurotransmission pathways, and these influences are particularly important within the dopaminergic system. Genetic influences involved in other aspects of SUD etiology including drug processing and metabolism are also identified. Studies of gene-environment interaction emphasize the importance of environmental context in SUD. Epigenetic studies indicate drug-specific changes in gene expression as well as differences in gene expression related to the use of multiple substances. Further, gene expression is expected to differ by stage of SUD such as substance initiation versus chronic substance use. While a substantial literature has developed for alcohol and nicotine use disorders, there is comparatively less information for other commonly abused substances. CONCLUSIONS A better understanding of genetically-mediated mechanisms involved in the neurobiology of SUD provides increased opportunity to develop behavioral and biologically based treatment and prevention of SUD.
Collapse
Affiliation(s)
- Elizabeth C Prom-Wormley
- Dvision of Epidemiology, Department of Family Medicine and Population Health, Virginia Commonwealth University, PO Box 980212, Richmond, VA 23298-0212, USA.
| | - Jane Ebejer
- School of Cognitive Behavioural and Social Sciences, University of New England, Armidale, NSW 2350, Australia
| | - Danielle M Dick
- Department of Psychology, Virginia Commonwealth University, PO Box 842509, Richmond, VA 23284-2509, USA
| | - M Scott Bowers
- Faulk Center for Molecular Therapeutics, Biomedical Engeneering, Northwestern University, Evanston, IL 60201, USA
| |
Collapse
|
26
|
Lao-Peregrín C, Ballesteros JJ, Fernández M, Zamora-Moratalla A, Saavedra A, Gómez Lázaro M, Pérez-Navarro E, Burks D, Martín ED. Caffeine-mediated BDNF release regulates long-term synaptic plasticity through activation of IRS2 signaling. Addict Biol 2017; 22:1706-1718. [PMID: 27457910 PMCID: PMC5697621 DOI: 10.1111/adb.12433] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/23/2016] [Accepted: 06/27/2016] [Indexed: 11/27/2022]
Abstract
Caffeine has cognitive‐enhancing properties with effects on learning and memory, concentration, arousal and mood. These effects imply changes at circuital and synaptic level, but the mechanism by which caffeine modifies synaptic plasticity remains elusive. Here we report that caffeine, at concentrations representing moderate to high levels of consumption in humans, induces an NMDA receptor‐independent form of LTP (CAFLTP) in the CA1 region of the hippocampus by promoting calcium‐dependent secretion of BDNF, which subsequently activates TrkB‐mediated signaling required for the expression of CAFLTP. Our data include the novel observation that insulin receptor substrate 2 (IRS2) is phosphorylated during induction of CAFLTP, a process that requires cytosolic free Ca2+. Consistent with the involvement of IRS2 signals in caffeine‐mediated synaptic plasticity, phosphorylation of Akt (Ser473) in response to LTP induction is defective in Irs2−/− mice, demonstrating that these plasticity changes are associated with downstream targets of the phosphoinositide 3‐kinase (PI3K) pathway. These findings indicate that TrkB‐IRS2 signals are essential for activation of PI3K during the induction of LTP by caffeine.
Collapse
Affiliation(s)
- Cristina Lao-Peregrín
- Laboratory of Neurophysiology and Synaptic Plasticity, Castilla-La Mancha Science and Technology Park (PCYTCLM), Institute for Research in Neurological Disabilities (IDINE); University of Castilla-La Mancha; Spain
| | - Jesús Javier Ballesteros
- Laboratory of Neurophysiology and Synaptic Plasticity, Castilla-La Mancha Science and Technology Park (PCYTCLM), Institute for Research in Neurological Disabilities (IDINE); University of Castilla-La Mancha; Spain
| | - Miriam Fernández
- Laboratory of Neurophysiology and Synaptic Plasticity, Castilla-La Mancha Science and Technology Park (PCYTCLM), Institute for Research in Neurological Disabilities (IDINE); University of Castilla-La Mancha; Spain
| | - Alfonsa Zamora-Moratalla
- Laboratory of Neurophysiology and Synaptic Plasticity, Castilla-La Mancha Science and Technology Park (PCYTCLM), Institute for Research in Neurological Disabilities (IDINE); University of Castilla-La Mancha; Spain
| | - Ana Saavedra
- Departament de Biomedicina, Facultat de Medicina; Universitat de Barcelona; Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Spain
- Centro de Investigación Biomédica en Red (CIBER) sobre Enfermedades Neurodegenerativas (CIBERNED); Spain
- Institut de Neurociències; Universitat de Barcelona; Spain
| | - María Gómez Lázaro
- Laboratory of Neurophysiology and Synaptic Plasticity, Castilla-La Mancha Science and Technology Park (PCYTCLM), Institute for Research in Neurological Disabilities (IDINE); University of Castilla-La Mancha; Spain
| | - Esther Pérez-Navarro
- Departament de Biomedicina, Facultat de Medicina; Universitat de Barcelona; Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Spain
- Centro de Investigación Biomédica en Red (CIBER) sobre Enfermedades Neurodegenerativas (CIBERNED); Spain
- Institut de Neurociències; Universitat de Barcelona; Spain
| | - Deborah Burks
- Centro de Investigación Príncipe Felipe, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM); Spain
| | - Eduardo D. Martín
- Laboratory of Neurophysiology and Synaptic Plasticity, Castilla-La Mancha Science and Technology Park (PCYTCLM), Institute for Research in Neurological Disabilities (IDINE); University of Castilla-La Mancha; Spain
| |
Collapse
|
27
|
Mice Deficient in lysophosphatidic acid acyltransferase delta ( Lpaatδ)/ acylglycerophosphate acyltransferase 4 ( Agpat4) Have Impaired Learning and Memory. Mol Cell Biol 2017; 37:MCB.00245-17. [PMID: 28807933 DOI: 10.1128/mcb.00245-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/07/2017] [Indexed: 01/17/2023] Open
Abstract
We previously characterized LPAATδ/AGPAT4 as a mitochondrial lysophosphatidic acid acyltransferase that regulates brain levels of phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylinositol (PI). Here, we report that Lpaatδ-/- mice display impaired spatial learning and memory compared to wild-type littermates in the Morris water maze and our investigation of potential mechanisms associated with brain phospholipid changes. Marker protein immunoblotting suggested that the relative brain content of neurons, glia, and oligodendrocytes was unchanged. Relative abundance of the important brain fatty acid docosahexaenoic acid was also unchanged in phosphatidylserine, phosphatidylglycerol, and cardiolipin, in agreement with prior data on PC, PE and PI. In phosphatidic acid, it was increased. Specific decreases in ethanolamine-containing phospholipids were detected in mitochondrial lipids, but the function of brain mitochondria in Lpaatδ-/- mice was unchanged. Importantly, we found that Lpaatδ-/- mice have a significantly and drastically lower brain content of the N-methyl-d-asparate (NMDA) receptor subunits NR1, NR2A, and NR2B, as well as the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluR1, compared to wild-type mice. However, general dysregulation of PI-mediated signaling is not likely responsible, since phospho-AKT and phospho-mTOR pathway regulation was unaffected. Our findings indicate that Lpaatδ deficiency causes deficits in learning and memory associated with reduced NMDA and AMPA receptors.
Collapse
|
28
|
Pirbhoy PS, Farris S, Steward O. Synaptically driven phosphorylation of ribosomal protein S6 is differentially regulated at active synapses versus dendrites and cell bodies by MAPK and PI3K/mTOR signaling pathways. ACTA ACUST UNITED AC 2017; 24:341-357. [PMID: 28716954 PMCID: PMC5516686 DOI: 10.1101/lm.044974.117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 05/18/2017] [Indexed: 12/04/2022]
Abstract
High-frequency stimulation of the medial perforant path triggers robust phosphorylation of ribosomal protein S6 (rpS6) in activated dendritic domains and granule cell bodies. Here we dissect the signaling pathways responsible for synaptically driven rpS6 phosphorylation in the dentate gyrus using pharmacological agents to inhibit PI3-kinase/mTOR and MAPK/ERK-dependent kinases. Using phospho-specific antibodies for rpS6 at different sites (ser235/236 versus ser240/244), we show that delivery of the PI3-kinase inhibitor, wortmannin, decreased rpS6 phosphorylation throughout the somatodendritic compartment (granule cell layer, inner molecular layer, outer molecular layer), especially in granule cell bodies while sparing phosphorylation at activated synapses (middle molecular layer). In contrast, delivery of U0126, an MEK inhibitor, attenuated rpS6 phosphorylation specifically in the dendritic laminae leaving phosphorylation in the granule cell bodies intact. Delivery of the mTOR inhibitor, rapamycin, abolished activation of rpS6 phosphorylation in granule cell bodies and dendrites, whereas delivery of a selective S6K1 inhibitor, PF4708671, or RSK inhibitor, SL0101-1, attenuated rpS6 phosphorylation throughout the postsynaptic cell. These results reveal that MAPK/ERK-dependent signaling is predominately responsible for the selective induction of rpS6 phosphorylation at active synapses. In contrast, PI3-kinase/mTOR-dependent signaling induces rpS6 phosphorylation throughout the somatodendritic compartment but plays a minimal role at active synapses. Collectively, these results suggest a potential mechanism by which PI3-kinase/mTOR and MAPK/ERK pathways regulate translation at specific subcellular compartments in response to synaptic activity.
Collapse
Affiliation(s)
- Patricia Salgado Pirbhoy
- Reeve-Irvine Research Center, University of California, Irvine, California 92697, USA.,Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, California 92697, USA
| | - Shannon Farris
- Reeve-Irvine Research Center, University of California, Irvine, California 92697, USA.,Department of Anatomy and Neurobiology
| | - Oswald Steward
- Reeve-Irvine Research Center, University of California, Irvine, California 92697, USA.,Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, California 92697, USA.,Department of Anatomy and Neurobiology.,Department of Neurosurgery, University of California, Irvine, California 92697, USA
| |
Collapse
|
29
|
Tan MC, Widagdo J, Chau YQ, Zhu T, Wong JJL, Cheung A, Anggono V. The Activity-Induced Long Non-Coding RNA Meg3 Modulates AMPA Receptor Surface Expression in Primary Cortical Neurons. Front Cell Neurosci 2017; 11:124. [PMID: 28515681 PMCID: PMC5413565 DOI: 10.3389/fncel.2017.00124] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/12/2017] [Indexed: 11/13/2022] Open
Abstract
Transcription of new RNA is crucial for maintaining synaptic plasticity, learning and memory. Although the importance of synaptic plasticity-related messenger RNAs (mRNAs) is well established, the role of a large group of long non-coding RNAs (lncRNAs) in long-term potentiation (LTP) is not known. In this study, we demonstrated the expression of a lncRNA cluster, namely maternally expressed gene 3 (Meg3), retrotransposon-like gene 1-anti-sense (Rtl1-AS), Meg8 and Meg9, which is located in the maternally imprinted Dlk1-Dio3 region on mouse chromosome 12qF1, in primary cortical neurons following glycine stimulation in an N-Methyl-D-aspartate receptor (NMDAR)-dependent manner. Importantly, we also validated the expression of Meg3, Meg8 and Meg9 in the hippocampus of mice following cued fear conditioning in vivo. Interestingly, Meg3 is the only lncRNA that is expressed in the nucleus and cytoplasm. Further analysis revealed that Meg3 loss of function blocked the glycine-induced increase of the GluA1 subunit of AMPA receptors on the plasma membrane, a major hallmark of LTP. This aberrant trafficking of AMPA receptors correlated with the dysregulation of the phosphatidylinoside-3-kinase (PI3K)/AKT signaling pathway and the downregulation of the lipid phosphatase and tensin homolog (PTEN). These findings provide the first evidence for a functional role of the lncRNA Meg3 in the intricate regulation of the PTEN/PI3K/AKT signaling cascade during synaptic plasticity in neurons.
Collapse
Affiliation(s)
- Men C Tan
- Clem Jones Centre for Ageing Dementia Research, The University of QueenslandBrisbane, QLD, Australia.,Queensland Brain Institute, The University of QueenslandBrisbane, QLD, Australia
| | - Jocelyn Widagdo
- Clem Jones Centre for Ageing Dementia Research, The University of QueenslandBrisbane, QLD, Australia.,Queensland Brain Institute, The University of QueenslandBrisbane, QLD, Australia
| | - Yu Q Chau
- Clem Jones Centre for Ageing Dementia Research, The University of QueenslandBrisbane, QLD, Australia.,Queensland Brain Institute, The University of QueenslandBrisbane, QLD, Australia
| | - Tianyi Zhu
- Clem Jones Centre for Ageing Dementia Research, The University of QueenslandBrisbane, QLD, Australia.,Queensland Brain Institute, The University of QueenslandBrisbane, QLD, Australia
| | - Justin J-L Wong
- Gene and Stem Cell Therapy Program, Centenary InstituteSydney, NSW, Australia.,Sydney Medical School, University of SydneySydney, NSW, Australia
| | - Allen Cheung
- Queensland Brain Institute, The University of QueenslandBrisbane, QLD, Australia
| | - Victor Anggono
- Clem Jones Centre for Ageing Dementia Research, The University of QueenslandBrisbane, QLD, Australia.,Queensland Brain Institute, The University of QueenslandBrisbane, QLD, Australia
| |
Collapse
|
30
|
Physiological and Pathological Roles of 15-Deoxy-Δ12,14-Prostaglandin J2 in the Central Nervous System and Neurological Diseases. Mol Neurobiol 2017; 55:2227-2248. [PMID: 28299574 DOI: 10.1007/s12035-017-0435-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 02/03/2017] [Indexed: 12/29/2022]
|
31
|
Onore C, Yang H, Van de Water J, Ashwood P. Dynamic Akt/mTOR Signaling in Children with Autism Spectrum Disorder. Front Pediatr 2017; 5:43. [PMID: 28361047 PMCID: PMC5350147 DOI: 10.3389/fped.2017.00043] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 02/15/2017] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorder (ASD) is a behaviorally defined disorder affecting 1 in 68 children. Currently, there is no known cause for the majority of ASD cases nor are there physiological diagnostic tools or biomarkers to aid behavioral diagnosis. Whole-genome linkage studies, genome-wide association studies, copy number variation screening, and SNP analyses have identified several ASD candidate genes, but which vary greatly among individuals and family clusters, suggesting that a variety of genetic mutations may result in a common pathology or alter a common mechanistic pathway. The Akt/mammalian target of rapamycin (mTOR) pathway is involved in many cellular processes including synaptic plasticity and immune function that can alter neurodevelopment. In this study, we examined the activity of the Akt/mTOR pathway in cells isolated from children with ASD and typically developing controls. We observed higher activity of mTOR, extracellular receptor kinase, and p70S6 kinase and lower activity of glycogen synthase kinase 3 (GSK3)α and tuberin (TSC2) in cells from children with ASD. These data suggest a phosphorylation pattern indicative of higher activity in the Akt/mTOR pathway in children with general/idiopathic ASD and may suggest a common pathological pathway of interest for ASD.
Collapse
Affiliation(s)
- Charity Onore
- The M.I.N.D. Institute, University of California Davis, Davis, CA, USA
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
| | - Houa Yang
- The M.I.N.D. Institute, University of California Davis, Davis, CA, USA
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
| | - Judy Van de Water
- The M.I.N.D. Institute, University of California Davis, Davis, CA, USA
- Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, Davis, CA, USA
| | - Paul Ashwood
- The M.I.N.D. Institute, University of California Davis, Davis, CA, USA
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
| |
Collapse
|
32
|
Yagami T, Yamamoto Y, Koma H. 15-deoxy-Δ12,14-prostaglandin J2 in neurodegenerative diseases and cancers. Oncotarget 2017; 8:9007-9008. [PMID: 28107188 PMCID: PMC5354706 DOI: 10.18632/oncotarget.14701] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Tatsurou Yagami
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Japan
| | | | - Hiromi Koma
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Japan
| |
Collapse
|
33
|
Slouzkey I, Maroun M. PI3-kinase cascade has a differential role in acquisition and extinction of conditioned fear memory in juvenile and adult rats. ACTA ACUST UNITED AC 2016; 23:723-731. [PMID: 27918278 PMCID: PMC5110989 DOI: 10.1101/lm.041806.116] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 08/25/2016] [Indexed: 11/24/2022]
Abstract
The basolateral amygdala (BLA), medial prefrontal cortex (mPFC) circuit, plays a crucial role in acquisition and extinction of fear memory. Extinction of aversive memories is mediated, at least in part, by the phosphoinositide-3 kinase (PI3K)/Akt pathway in adult rats. There is recent interest in the neural mechanisms that mediate fear and extinction in juvenile animals and whether these mechanisms are distinctive from those in adult animals. In the present study, we examined (1) changes in phosphorylation of Akt in the BLA and mPFC after fear conditioning and extinction in juvenile and adult rats and (2) the effect of BLA and mPFC localized inhibition of the PI3K following acquisition and extinction of contextual fear memory. Our results show that Akt phosphorylation is increased following acquisition of contextual fear learning in the BLA but not in the mPFC in adult and juvenile rats. Extinction learning was not associated with changes in Akt phosphorylation. Although there were no differences in the pattern of phosphorylation of Akt either in adult or juvenile rats, microinjection of the PI3K inhibitor, LY294002, into the BLA or mPFC elicited differential effects on fear memory acquisition and extinction, depending on the site and timing of the microinjection, as well as on the age of the animal. These results suggest that PI3K/Akt has a differential role in formation, retrieval, and extinction of contextual fear memory in juvenile and adult animals, and point to developmental differences between adult and juvenile rats in mechanisms of extinction.
Collapse
Affiliation(s)
- Ilana Slouzkey
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Mouna Maroun
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
34
|
Koma H, Yamamoto Y, Nishii A, Yagami T. 15-Deoxy-Δ 12,14-prostaglandin J 2 induced neurotoxicity via suppressing phosphoinositide 3-kinase. Neuropharmacology 2016; 113:416-425. [PMID: 27771378 DOI: 10.1016/j.neuropharm.2016.10.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 07/21/2016] [Accepted: 10/16/2016] [Indexed: 11/29/2022]
Abstract
15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) induces neuronal cell death via apoptosis independently of its receptors. 15d-PGJ2 inhibits growth factor-induced cell proliferation of primary astrocytes via down-regulating phosphoinositide 3-kinase (PI3K)-Akt pathway. Although 15d-PGJ2-reduced cell viability is accompanied with attenuation of the PI3K signaling in neuroblastoma, it has not been sufficiently clarified how 15d-PGJ2 induces cell death in primary neurons. Here, we found that 15d-PGJ2 exhibited neurotoxicity via inhibiting the PI3K signaling in the primary culture of rat cortical neurons. A PI3K inhibitor induced neuronal cell death regardless serum throughout maturation, confirming that PI3K is required for neuronal cell survival. The inhibitor disrupted neuronal cell bodies, shortened neurites thinly, damaged plasma membranes and activated caspase-3 similarly to 15d-PGJ2. Little additive or synergistic neurotoxicity was detected between 15d-PGJ2 and the PI3K inhibitor. A PI3K activator prevented neurons from undergoing the 15d-PGJ2-induced cell death in vitro. In vivo, the PI3K signaling is required for contextual memory retrieval, which was impaired by bilateral injection of 15d-PGJ2 into hippocampus. The activator suppressed the 15d-PGJ2-impaired memory retrieval significantly. In neurons as well as primary astrocytes and neuroblastomas, 15d-PGJ2 exhibited cytotoxicity via suppressing the PI3K-Akt pathway in vivo and in vitro.
Collapse
Affiliation(s)
- Hiromi Koma
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Hyogo, 670-8524 Japan
| | - Yasuhiro Yamamoto
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Hyogo, 670-8524 Japan
| | - Ayaka Nishii
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Hyogo, 670-8524 Japan
| | - Tatsurou Yagami
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Hyogo, 670-8524 Japan.
| |
Collapse
|
35
|
Cortese GP, Burger C. Neuroinflammatory challenges compromise neuronal function in the aging brain: Postoperative cognitive delirium and Alzheimer's disease. Behav Brain Res 2016; 322:269-279. [PMID: 27544872 DOI: 10.1016/j.bbr.2016.08.027] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 08/08/2016] [Accepted: 08/11/2016] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that targets memory and cognition, and is the most common form of dementia among the elderly. Although AD itself has been extensively studied, very little is known about early-stage preclinical events and/or mechanisms that may underlie AD pathogenesis. Since the majority of AD cases are sporadic in nature, advancing age remains the greatest known risk factor for AD. However, additional environmental and epigenetic factors are thought to accompany increasing age to play a significant role in the pathogenesis of AD. Postoperative cognitive delirium (POD) is a behavioral syndrome that primarily occurs in elderly patients following a surgical procedure or injury and is characterized by disruptions in cognition. Individuals that experience POD are at an increased risk for developing dementia and AD compared to normal aging individuals. One way in which cognitive function is affected in cases of POD is through activation of the inflammatory cascade following surgery or injury. There is compelling evidence that immune challenges (surgery and/or injury) associated with POD trigger the release of pro-inflammatory cytokines into both the periphery and central nervous system. Thus, it is possible that cognitive impairments following an inflammatory episode may lead to more severe forms of dementia and AD pathogenesis. Here we will discuss the inflammation associated with POD, and highlight the advantages of using POD as a model to study inflammation-evoked cognitive impairment. We will explore the possibility that advancing age and immune challenges may provide mechanistic evidence correlating early life POD with AD. We will review and propose neural mechanisms by which cognitive impairments occur in cases of POD, and discuss how POD may augment the onset of AD.
Collapse
Affiliation(s)
- Giuseppe P Cortese
- Department of Neurology, University of Wisconsin-Madison, Medical Sciences Center, 1300 University Ave, Room 73 Bardeen Madison, WI 53706, USA.
| | - Corinna Burger
- Department of Neurology, University of Wisconsin-Madison, Medical Sciences Center, 1300 University Ave, Room 73 Bardeen Madison, WI 53706, USA
| |
Collapse
|
36
|
Itoh N, Enomoto A, Nagai T, Takahashi M, Yamada K. Molecular mechanism linking BDNF/TrkB signaling with the NMDA receptor in memory: the role of Girdin in the CNS. Rev Neurosci 2016; 27:481-90. [DOI: 10.1515/revneuro-2015-0072] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 01/14/2016] [Indexed: 12/21/2022]
Abstract
AbstractIt is well known that synaptic plasticity is the cellular mechanism underlying learning and memory. Activity-dependent synaptic changes in electrical properties and morphology, including synaptogenesis, lead to alterations of synaptic strength, which is associated with long-term potentiation (LTP). Brain-derived neurotrophic factor (BDNF)/tropomyosin-related kinase B (TrkB) signaling is involved in learning and memory formation by regulating synaptic plasticity. The phosphatidylinositol 3-kinase (PI3-K)/Akt pathway is one of the key signaling cascades downstream BDNF/TrkB and is believed to modulate N-methyl-d-aspartate (NMDA) receptor-mediated synaptic plasticity. However, the molecular mechanism underlying the connection between these two key players in synaptic plasticity remains largely unknown. Girders of actin filament (Girdin), an Akt substrate that directly binds to actin filaments, has been shown to play a role in neuronal migration and neuronal development. Recently, we identified Girdin as a key molecule involved in regulating long-term memory. It was demonstrated that phosphorylation of Girdin by Akt contributed to the maintenance of LTP by linking the BDNF/TrkB signaling pathway with NMDA receptor activity. These findings indicate that Girdin plays a pivotal role in a variety of processes in the CNS. Here, we review recent advances in our understanding about the roles of Girdin in the CNS and focus particularly on neuronal migration and memory.
Collapse
Affiliation(s)
| | | | - Taku Nagai
- 1Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8560, Japan
| | - Masahide Takahashi
- 2Department of Pathology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi 466-8550, Japan
| | - Kiyofumi Yamada
- 1Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8560, Japan
| |
Collapse
|
37
|
Fernández-Monreal M, Sánchez-Castillo C, Esteban JA. APPL1 gates long-term potentiation through its plekstrin homology domain. J Cell Sci 2016; 129:2793-803. [PMID: 27257087 DOI: 10.1242/jcs.183475] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 05/31/2016] [Indexed: 01/02/2023] Open
Abstract
Hippocampal synaptic plasticity involves both membrane trafficking events and intracellular signaling, but how these are coordinated is far from clear. The endosomal transport of glutamate receptors in and out of the postsynaptic membrane responds to multiple signaling cascades triggered by synaptic activity. In this work, we have identified adaptor protein containing a plekstrin homology domain, phosphotyrosine-binding domain and leucine zipper motif 1 (APPL1) as a crucial element linking trafficking and signaling during synaptic plasticity. We show that APPL1 knockdown specifically impairs PI3K-dependent forms of synaptic plasticity, such as long-term potentiation (LTP) and metabotropic-glutamate-receptor-dependent long-term depression (mGluR-LTD). Indeed, we demonstrate that APPL1 is required for the activation of the phosphatidylinositol triphosphate (PIP3) pathway in response to LTP induction. This requirement can be bypassed by membrane localization of PI3K and is related to phosphoinositide binding. Interestingly, inhibitors of PDK1 (also known as PDPK1) and Akt have no effect on LTP expression. Therefore, we conclude that APPL1 gates PI3K activation at the plasma membrane upon LTP induction, which is then relayed by downstream PIP3 effectors that are different from PDK1 and Akt.
Collapse
Affiliation(s)
- Mónica Fernández-Monreal
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid (CSIC-UAM), Madrid 28049, Spain
| | - Carla Sánchez-Castillo
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid (CSIC-UAM), Madrid 28049, Spain
| | - José A Esteban
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid (CSIC-UAM), Madrid 28049, Spain
| |
Collapse
|
38
|
Pen Y, Borovok N, Reichenstein M, Sheinin A, Michaelevski I. Membrane-tethered AKT kinase regulates basal synaptic transmission and early phase LTP expression by modulation of post-synaptic AMPA receptor level. Hippocampus 2016; 26:1149-67. [PMID: 27068236 DOI: 10.1002/hipo.22597] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2016] [Indexed: 01/17/2023]
Abstract
The serine/threonine kinase AKT/PKB plays a fundamental role in a wide variety of neuronal functions, including neuronal cell development, axonal growth, and synaptic plasticity. Multiple evidence link AKT signaling pathways to regulation of late phase long-term synaptic plasticity, synaptogenesis, and spinogenesis, as well as long-term memory formation. Nevertheless, the downstream effectors mediating the effects of AKT on early phase long-term potentiation (eLTP) are currently unknown. Here we report that using different regimes of pharmacological activation and inhibition of AKT activity in acute hippocampal slices, we found that AKT regulates the post-synaptic expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA) receptors affecting solely the expression of eLTP, with no effect on its induction and maintenance. We further show that both maintenance of basal synaptic activity and expression of eLTP require plasma membrane tethering by activated AKT and that basal synaptic activity may be regulated via the direct effects of AKT1 on the expression level of post-synaptic AMPA receptors bypassing the canonical AKT signaling. Finally, we establish that eLTP expression requires the involvement of both the canonical AKT signaling pathways and the direct effect of AKT1 on AMPA receptor activity/expression in the post-synaptic membrane. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Y Pen
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel-Aviv, Israel
| | - N Borovok
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel-Aviv, Israel
| | - M Reichenstein
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel-Aviv, Israel
| | - A Sheinin
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv, Israel
| | - I Michaelevski
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv, Israel
| |
Collapse
|
39
|
Qiu F, Li Y, Fu Q, Fan YY, Zhu C, Liu YH, Mi WD. Stromal Cell-Derived Factor 1 Increases Tetrodotoxin-Resistant Sodium Currents Nav1.8 and Nav1.9 in Rat Dorsal Root Ganglion Neurons via Different Mechanisms. Neurochem Res 2016; 41:1587-603. [DOI: 10.1007/s11064-016-1873-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 02/13/2016] [Accepted: 02/16/2016] [Indexed: 10/22/2022]
|
40
|
Enriquez-Barreto L, Morales M. The PI3K signaling pathway as a pharmacological target in Autism related disorders and Schizophrenia. MOLECULAR AND CELLULAR THERAPIES 2016; 4:2. [PMID: 26877878 PMCID: PMC4751644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 01/25/2016] [Indexed: 11/21/2023]
Abstract
This review is focused in PI3K's involvement in two widespread mental disorders: Autism and Schizophrenia. A large body of evidence points to synaptic dysfunction as a cause of these diseases, either during the initial phases of brain synaptic circuit's development or later modulating synaptic function and plasticity. Autism related disorders and Schizophrenia are complex genetic conditions in which the identification of gene markers has proved difficult, although the existence of single-gene mutations with a high prevalence in both diseases offers insight into the role of the PI3K signaling pathway. In the brain, components of the PI3K pathway regulate synaptic formation and plasticity; thus, disruption of this pathway leads to synapse dysfunction and pathological behaviors. Here, we recapitulate recent evidences that demonstrate the imbalance of several PI3K elements as leading causes of Autism and Schizophrenia, together with the plausible new pharmacological paths targeting this signaling pathway.
Collapse
Affiliation(s)
- Lilian Enriquez-Barreto
- Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Miguel Morales
- Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
41
|
Wang H, Peng RY. Basic roles of key molecules connected with NMDAR signaling pathway on regulating learning and memory and synaptic plasticity. Mil Med Res 2016; 3:26. [PMID: 27583167 PMCID: PMC5006437 DOI: 10.1186/s40779-016-0095-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 08/09/2016] [Indexed: 11/10/2022] Open
Abstract
With key roles in essential brain functions ranging from the long-term potentiation (LTP) to synaptic plasticity, the N-methyl-D-aspartic acid receptor (NMDAR) can be considered as one of the fundamental glutamate receptors in the central nervous system. The role of NMDA R was first identified in synaptic plasticity and has been extensively studied. Some molecules, such as Ca(2+), postsynaptic density 95 (PSD-95), calcium/calmodulin-dependent protein kinase II (CaMK II), protein kinase A (PKA), mitogen-activated protein kinase (MAPK) and cyclic adenosine monophosphate (cAMP) responsive element binding protein (CREB), are of special importance in learning and memory. This review mainly focused on the new research of key molecules connected with learning and memory, which played important roles in the NMDAR signaling pathway.
Collapse
Affiliation(s)
- Hui Wang
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, 100850 China
| | - Rui-Yun Peng
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, 100850 China
| |
Collapse
|
42
|
Laedermann CJ, Abriel H, Decosterd I. Post-translational modifications of voltage-gated sodium channels in chronic pain syndromes. Front Pharmacol 2015; 6:263. [PMID: 26594175 PMCID: PMC4633509 DOI: 10.3389/fphar.2015.00263] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/23/2015] [Indexed: 02/06/2023] Open
Abstract
In the peripheral sensory nervous system the neuronal expression of voltage-gated sodium channels (Navs) is very important for the transmission of nociceptive information since they give rise to the upstroke of the action potential (AP). Navs are composed of nine different isoforms with distinct biophysical properties. Studying the mutations associated with the increase or absence of pain sensitivity in humans, as well as other expression studies, have highlighted Nav1.7, Nav1.8, and Nav1.9 as being the most important contributors to the control of nociceptive neuronal electrogenesis. Modulating their expression and/or function can impact the shape of the AP and consequently modify nociceptive transmission, a process that is observed in persistent pain conditions. Post-translational modification (PTM) of Navs is a well-known process that modifies their expression and function. In chronic pain syndromes, the release of inflammatory molecules into the direct environment of dorsal root ganglia (DRG) sensory neurons leads to an abnormal activation of enzymes that induce Navs PTM. The addition of small molecules, i.e., peptides, phosphoryl groups, ubiquitin moieties and/or carbohydrates, can modify the function of Navs in two different ways: via direct physical interference with Nav gating, or via the control of Nav trafficking. Both mechanisms have a profound impact on neuronal excitability. In this review we will discuss the role of Protein Kinase A, B, and C, Mitogen Activated Protein Kinases and Ca++/Calmodulin-dependent Kinase II in peripheral chronic pain syndromes. We will also discuss more recent findings that the ubiquitination of Nav1.7 by Nedd4-2 and the effect of methylglyoxal on Nav1.8 are also implicated in the development of experimental neuropathic pain. We will address the potential roles of other PTMs in chronic pain and highlight the need for further investigation of PTMs of Navs in order to develop new pharmacological tools to alleviate pain.
Collapse
Affiliation(s)
- Cedric J. Laedermann
- F.M. Kirby Neurobiology Research Center, Boston Children’s Hospital, Harvard Medical School, BostonMA, USA
| | - Hugues Abriel
- Department of Clinical Research, University of BernBern, Switzerland
| | - Isabelle Decosterd
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV) and University of LausanneLausanne, Switzerland
- Department of Fundamental Neurosciences, University of LausanneLausanne, Switzerland
| |
Collapse
|
43
|
Nido GS, Ryan MM, Benuskova L, Williams JM. Dynamical properties of gene regulatory networks involved in long-term potentiation. Front Mol Neurosci 2015; 8:42. [PMID: 26300724 PMCID: PMC4528166 DOI: 10.3389/fnmol.2015.00042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 07/22/2015] [Indexed: 11/13/2022] Open
Abstract
The long-lasting enhancement of synaptic effectiveness known as long-term potentiation (LTP) is considered to be the cellular basis of long-term memory. LTP elicits changes at the cellular and molecular level, including temporally specific alterations in gene networks. LTP can be seen as a biological process in which a transient signal sets a new homeostatic state that is “remembered” by cellular regulatory systems. Previously, we have shown that early growth response (Egr) transcription factors are of fundamental importance to gene networks recruited early after LTP induction. From a systems perspective, we hypothesized that these networks will show less stable architecture, while networks recruited later will exhibit increased stability, being more directly related to LTP consolidation. Using random Boolean network (RBN) simulations we found that the network derived at 24 h was markedly more stable than those derived at 20 min or 5 h post-LTP. This temporal effect on the vulnerability of the networks is mirrored by what is known about the vulnerability of LTP and memory itself. Differential gene co-expression analysis further highlighted the importance of the Egr family and found a rapid enrichment in connectivity at 20 min, followed by a systematic decrease, providing a potential explanation for the down-regulation of gene expression at 24 h documented in our preceding studies. We also found that the architecture exhibited by a control and the 24 h LTP co-expression networks fit well to a scale-free distribution, known to be robust against perturbations. By contrast the 20 min and 5 h networks showed more truncated distributions. These results suggest that a new homeostatic state is achieved 24 h post-LTP. Together, these data present an integrated view of the genomic response following LTP induction by which the stability of the networks regulated at different times parallel the properties observed at the synapse.
Collapse
Affiliation(s)
- Gonzalo S Nido
- Department of Computer Science, University of Otago Dunedin, New Zealand ; Brain Health Research Centre, University of Otago Dunedin, New Zealand
| | - Margaret M Ryan
- Brain Health Research Centre, University of Otago Dunedin, New Zealand ; Department of Anatomy, Otago School of Medical Sciences, University of Otago Dunedin, New Zealand
| | - Lubica Benuskova
- Department of Computer Science, University of Otago Dunedin, New Zealand ; Brain Health Research Centre, University of Otago Dunedin, New Zealand
| | - Joanna M Williams
- Brain Health Research Centre, University of Otago Dunedin, New Zealand ; Department of Anatomy, Otago School of Medical Sciences, University of Otago Dunedin, New Zealand
| |
Collapse
|
44
|
Function of insulin in snail brain in associative learning. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:969-81. [PMID: 26233474 DOI: 10.1007/s00359-015-1032-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 07/23/2015] [Accepted: 07/24/2015] [Indexed: 12/23/2022]
Abstract
Insulin is well known as a hormone regulating glucose homeostasis across phyla. Although there are insulin-independent mechanisms for glucose uptake in the mammalian brain, which had contributed to a perception of the brain as an insulin-insensitive organ for decades, the finding of insulin and its receptors in the brain revolutionized the concept of insulin signaling in the brain. However, insulin's role in brain functions, such as cognition, attention, and memory, remains unknown. Studies using invertebrates with their open blood-vascular system have the promise of promoting a better understanding of the role played by insulin in mediating/modulating cognitive functions. In this review, the relationship between insulin and its impact on long-term memory (LTM) is discussed particularly in snails. The pond snail Lymnaea stagnalis has the ability to undergo conditioned taste aversion (CTA), that is, it associatively learns and forms LTM not to respond with a feeding response to a food that normally elicits a robust feeding response. We show that molluscan insulin-related peptides are up-regulated in snails exhibiting CTA-LTM and play a key role in the causal neural basis of CTA-LTM. We also survey the relevant literature of the roles played by insulin in learning and memory in other phyla.
Collapse
|
45
|
Phosphoinositide dynamics in the postsynaptic membrane compartment: Mechanisms and experimental approach. Eur J Cell Biol 2015; 94:401-14. [DOI: 10.1016/j.ejcb.2015.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
46
|
Yin Z, Yu H, Chen S, Ma C, Ma X, Xu L, Ma Z, Qu R, Ma S. Asiaticoside attenuates diabetes-induced cognition deficits by regulating PI3K/Akt/NF-κB pathway. Behav Brain Res 2015; 292:288-99. [PMID: 26097002 DOI: 10.1016/j.bbr.2015.06.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 06/11/2015] [Accepted: 06/13/2015] [Indexed: 10/23/2022]
Abstract
Diabetes-associated cognitive dysfunction, referred as "diabetic encephalopathy", has been confirmed in a great deal of literature. Current evidence support that oxidative stress, inflammation, energy metabolism imbalance, and aberrant insulin signaling are associated with cognition deficits induced by diabetes. The present study explore the effect of asiaticoside on the cognition behaviors, synapses, and oxidative stress in diabetic rats. Asiaticoside could markedly ameliorate the performance in the Morris Water Maze (decreased latency time and path length, and increased time spent in the target quadrant), which was correlated with its capabilities of suppressing oxidative stress, restoring Na(+)-K(+)-ATPase activity and protecting hippocampal synapses. In vitro, asiaticoside could up-regulate synaptic proteins expression via modulating Phosphoinositide 3-kinase (PI3K)/Protein Kinase B(AKT)/Nuclear Factor -kappa B (NF-κB)-mediated inflammatory pathway in SH-SY5Y cells incubated with high glucose chronically. In conclusion, asiaticoside had beneficial effects on the prevention and treatment of diabetes-associated cognitive deficits, which was involved in oxidative stress, PI3K/Akt/NF-κB pathway and synaptic function in the development of cognitive decline induced by diabetes.
Collapse
Affiliation(s)
- Zhujun Yin
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, PR China
| | - Haiyang Yu
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, PR China
| | - She Chen
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, PR China
| | - Chunhua Ma
- School of Life Sciences, Nanjing University, Nanjing 210009, PR China
| | - Xiao Ma
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, PR China
| | - Lixing Xu
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, PR China
| | - Zhanqiang Ma
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, PR China
| | - Rong Qu
- Department of Pharmacology of Traditional Chinese Medical Formulae, Nanjing University of Traditional Chinese Medicine, Nanjing 210029, PR China
| | - Shiping Ma
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
47
|
Shehata M, Inokuchi K. Does autophagy work in synaptic plasticity and memory? Rev Neurosci 2015; 25:543-57. [PMID: 24651020 DOI: 10.1515/revneuro-2014-0002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 02/17/2014] [Indexed: 12/12/2022]
Abstract
Many studies have reported the roles played by regulated proteolysis in neural plasticity and memory. Within this context, most of the research focused on the ubiquitin-proteasome system and the endosome-lysosome system while giving lesser consideration to another major protein degradation system, namely, autophagy. Although autophagy intersects with many of the pathways known to underlie synaptic plasticity and memory, only few reports related autophagy to synaptic remodeling. These pathways include PI3K-mTOR pathway and endosome-dependent proteolysis. In this review, we will discuss several lines of evidence supporting a physiological role of autophagy in memory processes, and the possible mechanistic scenarios for how autophagy could fulfill this function.
Collapse
|
48
|
Springer SJ, Burkett BJ, Schrader LA. Modulation of BK channels contributes to activity-dependent increase of excitability through MTORC1 activity in CA1 pyramidal cells of mouse hippocampus. Front Cell Neurosci 2015; 8:451. [PMID: 25628536 PMCID: PMC4292769 DOI: 10.3389/fncel.2014.00451] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 12/13/2014] [Indexed: 11/15/2022] Open
Abstract
Memory acquisition and synaptic plasticity are accompanied by changes in the intrinsic excitability of CA1 pyramidal neurons. These activity-dependent changes in excitability are mediated by modulation of intrinsic currents which alters the responsiveness of the cell to synaptic inputs. The afterhyperpolarization (AHP), a major contributor to the regulation of neuronal excitability, is reduced in animals that have acquired several types of hippocampus-dependent memory tasks and also following synaptic potentiation by high frequency stimulation. BK channels underlie the fast AHP and contribute to spike repolarization, and this AHP is reduced in animals that successfully acquired trace-eyeblink conditioning. This suggests that BK channel function is activity-dependent, but the mechanisms are unknown. In this study, we found that blockade of BK channels with paxilline (10 μM) decreased IAHP amplitude and increased spike half-width and instantaneous frequency in response to a +100 pA depolarization. In addition, induction of long term potentiation (LTP) by theta burst stimulation (TBS) in CA1 pyramidal neurons reduced BK channel’s contribution to IAHP, spike repolarization, and instantaneous frequency. This result indicates that BK channel activity is decreased following synaptic potentiation. Interestingly, blockade of mammalian target of rapamycin (MTORC1) with rapamycin (400 nM) following synaptic potentiation restored BK channel function, suggesting a role for protein translation in signaling events which decreased postsynaptic BK channel activity following synaptic potentiation.
Collapse
Affiliation(s)
| | - Brian J Burkett
- Neuroscience Program, Tulane University New Orleans, LA, USA
| | - Laura A Schrader
- Neuroscience Program, Tulane University New Orleans, LA, USA ; Department of Cell and Molecular Biology, Tulane University New Orleans, LA, USA
| |
Collapse
|
49
|
Inhibition of Protein Kinases AKT and ERK1/2 Reduce the Carotid Body Chemoreceptor Response to Hypoxia in Adult Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 860:269-77. [PMID: 26303491 DOI: 10.1007/978-3-319-18440-1_31] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The carotid body is the main mammalian oxygen-sensing organ regulating ventilation. Despite the carotid body is subjected of extensive anatomical and functional studies, little is yet known about the molecular pathways signaling the neurotransmission and neuromodulation of the chemoreflex activity. As kinases are molecules widely involved in motioning a broad number of neural processes, here we hypothesized that pathways of protein kinase B (AKT) and extracellular signal-regulated kinases ½ (ERK1/2) are implicated in the carotid body response to hypoxia. This hypothesis was tested using the in-vitro carotid body/carotid sinus nerve preparation ("en bloc") from Sprague Dawley adult rats. Preparations were incubated for 60 min in tyrode perfusion solution (control) or containing 1 μM of LY294002 (AKT inhibitor), or 1 μM of UO-126 (ERK1/2 inhibitor). The carotid sinus nerve chemoreceptor discharge rate was recorded under baseline (perfusion solution bubbled with 5 % CO(2) balanced in O(2)) and hypoxic (perfusion solution bubbled with 5 % CO(2) balanced in N(2)) conditions. Compared to control, both inhibitors significantly decreased the normoxic and hypoxic carotid body chemoreceptor activity. LY294002- reduced carotid sinus nerve discharge rate in hypoxia by about 20 %, while UO-126 reduces the hypoxic response by 45 %. We concluded that both AKT and ERK1/2 pathways are crucial for the carotid body intracellular signaling process in response to hypoxia.
Collapse
|
50
|
Arendt KL, Benoist M, Lario A, Draffin JE, Muñoz M, Esteban JA. PTEN counteracts PIP3 upregulation in spines during NMDA-receptor-dependent long-term depression. J Cell Sci 2014; 127:5253-60. [PMID: 25335889 DOI: 10.1242/jcs.156554] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Phosphoinositide 3-kinase (PI3K) and PTEN have been shown to participate in synaptic plasticity during long-term potentiation (LTP) and long-term depression (LTD), respectively. Nevertheless, the dynamics of phosphatidylinositol-(3,4,5)-trisphosphate (PIP3) and the regulation of its synthesis and degradation at synaptic compartments is far from clear. Here, we have used fluorescence resonance energy transfer (FRET) imaging to monitor changes in PIP3 levels in dendritic spines from CA1 hippocampal neurons under basal conditions and upon induction of NMDA receptor (NMDAR)-dependent LTD and LTP. We found that PIP3 undergoes constant turnover in dendritic spines. Contrary to expectations, both LTD and LTP induction trigger an increase in PIP3 synthesis, which requires NMDARs and PI3K activity. Using biochemical methods, the upregulation of PIP3 levels during LTP was estimated to be twofold. However, in the case of LTD, PTEN activity counteracts the increase in PIP3 synthesis, resulting in no net change in PIP3 levels. Therefore, both LTP and LTD signaling converge towards PIP3 upregulation, but PTEN acts as an LTD-selective switch that determines the outcome of PIP3 accumulation.
Collapse
Affiliation(s)
- Kristin L Arendt
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Marion Benoist
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid (UAM), Madrid 28049, Spain
| | - Argentina Lario
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid (UAM), Madrid 28049, Spain
| | - Jonathan E Draffin
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid (UAM), Madrid 28049, Spain
| | - María Muñoz
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid (UAM), Madrid 28049, Spain
| | - José A Esteban
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid (UAM), Madrid 28049, Spain
| |
Collapse
|