1
|
Charou D, Rogdakis T, Latorrata A, Valcarcel M, Papadogiannis V, Athanasiou C, Tsengenes A, Papadopoulou MA, Lypitkas D, Lavigne MD, Katsila T, Wade RC, Cader MZ, Calogeropoulou T, Gravanis A, Charalampopoulos I. Comprehensive characterization of the neurogenic and neuroprotective action of a novel TrkB agonist using mouse and human stem cell models of Alzheimer's disease. Stem Cell Res Ther 2024; 15:200. [PMID: 38971770 PMCID: PMC11227723 DOI: 10.1186/s13287-024-03818-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/26/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Neural stem cell (NSC) proliferation and differentiation in the mammalian brain decreases to minimal levels postnatally. Nevertheless, neurogenic niches persist in the adult cortex and hippocampus in rodents, primates and humans, with adult NSC differentiation sharing key regulatory mechanisms with development. Adult neurogenesis impairments have been linked to Alzheimer's disease (AD) pathology. Addressing these impairments by using neurotrophic factors is a promising new avenue for therapeutic intervention based on neurogenesis. However, this possibility has been hindered by technical difficulties of using in-vivo models to conduct screens, including working with scarce NSCs in the adult brain and differences between human and mouse models or ethical limitations. METHODS Here, we use a combination of mouse and human stem cell models for comprehensive in-vitro characterization of a novel neurogenic compound, focusing on the brain-derived neurotrophic factor (BDNF) pathway. The ability of ENT-A011, a steroidal dehydroepiandrosterone derivative, to activate the tyrosine receptor kinase B (TrkB) receptor was tested through western blotting in NIH-3T3 cells and its neurogenic and neuroprotective action were assessed through proliferation, cell death and Amyloid-β (Aβ) toxicity assays in mouse primary adult hippocampal NSCs, mouse embryonic cortical NSCs and neural progenitor cells (NPCs) differentiated from three human induced pluripotent stem cell lines from healthy and AD donors. RNA-seq profiling was used to assess if the compound acts through the same gene network as BDNF in human NPCs. RESULTS ENT-A011 was able to increase proliferation of mouse primary adult hippocampal NSCs and embryonic cortical NSCs, in the absence of EGF/FGF, while reducing Aβ-induced cell death, acting selectively through TrkB activation. The compound was able to increase astrocytic gene markers involved in NSC maintenance, protect hippocampal neurons from Αβ toxicity and prevent synapse loss after Aβ treatment. ENT-A011 successfully induces proliferation and prevents cell death after Aβ toxicity in human NPCs, acting through a core gene network shared with BDNF as shown through RNA-seq. CONCLUSIONS Our work characterizes a novel BDNF mimetic with preferable pharmacological properties and neurogenic and neuroprotective actions in Alzheimer's disease via stem cell-based screening, demonstrating the promise of stem cell systems for short-listing competitive candidates for further testing.
Collapse
Affiliation(s)
- Despoina Charou
- Department of Pharmacology, Medical School, University of Crete, 71003, Heraklion, Greece
- Foundation for Research and Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology and Biotechnology, 70013, Heraklion, Greece
| | - Thanasis Rogdakis
- Department of Pharmacology, Medical School, University of Crete, 71003, Heraklion, Greece
- Foundation for Research and Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology and Biotechnology, 70013, Heraklion, Greece
| | - Alessia Latorrata
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635, Athens, Greece
| | - Maria Valcarcel
- Innovative Technologies in Biological Systems SL (INNOPROT), 48160, Derio, Bizkaia, Spain
| | - Vasileios Papadogiannis
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology Biotechnology and Aquaculture (IMBBC), Heraklion, Crete, Greece
| | - Christina Athanasiou
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), 69118, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
- Heidelberg Biosciences International Graduate School, Heidelberg University, 69120, Heidelberg, Germany
| | - Alexandros Tsengenes
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), 69118, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
- Heidelberg Biosciences International Graduate School, Heidelberg University, 69120, Heidelberg, Germany
| | - Maria Anna Papadopoulou
- Department of Pharmacology, Medical School, University of Crete, 71003, Heraklion, Greece
- Foundation for Research and Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology and Biotechnology, 70013, Heraklion, Greece
| | - Dimitrios Lypitkas
- Department of Pharmacology, Medical School, University of Crete, 71003, Heraklion, Greece
- Foundation for Research and Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology and Biotechnology, 70013, Heraklion, Greece
| | - Matthieu D Lavigne
- Foundation for Research and Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology and Biotechnology, 70013, Heraklion, Greece
| | - Theodora Katsila
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635, Athens, Greece
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), 69118, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, 69120, Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, 69120, Heidelberg, Germany
| | - M Zameel Cader
- Translational Molecular Neuroscience Group, Dorothy Crowfoot Hodgkin Building, Kavli Institute for Nanoscience, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - Achille Gravanis
- Department of Pharmacology, Medical School, University of Crete, 71003, Heraklion, Greece
- Foundation for Research and Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology and Biotechnology, 70013, Heraklion, Greece
| | - Ioannis Charalampopoulos
- Department of Pharmacology, Medical School, University of Crete, 71003, Heraklion, Greece.
- Foundation for Research and Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology and Biotechnology, 70013, Heraklion, Greece.
| |
Collapse
|
2
|
Khakha N, Khan H, Kaur A, Singh TG. Therapeutic implications of phosphorylation- and dephosphorylation-dependent factors of cAMP-response element-binding protein (CREB) in neurodegeneration. Pharmacol Rep 2023; 75:1152-1165. [PMID: 37688751 DOI: 10.1007/s43440-023-00526-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/11/2023]
Abstract
Neurodegeneration is a condition of the central nervous system (CNS) characterized by loss of neural structures and function. The most common neurodegenerative disorders (NDDs) include Alzheimer's disease (AD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), multiple sclerosis (MS), motor neuron disorders, psychological disorders, dementia with vascular dementia (VaD), Lewy body dementia (DLB), epilepsy, cerebral ischemia, mental illness, and behavioral disorders. CREB (cAMP-response element-binding protein) represent a nuclear protein that regulates gene transcriptional activity. The primary focus of the review pertains to the exploration of CREB expression and activation within the context of neurodegenerative diseases, specifically in relation to the phosphorylation and dephosphorylation events that occur within the CREB signaling pathway under normal physiological conditions. The findings mentioned have contributed to the elucidation of the regulatory mechanisms governing CREB activity. Additionally, they have provided valuable insights into the potential mediation of diverse biological processes, such as memory consolidation and neuroprotective effects, by various related studies. The promotion of synaptic plasticity and neurodevelopment in the central nervous system through the targeting of CREB proteins has the potential to contribute to the prevention or delay of the onset of neurodegenerative disorders. Multiple drugs have been found to initiate downstream signaling pathways, leading to neuroprotective advantages in both animal model studies and clinical trials. The clinical importance of the cAMP-response element-binding protein (CREB) is examined in this article, encompassing its utility as both a predictive/prognostic marker and a target for therapeutic interventions.
Collapse
Affiliation(s)
- Nilima Khakha
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
3
|
Park HR, Cai M, Yang EJ. Novel Psychopharmacological Herbs Relieve Behavioral Abnormalities and Hippocampal Dysfunctions in an Animal Model of Post-Traumatic Stress Disorder. Nutrients 2023; 15:3815. [PMID: 37686847 PMCID: PMC10490282 DOI: 10.3390/nu15173815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is an anxiety disorder caused by traumatic or frightening events, with intensified anxiety, fear memories, and cognitive impairment caused by a dysfunctional hippocampus. Owing to its complex phenotype, currently prescribed treatments for PTSD are limited. This study investigated the psychopharmacological effects of novel COMBINATION herbal medicines on the hippocampus of a PTSD murine model induced by combining single prolonged stress (SPS) and foot shock (FS). We designed a novel herbal formula extract (HFE) from Chaenomeles sinensis, Glycyrrhiza uralensis, and Atractylodes macrocephala. SPS+FS mice were administered HFE (500 and 1000 mg/kg) once daily for 14 days. The effects of HFE of HFE on the hippocampus were analyzed using behavioral tests, immunostaining, Golgi staining, and Western blotting. HFE alleviated anxiety-like behavior and fear response, improved short-term memory, and restored hippocampal dysfunction, including hippocampal neurogenesis alteration and aberrant migration and hyperactivation of dentate granule cells in SPS+FS mice. HFE increased phosphorylation of the Kv4.2 potassium channel, extracellular signal-regulated kinase, and cAMP response element-binding protein, which were reduced in the hippocampus of SPS+FS mice. Therefore, our study suggests HFE as a potential therapeutic drug for PTSD by improving behavioral impairment and hippocampal dysfunction and regulating Kv4.2 potassium channel-related pathways in the hippocampus.
Collapse
Affiliation(s)
| | | | - Eun Jin Yang
- Department of KM Science Research, Korea Institute of Oriental Medicine (KIOM), Daejeon 34054, Republic of Korea; (H.R.P.); (M.C.)
| |
Collapse
|
4
|
Malliou F, Andriopoulou CE, Kofinas A, Katsogridaki A, Leondaritis G, Gonzalez FJ, Michaelidis TM, Darsinou M, Skaltsounis LA, Konstandi M. Oleuropein Promotes Neural Plasticity and Neuroprotection via PPARα-Dependent and Independent Pathways. Biomedicines 2023; 11:2250. [PMID: 37626746 PMCID: PMC10452728 DOI: 10.3390/biomedicines11082250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Oleuropein (OLE), a main constituent of olives, displays a pleiotropic beneficial dynamic in health and disease; the effects are based mainly on its antioxidant and hypolipidemic properties, and its capacity to protect the myocardium during ischemia. Furthermore, OLE activates the peroxisome proliferator-activated receptor (PPARα) in neurons and astrocytes, providing neuroprotection against noxious biological reactions that are induced following cerebral ischemia. The current study investigated the effect of OLE in the regulation of various neural plasticity indices, emphasizing the role of PPARα. For this purpose, 129/Sv wild-type (WT) and Pparα-null mice were treated with OLE for three weeks. The findings revealed that chronic treatment with OLE up-regulated the brain-derived neurotrophic factor (BDNF) and its receptor TrkB in the prefrontal cortex (PFC) of mice via activation of the ERK1/2, AKT and PKA/CREB signaling pathways. No similar effects were observed in the hippocampus. The OLE-induced effects on BDNF and TrkB appear to be mediated by PPARα, because no similar alterations were observed in the PFC of Pparα-null mice. Notably, OLE did not affect the neurotrophic factors NT3 and NT4/5 in both brain tissues. However, fenofibrate, a selective PPARα agonist, up-regulated BDNF and NT3 in the PFC of mice, whereas the drug induced NT4/5 in both brain sites tested. Interestingly, OLE provided neuroprotection in differentiated human SH-SY5Y cells against β-amyloid and H2O2 toxicity independently from PPARα activation. In conclusion, OLE and similar drugs, acting either as PPARα agonists or via PPARα independent mechanisms, could improve synaptic function/plasticity mainly in the PFC and to a lesser extent in the hippocampus, thus beneficially affecting cognitive functions.
Collapse
Affiliation(s)
- Foteini Malliou
- Department of Pharmacology, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece; (F.M.); (C.E.A.); (A.K.); (A.K.); (G.L.)
| | - Christina E. Andriopoulou
- Department of Pharmacology, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece; (F.M.); (C.E.A.); (A.K.); (A.K.); (G.L.)
| | - Aristeidis Kofinas
- Department of Pharmacology, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece; (F.M.); (C.E.A.); (A.K.); (A.K.); (G.L.)
| | - Allena Katsogridaki
- Department of Pharmacology, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece; (F.M.); (C.E.A.); (A.K.); (A.K.); (G.L.)
| | - George Leondaritis
- Department of Pharmacology, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece; (F.M.); (C.E.A.); (A.K.); (A.K.); (G.L.)
- Institute of Biosciences (I.BS.), University Research Center of Ioannina (U.R.C.I.), 45110 Ioannina, Greece
| | - Frank J. Gonzalez
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA;
| | - Theologos M. Michaelidis
- Department of Biological Applications & Technology, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (T.M.M.); (M.D.)
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, 45110 Ioannina, Greece
| | - Marousa Darsinou
- Department of Biological Applications & Technology, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (T.M.M.); (M.D.)
| | - Leandros A. Skaltsounis
- Department of Pharmacognosy, Faculty of Pharmacy, National and Kapodestrian University of Athens, 11527 Athens, Greece;
| | - Maria Konstandi
- Department of Pharmacology, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece; (F.M.); (C.E.A.); (A.K.); (A.K.); (G.L.)
| |
Collapse
|
5
|
Sritawan N, Sirichoat A, Aranarochana A, Pannangrong W, Wigmore P, Welbat JU. Protective effect of metformin on methotrexate induced reduction of rat hippocampal neural stem cells and neurogenesis. Biomed Pharmacother 2023; 162:114613. [PMID: 37001179 DOI: 10.1016/j.biopha.2023.114613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/18/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
Adult neurogenesis is a process in which the adult neural stem cells produce newborn neurons that are implicated in terms of learning and memory. Methotrexate (MTX) is a chemotherapeutic drug, which has a negative effect on memory and hippocampal neurogenesis in animal models. Metformin is an antidiabetic drug with strong antioxidant capacities. We found that metformin ameliorates MTX induced deteriorations of memory and hippocampal neurogenesis in adult rats. In this study, we focus to investigate neural stem cells, biomarkers of apoptosis, and the protein for synaptogenesis, which involves in the transcription factors of the hippocampus in rats that received metformin and MTX. Male Sprague-Dawley rats were composed of control, MTX, metformin, and MTX+metformin groups. MTX (75 mg/kg, i.v.) was given on days 7 and 14, whereas metformin (200 mg/kg, i.p.) was given for 14 days. Hippocampal neural stem cells in the subgranular zone (SGZ) were quantified using immunofluorescence staining of Sox2 and nestin. Protein expression including PSD95, Casepase-3, Bax, Bcl-2, CREB, and pCREB were determined using Western blotting. MTX-treated rats displayed decreases in Sox2 and nestin-positive cells in the SGZ. Increases in Caspase-3 and Bax levels and decreases in PSD95, Bcl-2, CREB, and pCREB protein expressions in the hippocampus were also detected. However, these negative impacts of MTX were ameliorated by co-treatment with metformin. These consequences postulate that metformin has a potential to increase neural stem cells, synaptic plasticity, decreased apoptotic activities, and transcription factors, resulting in upregulation of hippocampal neurogenesis in MTX-treated rats.
Collapse
Affiliation(s)
- Nataya Sritawan
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Apiwat Sirichoat
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Anusara Aranarochana
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Wanassanan Pannangrong
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Peter Wigmore
- School of Life Sciences, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Jariya Umka Welbat
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
6
|
Kodali M, Madhu LN, Reger RL, Milutinovic B, Upadhya R, Attaluri S, Shuai B, Shankar G, Shetty AK. A single intranasal dose of human mesenchymal stem cell-derived extracellular vesicles after traumatic brain injury eases neurogenesis decline, synapse loss, and BDNF-ERK-CREB signaling. Front Mol Neurosci 2023; 16:1185883. [PMID: 37284464 PMCID: PMC10239975 DOI: 10.3389/fnmol.2023.1185883] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/28/2023] [Indexed: 06/08/2023] Open
Abstract
An optimal intranasal (IN) dose of human mesenchymal stem cell-derived extracellular vesicles (hMSC-EVs), 90 min post-traumatic brain injury (TBI), has been reported to prevent the evolution of acute neuroinflammation into chronic neuroinflammation resulting in the alleviation of long-term cognitive and mood impairments. Since hippocampal neurogenesis decline and synapse loss contribute to TBI-induced long-term cognitive and mood dysfunction, this study investigated whether hMSC-EV treatment after TBI can prevent hippocampal neurogenesis decline and synapse loss in the chronic phase of TBI. C57BL6 mice undergoing unilateral controlled cortical impact injury (CCI) received a single IN administration of different doses of EVs or the vehicle at 90 min post-TBI. Quantifying neurogenesis in the subgranular zone-granule cell layer (SGZ-GCL) through 5'-bromodeoxyuridine and neuron-specific nuclear antigen double labeling at ~2 months post-TBI revealed decreased neurogenesis in TBI mice receiving vehicle. However, in TBI mice receiving EVs (12.8 and 25.6 × 109 EVs), the extent of neurogenesis was matched to naive control levels. A similar trend of decreased neurogenesis was seen when doublecortin-positive newly generated neurons were quantified in the SGZ-GCL at ~3 months post-TBI. The above doses of EVs treatment after TBI also reduced the loss of pre-and post-synaptic marker proteins in the hippocampus and the somatosensory cortex. Moreover, at 48 h post-treatment, brain-derived neurotrophic factor (BDNF), phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2), and phosphorylated cyclic AMP response-element binding protein (p-CREB) levels were downregulated in TBI mice receiving the vehicle but were closer to naïve control levels in TBI mice receiving above doses of hMSC-EVs. Notably, improved BDNF concentration observed in TBI mice receiving hMSC-EVs in the acute phase was sustained in the chronic phase of TBI. Thus, a single IN dose of hMSC-EVs at 90 min post-TBI can ease TBI-induced declines in the BDNF-ERK-CREB signaling, hippocampal neurogenesis, and synapses.
Collapse
|
7
|
Loan A, Leung JWH, Cook DP, Ko C, Vanderhyden BC, Wang J, Chan HM. Prenatal low-dose methylmercury exposure causes premature neuronal differentiation and autism-like behaviors in a rodent model. iScience 2023; 26:106093. [PMID: 36843845 PMCID: PMC9947313 DOI: 10.1016/j.isci.2023.106093] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/10/2022] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
Aberrant neurodevelopment is a core deficit of autism spectrum disorder (ASD). Here we ask whether a non-genetic factor, prenatal exposure to the environmental pollutant methylmercury (MeHg), is a contributing factor in ASD onset. We showed that adult mice prenatally exposed to non-apoptotic MeHg exhibited key ASD characteristics, including impaired communication, reduced sociability, and increased restrictive repetitive behaviors, whereas in the embryonic cortex, prenatal MeHg exposure caused premature neuronal differentiation. Further single-cell RNA sequencing (scRNA-seq) analysis disclosed that prenatal exposure to MeHg resulted in cortical radial glial precursors (RGPs) favoring asymmetric differentiation to directly generate cortical neurons, omitting the intermediate progenitor stage. In addition, MeHg exposure in cultured RGPs increased CREB phosphorylation and enhanced the interaction between CREB and CREB binding protein (CBP). Intriguingly, metformin, an FDA-approved drug, can reverse MeHg-induced premature neuronal differentiation via CREB/CBP repulsion. These findings provide insights into ASD etiology, its underlying mechanism, and a potential therapeutic strategy.
Collapse
Affiliation(s)
- Allison Loan
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Joseph Wai-Hin Leung
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - David P. Cook
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Chelsea Ko
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Barbara C. Vanderhyden
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jing Wang
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON K1H 8M5, Canada
| | - Hing Man Chan
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
8
|
Arshad MN, Oppenheimer S, Jeong J, Buyukdemirtas B, Naegele JR. Hippocampal transplants of fetal GABAergic progenitors regulate adult neurogenesis in mice with temporal lobe epilepsy. Neurobiol Dis 2022; 174:105879. [PMID: 36183946 DOI: 10.1016/j.nbd.2022.105879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/21/2022] [Accepted: 09/28/2022] [Indexed: 11/20/2022] Open
Abstract
GABAergic interneurons play a role in regulating adult neurogenesis within the dentate gyrus (DG) of the hippocampus. Neurogenesis occurs within a stem cell niche in the subgranular zone (SGZ) of the DG. In this niche, populations of neural progenitors give rise to granule cells that migrate radially into the granule cell layer of the DG. Altered neurogenesis in temporal lobe epilepsy (TLE) is linked to a transient increase in the proliferation of new neurons and the abnormal inversion of Type 1 progenitors, resulting in ectopic migration of Type 3 progenitors into the hilus of the DG. These ectopic cells mature into granule cells in the hilus that become hyperexcitable and contribute to the development of spontaneous recurrent seizures. To test whether grafts of GABAergic cells in the DG restore synaptic inhibition, prior work focused on transplanting GABAergic progenitors into the hilus of the DG. This cell-based therapeutic approach was shown to alter the disease phenotype by ameliorating spontaneous seizures in mice with pilocarpine-induced TLE. Prior optogenetic and immunohistochemical studies demonstrated that the transplanted GABAergic interneurons increased levels of synaptic inhibition by establishing inhibitory synaptic contacts with adult-born granule cells, consistent with the observed suppression of seizures. Whether GABAergic progenitor transplantation into the DG ameliorates underlying abnormalities in adult neurogenesis caused by TLE is not known. As a first step to address this question, we compared the effects of GABAergic progenitor transplantation on Type 1, Type 2, and Type 3 progenitors in the stem cell niche using cell type-specific molecular markers in naïve, non-epileptic mice. The progenitor transplantation increased GABAergic interneurons in the DG and led to a significant reduction in Type 2 progenitors and a concomitant increase in Type 3 progenitors. Next, we compared the effects of GABAergic interneuron transplantation in epileptic mice. Transplantation of GABAergic progenitors resulted in reductions in inverted Type 1, Type 2, and hilar ectopic Type 3 cells, concomitant with an increase in the radial migration of Type 3 progenitors into the GCL (Granule Cell Layer). Thus, in mice with Pilocarpine induced TLE, hilar transplants of GABA interneurons may reverse abnormal patterns of adult neurogenesis, an outcome that may ameliorate seizures.
Collapse
Affiliation(s)
- Muhammad N Arshad
- Hall-Atwater Laboratory, Wesleyan University, Department of Biology, Program in Neuroscience and Behavior, Middletown, CT 06459-0170, USA.
| | - Simon Oppenheimer
- Hall-Atwater Laboratory, Wesleyan University, Department of Biology, Program in Neuroscience and Behavior, Middletown, CT 06459-0170, USA.
| | - Jaye Jeong
- Hall-Atwater Laboratory, Wesleyan University, Department of Biology, Program in Neuroscience and Behavior, Middletown, CT 06459-0170, USA.
| | - Bilge Buyukdemirtas
- Hall-Atwater Laboratory, Wesleyan University, Department of Biology, Program in Neuroscience and Behavior, Middletown, CT 06459-0170, USA.
| | - Janice R Naegele
- Hall-Atwater Laboratory, Wesleyan University, Department of Biology, Program in Neuroscience and Behavior, Middletown, CT 06459-0170, USA.
| |
Collapse
|
9
|
Yu H, Shao S, Xu J, Guo H, Zhong Z, Xu J. Persimmon leaf extract alleviates chronic social defeat stress-induced depressive-like behaviors by preventing dendritic spine loss via inhibition of serotonin reuptake in mice. Chin Med 2022; 17:65. [PMID: 35668445 PMCID: PMC9172164 DOI: 10.1186/s13020-022-00609-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/10/2022] [Indexed: 12/02/2022] Open
Abstract
Background Fresh or dried Persimmon leaves (Diospyros kaki Thunb.) exhibit preventive effects on cardiovascular and cerebrovascular diseases. However, their antidepressant effects and underlying mechanisms are unclear. Thus, we investigated mechanisms responsible for Persimmon leaf extract (PLE) activity on chronic social defeat stress (CSDS)-induced depressive-like behaviors in mice. Methods CSDS was used as a mouse model of depression. We performed the sucrose preference test (SPT), forced swim test (FST), and tail suspension test (TST) to identify depressive-like behavior. Spine density and dendritic morphology were assessed using Golgi staining. Neurochemicals were quantified by microdialysis, doublecortin by immunofluorescence, and cAMP using an ELISA kit. Finally, the levels of cortical proteins of phosphorylated cAMP-response element binding protein (CREB), brain-derived neurotrophic factor (BDNF), postsynaptic density synapsin-1 and protein 95 (PSD95) were quantified by western blot. 16S rRNA gene sequencing was used to detect fecal microbiota. Results Treatment of CSDS-subjected mice with PLE (30.0–60.0 mg/kg, i.g.) enhanced sucrose preference, decreased immobility times in the TST and FST but did not affect locomotor activity. Furthermore, persistent social defeat stress decreased dendritic spine density and dendritic length in the brain, as well as decreased PSD95 and synapsin-1 expression. PLE, interestingly, inhibited dendritic spine loss and increased synaptic protein levels. PLE also increased brain levels of 5-HT, cAMP, phosphorylated (p)-CREB, BDNF, PSD95, and synapsin-1 in mice subjected to CSDS. Furthermore, PLE increased their doublecortin-positive cell count in the hippocampal dentate gyrus. CSDS mice represented a distinct fecal microbiota cluster which differed compared with normal C57BL/6J mice, and the phenotype was rescued by PLE. Conclusions PLE alleviated CSDS-induced depressive behaviors and spinal damage by suppressing serotonin reuptake and activating the cAMP/CREB/BDNF signaling pathway. Simultaneously, PLE influenced the composition of the fecal microbiota in CSDS-subjected mice. Supplementary information The online version contains supplementary material available at 10.1186/s13020-022-00609-4.
Collapse
Affiliation(s)
- Hui Yu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shumin Shao
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, SAR, China
| | - Junnan Xu
- Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Haibiao Guo
- Hutchison Whampoa Guangzhou Baiyunshan Chinese Medicine Co., Ltd, Guangzhou, 510515, China
| | - Zhangfeng Zhong
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, SAR, China.
| | - Jiangping Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
10
|
Brown C, McKee C, Halassy S, Kojan S, Feinstein DL, Chaudhry GR. Neural stem cells derived from primitive mesenchymal stem cells reversed disease symptoms and promoted neurogenesis in an experimental autoimmune encephalomyelitis mouse model of multiple sclerosis. Stem Cell Res Ther 2021; 12:499. [PMID: 34503569 PMCID: PMC8427882 DOI: 10.1186/s13287-021-02563-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Background Multiple sclerosis (MS) is an autoimmune inflammatory disease of the central nervous system (CNS). MS affects millions of people and causes a great economic and societal burden. There is no cure for MS. We used a novel approach to investigate the therapeutic potential of neural stem cells (NSCs) derived from human primitive mesenchymal stem cells (MSCs) in an experimental autoimmune encephalomyelitis (EAE) mouse model of MS. Methods MSCs were differentiated into NSCs, labeled with PKH26, and injected into the tail vein of EAE mice. Neurobehavioral changes in the mice assessed the effect of transplanted cells on the disease process. The animals were sacrificed two weeks following cell transplantation to collect blood, lymphatic, and CNS tissues for analysis. Transplanted cells were tracked in various tissues by flow cytometry. Immune infiltrates were determined and characterized by H&E and immunohistochemical staining, respectively. Levels of immune regulatory cells, Treg and Th17, were analyzed by flow cytometry. Myelination was determined by Luxol fast blue staining and immunostaining. In vivo fate of transplanted cells and expression of inflammation, astrogliosis, myelination, neural, neuroprotection, and neurogenesis markers were investigated by using immunohistochemical and qRT-PCR analysis.
Results MSC-derived NSCs expressed specific neural markers, NESTIN, TUJ1, VIMENTIN, and PAX6. NSCs improved EAE symptoms more than MSCs when transplanted in EAE mice. Post-transplantation analyses also showed homing of MSCs and NSCs into the CNS with concomitant induction of an anti-inflammatory response, resulting in reducing immune infiltrates. NSCs also modulated Treg and Th17 cell levels in EAE mice comparable to healthy controls. Luxol fast blue staining showed significant improvement in myelination in treated mice. Further analysis showed that NSCs upregulated genes involved in myelination and neuroprotection but downregulated inflammatory and astrogliosis genes more significantly than MSCs. Importantly, NSCs differentiated into neural derivatives and promoted neurogenesis, possibly by modulating BDNF and FGF signaling pathways. Conclusions NSC transplantation reversed the disease process by inducing an anti-inflammatory response and promoting myelination, neuroprotection, and neurogenesis in EAE disease animals. These promising results provide a basis for clinical studies to treat MS using NSCs derived from primitive MSCs. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02563-8.
Collapse
Affiliation(s)
- Christina Brown
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA.,OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI, 48309, USA
| | - Christina McKee
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA.,OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI, 48309, USA
| | - Sophia Halassy
- Ascension Providence Hospital, Southfield, MI, 48075, USA
| | - Suleiman Kojan
- Department of Neuroscience, OUWB School of Medicine, Oakland University, Rochester, MI, 48309, USA
| | - Doug L Feinstein
- Department of Anesthesiology, The University of Illinois at Chicago, Chicago, IL, 60607, USA.,Department of Veterans Affairs, Jesse Brown VA Medical Center, Chicago, IL, 60612, USA
| | - G Rasul Chaudhry
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA. .,OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI, 48309, USA.
| |
Collapse
|
11
|
Luhach K, Kulkarni GT, Singh VP, Sharma B. Vinpocetine amended prenatal valproic acid induced features of ASD possibly by altering markers of neuronal function, inflammation, and oxidative stress. Autism Res 2021; 14:2270-2286. [PMID: 34415116 DOI: 10.1002/aur.2597] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 01/18/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with complex etiology and phenotypes. Phosphodiesterase-1 (PDE1) inhibitors are known to provide benefits in various brain conditions manifesting similar behavioral phenotypes. The pharmacological consequences of vinpocetine administration a PDE1 inhibitor in prenatal-valproic acid (pre-VPA) induced ASD related behavioral phenotypes (social behavior deficits, repetitive behavior, anxiety, hyperlocomotion, and nociception) was assessed. Also, effects on important biochemical markers of neuronal function (DCX-neurogenesis, BDNF-neuronal survival, synapsin-IIa-synaptic transmission, pCREB-neuronal transcription factor), inflammation (interleukin [IL]-6, IL-10, and TNF-α) and oxidative stress (thiobarbituric acid reactive substance [TBARS] and glutathione (GSH) were studied in important brain areas (frontal cortex, cerebral cortex, hippocampus, and striatum). Further, neuronal cell viability was determined in dentate gyrus using Nissl staining. Pre-VPA administration resulted into impaired behavior, brain biochemistry, and neuronal cell viability. Administration of vinpocetine resulted in improvements of pre-VPA impaired social behavior, repetitive behavior, anxiety, locomotion, and nociception. Also, vinpocetine resulted in a significant increase in the levels of BDNF, synapsin-IIa, DCX, pCREB/CREB, IL-10, and GSH along with significant decrease in TNF-α, IL-6, TBARS, number of pyknotic and chromatolytic cells in different brain areas of pre-VPA group. Finally, high association between behavioral parameters and biochemical parameters was observed upon Pearson's correlation analysis. Vinpocetine, a PDE1 inhibitor rectified important behavioral phenotypes related with ASD, possibly by improving neuronal function, brain inflammation and brain oxidative stress. Thus, PDE1 may be a possible target for further understanding ASD. LAY SUMMARY: ASD is a brain developmental disorder with a wide array of genetic and environmental factors. Many targets have been identified till date, but a clinical treatment is still afar. The results of this study indicate that vinpocetine administration resulted in amelioration of ASD associated symptomatology in rats, prenatally exposed to VPA. Our research adds a widely expressed brain enzyme PDE1, as a possible novel pharmacological target and opens-up a new line of enquiry for ASD treatment.
Collapse
Affiliation(s)
- Kanishk Luhach
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | | | - Vijay P Singh
- CSIR-Institute of Genomics & Integrative Biology, Academy of scientific and Innovative research, New Delhi, India
| | - Bhupesh Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India.,CNS and CVS Pharmacology, Conscience Research, Delhi, India
| |
Collapse
|
12
|
Li Q, Chen W, Wang C, Liu Z, Gu Y, Xu X, Xu J, Jiang T, Xu M, Wang Y, Chen C, Zhong Y, Zhang Y, Yao L, Jin G, Hu Z, Zhou P. Whole-exome sequencing reveals common and rare variants in immunologic and neurological genes implicated in achalasia. Am J Hum Genet 2021; 108:1478-1487. [PMID: 34197731 DOI: 10.1016/j.ajhg.2021.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 06/02/2021] [Indexed: 11/15/2022] Open
Abstract
Idiopathic achalasia (IA) is a severe motility disorder characterized by neuronal degeneration in the myenteric plexus, but the etiology remains largely unknown. We performed whole-exome sequencing (WES) in 100 IA-affected individuals and 313 non-IA control subjects and validated the results in 230 IA-affected individuals and 1,760 non-IA control subjects. Common missense variants rs1705003 (CUTA, GenBank: NC_000006.11:g.33385953A>G) and rs1126511 (HLA-DPB1, GenBank: NC_000006.11:g.33048466G>T) at 6p21.32 were reproducibly associated with increased risk of IA (rs1126511: OR = 1.83, p = 2.34 × 10-9; rs1705003: OR = 2.37, p = 3.21 × 10-7), meeting exome-wide significance. Both variants can affect the expression of their target genes at the transcript level. An array-based association analysis in 280 affected individuals and 1,121 control subjects determined the same signal at 6p21.32. Further conditional analyses supported that the two missense variants identified in WES-based association study were potential causal variants of IA. For rare variants, the top genes identified by gene-based analysis were significantly enriched in nerve and muscle phenotypic genes in the mouse. Moreover, the functional rare variants in these genes tended to cooccur in IA-affected individuals. In an independent cohort, we successfully validated three rare variants (CREB5, GenBank: NC_000007.13:g.28848865G>T; ESYT3, GenBank: NC_000003.11:g.138183253C>T; and LPIN1, GenBank: NC_000002.11:g.11925128A>G) which heightens the risk of developing IA. Our study identified and validated two common variants and three rare variants associated with IA in immunologic and neurological genes, providing new insight into the etiology of IA.
Collapse
Affiliation(s)
- Quanlin Li
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Weifeng Chen
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Cheng Wang
- Department of Epidemiology and Biostatistics, Center of Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China; Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211116, China
| | - Zuqiang Liu
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yayun Gu
- Department of Epidemiology and Biostatistics, Center of Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoyue Xu
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiaxing Xu
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Tao Jiang
- Department of Epidemiology and Biostatistics, Center of Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Meidong Xu
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yifeng Wang
- Department of Epidemiology and Biostatistics, Center of Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Congcong Chen
- Department of Epidemiology and Biostatistics, Center of Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Yunshi Zhong
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yiqun Zhang
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Liqing Yao
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Guangfu Jin
- Department of Epidemiology and Biostatistics, Center of Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Zhibin Hu
- Department of Epidemiology and Biostatistics, Center of Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China.
| | - Pinghong Zhou
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
13
|
Malberg JE, Hen R, Madsen TM. Adult Neurogenesis and Antidepressant Treatment: The Surprise Finding by Ron Duman and the Field 20 Years Later. Biol Psychiatry 2021; 90:96-101. [PMID: 33771348 DOI: 10.1016/j.biopsych.2021.01.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/14/2022]
Abstract
Of Duman's many influential findings, the finding that long-term treatment with antidepressant drugs produces an increase in neurogenesis in the subgranular zone of the adult hippocampus may be one of the most enduring and far-reaching. This novel discovery and his decades of continued research in the field led to a new hypothesis about the mechanism of action of antidepressants, providing a critical step in our understanding of the neurotrophic hypothesis of depression and synaptic plasticity. It is now accepted that antidepressant treatments can oppose and even reverse the effects of stress on the brain and on newly born hippocampal cells, possibly via neurotrophic factors, which Duman had continued to explore. Furthermore, ablation studies have shown preclinically that hippocampal neurogenesis may be necessary for some of the clinical effects of antidepressant drugs. Duman's laboratory continued to interrogate neurotrophins and synaptic plasticity, demonstrating that newer clinically approved antidepressant compounds also affect neurogenesis and synaptic plasticity. In this review, we summarize Duman's original findings and discuss the current state of the field of neurogenesis with respect to animal models and human studies and the implications of those findings on the field of drug discovery.
Collapse
Affiliation(s)
| | - René Hen
- Department of Neuroscience, Columbia University, New York, New York; Department of Psychiatry, Columbia University, New York, New York; Department of Pharmacology, Columbia University, New York, New York; New York State Psychiatric Institute, New York, New York
| | | |
Collapse
|
14
|
TGF-β/Smad Signalling in Neurogenesis: Implications for Neuropsychiatric Diseases. Cells 2021; 10:cells10061382. [PMID: 34205102 PMCID: PMC8226492 DOI: 10.3390/cells10061382] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
TGF-β/Smad signalling has been the subject of extensive research due to its role in the cell cycle and carcinogenesis. Modifications to the TGF-β/Smad signalling pathway have been found to produce disparate effects on neurogenesis. We review the current research on canonical and non-canonical TGF-β/Smad signalling pathways and their functions in neurogenesis. We also examine the observed role of neurogenesis in neuropsychiatric disorders and the relationship between TGF-β/Smad signalling and neurogenesis in response to stressors. Overlapping mechanisms of cell proliferation, neurogenesis, and the development of mood disorders in response to stressors suggest that TGF-β/Smad signalling is an important regulator of stress response and is implicated in the behavioural outcomes of mood disorders.
Collapse
|
15
|
Ertekin A, Atay E, Bozkurt E, Aslan E. Effect of buscopan, a compound that alleviates cramps, on the developing nervous system of the chick embryo. Birth Defects Res 2021; 113:1140-1151. [PMID: 34050726 DOI: 10.1002/bdr2.1929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/30/2021] [Accepted: 05/20/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND Buscopan is used to treat stomach cramps including those resulting from irritable bowel syndrome, bladder cramps, and pain related to menstruation. Its pregnancy category is determined as C. It has been shown in experimental animal studies that the drug has a negative effect on the embryo, but sufficient and well-controlled studies have not been conducted in humans. The aim of this study is to investigate effects of buscopan on the development of the neural tube (NT) in chick embryos. METHODS Sixty specific pathogen-free (SPF) fertilized eggs were used. SPF eggs were placed in an incubator and divided into six groups at 28 hr of incubation. Five different doses (low to high) of buscopan were injected sub-blastodermally. At the end of 48 hr, the embryos were evaluated morphologically and histopathologically. The argyrophilic nucleolar-organizing region (AgNOR) method was used in this study to determine the proliferation activity of cells in NT development in chick embryos. AgNOR number and total AgNOR area/nuclear area (TAA/NA) were detected for each embryo. RESULTS Depending on the dose, the embryo's crown-rump length and somite number decreased (p < .05). Significant differences were detected among all groups for mean AgNOR number (p < .05) and TAA/NA ratio (p < .05). CONCLUSIONS Considering the average count of AgNOR cells and TAA/NA ratio, it was found that there was a decrease in cell division depending on the dose. It was determined that buscopan treatment on chick embryos adversely affected early nervous system and NT development.
Collapse
Affiliation(s)
- Ayşe Ertekin
- Department of Emergency Medicine, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Emre Atay
- Department of Anatomy, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Erhan Bozkurt
- Department of Internal Medicine, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Esra Aslan
- Department of Histology Embryology, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| |
Collapse
|
16
|
Song D, Chen Y, Chen C, Chen L, Cheng O. GABA B receptor antagonist promotes hippocampal neurogenesis and facilitates cognitive function recovery following acute cerebral ischemia in mice. Stem Cell Res Ther 2021; 12:22. [PMID: 33413637 PMCID: PMC7792056 DOI: 10.1186/s13287-020-02059-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/27/2020] [Indexed: 02/02/2023] Open
Abstract
PURPOSE AND BACKGROUND Previous studies have suggested that promoting endogenous neurogenesis has great significance for the recovery of cognitive dysfunction caused by cerebral ischemia (CI). Pharmacological inhibition of GABAB receptor can enhance neurogenesis in adult healthy and depressed mice. In the study, we intended to investigate the effects of GABAB receptor antagonists on cognitive function and hippocampal neurogenesis in mice following CI. METHODS Adult mice were subjected to bilateral common carotid artery occlusion (BCCAO) for 20 min to induce CI and treated with CGP52432 (antagonist of GABAB receptor, CGP, 10 mg/kg intraperitoneal injection) starting 24 h after CI. The Morris water maze test was performed to test spatial learning and memory at day 28. Immunofluorescence was applied to detect neurogenesis in the DG region at day 14 and 28. In in vitro experiments, cell proliferation was detected by CCK8 and immunofluorescence, and the expression of cAMP/CREB signaling pathway-related proteins was detected by ELISA assay and Western blot. RESULTS CGP significantly improved spatial learning and memory disorders caused by CI, and it enhanced the proliferation of neural stem cells (NSCs), the number of immature neurons, and the differentiation from newborn cells to neurons. In vitro experiments further confirmed that CGP dose-dependently enhanced the cell viability of NSCs, and immunofluorescence staining showed that CGP promoted the proliferation of NSCs. In addition, treatment with CGP increased the expression of cAMP, PKA, and pCREB in cultured NSCs. CONCLUSION Inhibition of GABAB receptor can effectively promote hippocampal neurogenesis and improve spatial learning and memory in adult mice following CI.
Collapse
Affiliation(s)
- Dan Song
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yaohua Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Cheng Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Lili Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Oumei Cheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
17
|
Regulation of Social Stress and Neural Degeneration by Activity-Regulated Genes and Epigenetic Mechanisms in Dopaminergic Neurons. Mol Neurobiol 2020; 57:4500-4510. [PMID: 32748368 PMCID: PMC7515954 DOI: 10.1007/s12035-020-02037-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/22/2020] [Indexed: 02/08/2023]
Abstract
Transcriptional and epigenetic regulation of both dopaminergic neurons and their accompanying glial cells is of great interest in the search for therapies for neurodegenerative disorders such as Parkinson’s disease (PD). In this review, we collate transcriptional and epigenetic changes identified in adult Drosophila melanogaster dopaminergic neurons in response to either prolonged social deprivation or social enrichment, and compare them with changes identified in mammalian dopaminergic neurons during normal development, stress, injury, and neurodegeneration. Surprisingly, a small set of activity-regulated genes (ARG) encoding transcription factors, and a specific pattern of epigenetic marks on gene promoters, are conserved in dopaminergic neurons over the long evolutionary period between mammals and insects. In addition to their classical function as immediate early genes to mark acute neuronal activity, these ARG transcription factors are repurposed in both insects and mammals to respond to chronic perturbations such as social enrichment, social stress, nerve injury, and neurodegeneration. We suggest that these ARG transcription factors and epigenetic marks may represent important targets for future therapeutic intervention strategies in various neurodegenerative disorders including PD.
Collapse
|
18
|
Choi BY, Hong DK, Jeong JH, Lee BE, Koh JY, Suh SW. Zinc transporter 3 modulates cell proliferation and neuronal differentiation in the adult hippocampus. Stem Cells 2020; 38:994-1006. [PMID: 32346941 PMCID: PMC7496127 DOI: 10.1002/stem.3194] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 04/10/2020] [Indexed: 12/11/2022]
Abstract
The subgranular zone of the dentate gyrus is a subregion of the hippocampus that has two uniquely defining features; it is one of the most active sites of adult neurogenesis as well as the location where the highest concentrations of synaptic zinc are found, the mossy fiber terminals. Therefore, we sought to investigate the idea that vesicular zinc plays a role as a modulator of hippocampal adult neurogenesis. Here, we used ZnT3−/− mice, which are depleted of synaptic‐vesicle zinc, to test the effect of targeted deletion of this transporter on adult neurogenesis. We found that this manipulation reduced progenitor cell turnover as well as led to a marked defect in the maturation of newborn cells that survive in the DG toward a neuronal phenotype. We also investigated the effects of zinc (ZnCl2), n‐acetyl cysteine (NAC), and ZnCl2 plus 2NAC (ZN) supplement on adult hippocampal neurogenesis. Compared with ZnCl2 or NAC, administration of ZN resulted in an increase in proliferation of progenitor cells and neuroblast. ZN also rescued the ZnT3 loss‐associated reduction of neurogenesis via elevation of insulin‐like growth factor‐1 and ERK/CREB activation. Together, these findings reveal that ZnT3 plays a highly important role in maintaining adult hippocampal neurogenesis and supplementation by ZN has a beneficial effect on hippocampal neurogenesis, as well as providing a therapeutic target for enhanced neuroprotection and repair after injury as demonstrated by its ability to prevent aging‐dependent cognitive decline in ZnT3−/− mice. Therefore, the present study suggests that ZnT3 and vesicular zinc are essential for adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Bo Young Choi
- Department of Physiology, Hallym University College of Medicine, Chuncheon, South Korea
| | - Dae Ki Hong
- Department of Physiology, Hallym University College of Medicine, Chuncheon, South Korea
| | - Jeong Hyun Jeong
- Department of Physiology, Hallym University College of Medicine, Chuncheon, South Korea
| | - Bo Eun Lee
- Department of Physiology, Hallym University College of Medicine, Chuncheon, South Korea
| | - Jae-Young Koh
- Department of Neurology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sang Won Suh
- Department of Physiology, Hallym University College of Medicine, Chuncheon, South Korea
| |
Collapse
|
19
|
Chen Y, Li S, Zhong X, Kang Z, Chen R. PDE-7 Inhibitor BRL-50481 Reduces Neurodegeneration and Long-Term Memory Deficits in Mice Following Sevoflurane Exposure. ACS Chem Neurosci 2020; 11:1353-1358. [PMID: 32271540 DOI: 10.1021/acschemneuro.0c00106] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Sevoflurane, one of the most commonly used anesthetic agents, has been demonstrated to induce widespread neurodegeneration in the developing brain. We aimed to evaluate the protective effects of a PDE-7 inhibitor (BRL-50481) against the neurotoxic effects of sevoflurane on the developing nervous system. Spatial learning and memory in sevoflurane-treated mice were examined using the Morris water maze test, and neuroprotective effects of PDE-7 inhibitor (BRL-50481) against sevoflurane-induced impairments were evaluated. Our results showed that sevoflurane treatment markedly induced neurodegeneration and impaired long-term memory in neonatal mice. Notably, BRL-50481 coadministration could significantly attenuate sevoflurane-induced learning and memory defects, prevent deterioration of recognition memory, and protect against neuron apoptosis. Mechanistically, BRL-50481 administration suppressed sevoflurane-induced neurodegenerative disorders through restoring cAMP and activating cAMP/CREB signaling in the hippocampus. PDE7 inhibitor may be a potential therapeutic agent for sevoflurane-induced neurodegeneration and long-term memory deficits.
Collapse
Affiliation(s)
- Yingle Chen
- Department of Anesthesiology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, Fujian, China
| | - Shunyuan Li
- Department of Anesthesiology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, Fujian, China
| | - Xianmei Zhong
- Department of Anesthesiology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, Fujian, China
| | - Zhenming Kang
- Department of Anesthesiology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, Fujian, China
| | - Rulei Chen
- Department of Anesthesiology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, Fujian, China
| |
Collapse
|
20
|
An Overview of Nicotinic Cholinergic System Signaling in Neurogenesis. Arch Med Res 2020; 51:287-296. [DOI: 10.1016/j.arcmed.2020.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 03/13/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022]
|
21
|
Melatonin attenuates 5-fluorouracil-induced spatial memory and hippocampal neurogenesis impairment in adult rats. Life Sci 2020; 248:117468. [PMID: 32105705 DOI: 10.1016/j.lfs.2020.117468] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/14/2020] [Accepted: 02/22/2020] [Indexed: 12/21/2022]
Abstract
AIMS Treatment with 5-fluorouracil (5-FU) can cause impairment to adult hippocampal neurogenesis, resulting in cognitive deficits. As melatonin has been shown to enhance memory and hippocampal neurogenesis in animal models, this research investigated the neuroprotective effects of melatonin against spatial memory and hippocampal neurogenesis impairment in 5-fluorouracil (5-FU)-treated rats. MATERIALS AND METHODS Four-Five weeks old male Spraque-Dawley rats weighing between 180 and 200 g were used. Animals were maintained under standard laboratory conditions with 25 °C and 12 h light/dark cycle. Animal were administered intravenous (i.v.) injections of 5-FU (25 mg/kg) 5 times every 3 days starting on day 9 of the experiment. The rats were divided into preventive, recovery, and throughout groups and co-treated with melatonin (8 mg/kg, i.p.) once daily (at 7.00 pm) for 21 days prior to, after, and throughout 5-FU treatment, respectively. Spatial memory was assessed using a novel object location (NOL) test. Hippocampal neurogenesis was then examined using Ki67, bromodeoxyuridine (BrdU), and doublecortin (DCX) immunohistochemistry staining. KEY FINDINGS Melatonin administration was able to both protect the subjects from and reverse spatial memory deficits. 5-FU was also found to reduce the generation of hippocampal newborn neurons. However, co-treatment with melatonin ameliorated the reductions in neurogenesis caused by 5-FU. SIGNIFICANCE These findings suggest that melatonin administration was able to ameliorate the 5-FU-induced spatial memory deficits associated with neurogenesis. The present work will be valuable for patients who suffer memory deficits from 5-FU chemotherapy.
Collapse
|
22
|
Aldehri M, Temel Y, Jahanshahi A, Hescham S. Fornix deep brain stimulation induces reduction of hippocampal synaptophysin levels. J Chem Neuroanat 2019; 96:34-40. [DOI: 10.1016/j.jchemneu.2018.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 12/14/2022]
|
23
|
The role of adult hippocampal neurogenesis in brain health and disease. Mol Psychiatry 2019; 24:67-87. [PMID: 29679070 PMCID: PMC6195869 DOI: 10.1038/s41380-018-0036-2] [Citation(s) in RCA: 428] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/15/2018] [Accepted: 01/31/2018] [Indexed: 12/18/2022]
Abstract
Adult neurogenesis in the dentate gyrus of the hippocampus is highly regulated by a number of environmental and cell-intrinsic factors to adapt to environmental changes. Accumulating evidence suggests that adult-born neurons may play distinct physiological roles in hippocampus-dependent functions, such as memory encoding and mood regulation. In addition, several brain diseases, such as neurological diseases and mood disorders, have deleterious effects on adult hippocampal neurogenesis, and some symptoms of those diseases can be partially explained by the dysregulation of adult hippocampal neurogenesis. Here we review a possible link between the physiological functions of adult-born neurons and their roles in pathological conditions.
Collapse
|
24
|
Mental disorders and an acidic glycan-from the perspective of polysialic acid (PSA/polySia) and the synthesizing enzyme, ST8SIA2. Glycoconj J 2018; 35:353-373. [PMID: 30058042 DOI: 10.1007/s10719-018-9832-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 02/08/2023]
Abstract
Mental disorders, such as schizophrenia, bipolar disorder, and autism spectrum disorder, are challenging to manage, worldwide. Understanding the molecular mechanisms underlying these disorders is essential and required. Studies investigating such molecular mechanisms are well performed and important findings are accumulating apace. Based on the fact that these disorders are due in part to the accumulation of genetic and environmental risk factors, consideration of multi-molecular and/or multi-system dependent phenomena might be important. Acidic glycans are an attractive family of molecules for understanding these disorders, because impairment of the fine-tuned glycan system affects a large number of molecules that are deeply involved in normal brain function. One of the candidates of this important family of glycan epitopes in the brain is polysialic acid (PSA/polySia). PSA is a well-known molecule because of its role as an oncodevelopmental antigen and is also widely used as a marker of adult neurogenesis. Recently, several reports have suggested that PSA and PSA-related genes are associated with multiple mental disorders. The relationships among PSA, PSA-related genes, and mental disorders are reviewed here.
Collapse
|
25
|
Navarro Quiroz E, Navarro Quiroz R, Ahmad M, Gomez Escorcia L, Villarreal JL, Fernandez Ponce C, Aroca Martinez G. Cell Signaling in Neuronal Stem Cells. Cells 2018; 7:E75. [PMID: 30011912 PMCID: PMC6070865 DOI: 10.3390/cells7070075] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/30/2018] [Accepted: 07/12/2018] [Indexed: 02/07/2023] Open
Abstract
The defining characteristic of neural stem cells (NSCs) is their ability to multiply through symmetric divisions and proliferation, and differentiation by asymmetric divisions, thus giving rise to different types of cells of the central nervous system (CNS). A strict temporal space control of the NSC differentiation is necessary, because its alterations are associated with neurological dysfunctions and, in some cases, death. This work reviews the current state of the molecular mechanisms that regulate the transcription in NSCs, organized according to whether the origin of the stimulus that triggers the molecular cascade in the CNS is internal (intrinsic factors) or whether it is the result of the microenvironment that surrounds the CNS (extrinsic factors).
Collapse
Affiliation(s)
- Elkin Navarro Quiroz
- Faculty of basic sciences and biomedical; Universidad Simón Bolívar, Barranquilla 080002, Colombia.
- School of Medicine, Universidad Rafael Nuñez, Cartagena 130001, Colombia.
| | - Roberto Navarro Quiroz
- Centro de Investigación en Salud para el Trópico, Universidad Cooperativa de Colombia, Santa Marta 470002, Colombia.
| | - Mostapha Ahmad
- Faculty of basic sciences and biomedical; Universidad Simón Bolívar, Barranquilla 080002, Colombia.
| | - Lorena Gomez Escorcia
- Faculty of basic sciences and biomedical; Universidad Simón Bolívar, Barranquilla 080002, Colombia.
| | | | | | - Gustavo Aroca Martinez
- Faculty of basic sciences and biomedical; Universidad Simón Bolívar, Barranquilla 080002, Colombia.
- Clinica de la Costa, Barranquilla 080002, Colombia.
| |
Collapse
|
26
|
Beyond good and evil: A putative continuum-sorting hypothesis for the functional role of proBDNF/BDNF-propeptide/mBDNF in antidepressant treatment. Neurosci Biobehav Rev 2018; 90:70-83. [PMID: 29626490 DOI: 10.1016/j.neubiorev.2018.04.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/13/2018] [Accepted: 04/03/2018] [Indexed: 02/07/2023]
Abstract
Depression and posttraumatic stress disorder are assumed to be maladaptive responses to stress and antidepressants are thought to counteract such responses by increasing BDNF (brain-derived neurotrophic factor) levels. BDNF acts through TrkB (tropomyosin-related receptor kinase B) and plays a central role in neuroplasticity. In contrast, both precursor proBDNF and BDNF propeptide (another metabolic product from proBDNF cleavage) have a high affinity to p75 receptor (p75R) and usually convey apoptosis and neuronal shrinkage. Although BDNF and proBDNF/propeptide apparently act in opposite ways, neuronal turnover and remodeling might be a final common way that both act to promote more effective neuronal networking, avoiding neuronal redundancy and the misleading effects of environmental contingencies. This review aims to provide a brief overview about the BDNF functional role in antidepressant action and about p75R and TrkB signaling to introduce the "continuum-sorting hypothesis." The resulting hypothesis suggests that both BDNF/proBDNF and BDNF/propeptide act as protagonists to fine-tune antidepressant-dependent neuroplasticity in crucial brain structures to modulate behavioral responses to stress.
Collapse
|
27
|
Chen BH, Ahn JH, Park JH, Song M, Kim H, Lee TK, Lee JC, Kim YM, Hwang IK, Kim DW, Lee CH, Yan BC, Kang IJ, Won MH. Rufinamide, an antiepileptic drug, improves cognition and increases neurogenesis in the aged gerbil hippocampal dentate gyrus via increasing expressions of IGF-1, IGF-1R and p -CREB. Chem Biol Interact 2018; 286:71-77. [DOI: 10.1016/j.cbi.2018.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/23/2018] [Accepted: 03/13/2018] [Indexed: 12/16/2022]
|
28
|
Review: adult neurogenesis contributes to hippocampal plasticity. Cell Tissue Res 2017; 373:693-709. [PMID: 29185071 DOI: 10.1007/s00441-017-2735-4] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/27/2017] [Indexed: 12/18/2022]
Abstract
Adult hippocampal neurogenesis is the process by which new functional neurons are added to the adult dentate gyrus of the hippocampus. Animal studies have shown that the degree of adult hippocampal neurogenesis is regulated by local environmental cues as well as neural network activities. Furthermore, accumulating evidence has suggested that adult hippocampal neurogenesis plays prominent roles in hippocampus-dependent brain functions. In this review, we summarize the mechanisms underlying the regulation of adult hippocampal neurogenesis at various developmental stages and propose how adult-born neurons contribute to structural and functional hippocampal plasticity.
Collapse
|
29
|
Beckervordersandforth R. Mitochondrial Metabolism-Mediated Regulation of Adult Neurogenesis. Brain Plast 2017; 3:73-87. [PMID: 29765861 PMCID: PMC5928529 DOI: 10.3233/bpl-170044] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The life-long generation of new neurons from radial glia-like neural stem cells (NSCs) is achieved through a stereotypic developmental sequence that requires precise regulatory mechanisms to prevent exhaustion or uncontrolled growth of the stem cell pool. Cellular metabolism is the new kid on the block of adult neurogenesis research and the identity of stage-specific metabolic programs and their impact on neurogenesis turns out to be an emerging research topic in the field. Mitochondrial metabolism is best known for energy production but it contains a great deal more. Mitochondria are key players in a variety of cellular processes including ATP synthesis through functional coupling of the electron transport chain and oxidative phosphorylation, recycling of hydrogen carriers, biosynthesis of cellular building blocks, and generation of reactive oxygen species that can modulate signaling pathways in a redox-dependent fashion. In this review, I will discuss recent findings describing stage-specific modulations of mitochondrial metabolism within the adult NSC lineage, emphasizing its importance for NSC self-renewal, proliferation of neural stem and progenitor cells (NSPCs), cell fate decisions, and differentiation and maturation of newborn neurons. I will furthermore summarize the important role of mitochondrial dysfunction in tissue regeneration and ageing, suggesting it as a potential therapeutic target for regenerative medicine practice.
Collapse
Affiliation(s)
- Ruth Beckervordersandforth
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
| |
Collapse
|
30
|
Jiang T, Wang XQ, Ding C, Du XL. Genistein attenuates isoflurane-induced neurotoxicity and improves impaired spatial learning and memory by regulating cAMP/CREB and BDNF-TrkB-PI3K/Akt signaling. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2017; 21:579-589. [PMID: 29200900 PMCID: PMC5709474 DOI: 10.4196/kjpp.2017.21.6.579] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/02/2016] [Accepted: 08/18/2016] [Indexed: 01/16/2023]
Abstract
Anesthetics are used extensively in surgeries and related procedures to prevent pain. However, there is some concern regarding neuronal degeneration and cognitive deficits arising from regular anesthetic exposure. Recent studies have indicated that brain-derived neurotrophic factor (BDNF) and cyclic AMP response element-binding protein (CREB) are involved in learning and memory processes. Genistein, a plant-derived isoflavone, has been shown to exhibit neuroprotective effects. The present study was performed to examine the protective effect of genistein against isoflurane-induced neurotoxicity in rats. Neonatal rats were exposed to isoflurane (0.75%, 6 hours) on postnatal day 7 (P7). Separate groups of rat pups were orally administered genistein at doses of 20, 40, or 80 mg/kg body weight from P3 to P15 and then exposed to isoflurane anesthesia on P7. Neuronal apoptosis was detected by TUNEL assay and FluoroJade B staining following isoflurane exposure. Genistein significantly reduced apoptosis in the hippocampus, reduced the expression of proapoptotic factors (Bad, Bax, and cleaved caspase-3), and increased the expression of Bcl-2 and Bcl-xL. RT-PCR analysis revealed enhanced BDNF and TrkB mRNA levels. Genistein effectively upregulated cAMP levels and phosphorylation of CREB and TrkB, leading to activation of cAMP/CREB-BDNF-TrkB signaling. PI3K/Akt signaling was also significantly activated. Genistein administration improved general behavior and enhanced learning and memory in the rats. These observations suggest that genistein exerts neuroprotective effects by suppressing isoflurane-induced neuronal apoptosis and by activating cAMP/CREB-BDNF-TrkB-PI3/Akt signaling.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Anesthesiology, Shandong Cancer Hospital, Jinan 250117, Shandong Province, China
| | - Xiu-Qin Wang
- Department of Anesthesiology, Shandong Cancer Hospital, Jinan 250117, Shandong Province, China
| | - Chuan Ding
- Department of Anesthesiology, Shandong Cancer Hospital, Jinan 250117, Shandong Province, China
| | - Xue-Lian Du
- Department of Gynecology, Shandong Cancer Hospital, Jinan 250117, Shandong Province, China
| |
Collapse
|
31
|
Ai R, Tao Y, Hao Y, Jiang L, Dan H, Ji N, Zeng X, Zhou Y, Chen Q. Microenvironmental regulation of the progression of oral potentially malignant disorders towards malignancy. Oncotarget 2017; 8:81617-81635. [PMID: 29113419 PMCID: PMC5655314 DOI: 10.18632/oncotarget.20312] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/04/2017] [Indexed: 02/05/2023] Open
Abstract
Oral potentially malignant disorders (OPMD) develop in a complex tissue microenvironment where they grow sustainably, acquiring oral squamous cell carcinoma (OSCC) characteristics. The malignant tumor depends on interactions with the surrounding microenvironment to achieve loco-regional invasion and distant metastases. Unlike abnormal cells, the multiple cell types in the tissue microenvironment are relatively stable at the genomic level and, thus, become therapeutic targets with lower risk of resistance, decreasing the risk of OPMD acquiring cancer characteristics and carcinoma recurrence. However, deciding how to disrupt the OPMD and OSCC microenvironments is itself a daunting challenge, since their microenvironments present opposite capacities, resulting in diverse consequences. Furthermore, recent studies revealed that tumor-associated immune cells also participate in the process of differentiation from OPMD to OSCC, suggesting that reeducating stromal cells may be a new strategy to prevent OPMD from acquiring OSCC characteristics and to treat OSCC. In this review, we discuss the characteristics of the microenvironment of OPMD and OSCC as well as new therapeutic strategies.
Collapse
Affiliation(s)
- Ruixue Ai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Medicine of West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yan Tao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Medicine of West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yilong Hao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Medicine of West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Lu Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Medicine of West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Hongxia Dan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Medicine of West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ning Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Medicine of West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Medicine of West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yu Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Medicine of West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Medicine of West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
32
|
Gómez C, Jimeno D, Fernández-Medarde A, García-Navas R, Calzada N, Santos E. Ras-GRF2 regulates nestin-positive stem cell density and onset of differentiation during adult neurogenesis in the mouse dentate gyrus. Mol Cell Neurosci 2017; 85:127-147. [PMID: 28966131 DOI: 10.1016/j.mcn.2017.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/11/2017] [Accepted: 09/17/2017] [Indexed: 12/12/2022] Open
Abstract
Various parameters of neurogenesis were analyzed in parallel in the two neurogenic areas (the Dentate Gyrus[DG] and the Subventricular Zone[SVZ]/Rostral Migratory Stream[RMS]/Main Olfactory Bulb[MOB] neurogenic system) of adult WT and KO mouse strains for the Ras-GRF1/2 genes (Ras-GRF1-KO, Ras-GRF2-KO, Ras-GRF1/2-DKO). Significantly reduced numbers of doublecortin[DCX]-positive cells were specifically observed in the DG, but not the SVZ/RMS/MOB neurogenic region, of Ras-GRF2-KO and Ras-GRF1/2-DKO mice indicating that this novel Ras-GRF2-dependent phenotype is spatially restricted to a specific neurogenic area. Consistent with a role of CREB as mediator of Ras-GRF2 function in neurogenesis, the density of p-CREB-positive cells was also specifically reduced in all neurogenic regions of Ras-GRF2-KO and DKO mice. Similar levels of early neurogenic proliferation markers (Ki67, BrdU) were observed in all different Ras-GRF genotypes analyzed but significantly elevated levels of nestin-immunolabel, particularly of undifferentiated, highly ramified, A-type nestin-positive neurons were specifically detected in the DG but not the SVZ/RMS/MOB of Ras-GRF2-KO and DKO mice. Together with assays of other neurogenic markers (GFAP, Sox2, Tuj1, NeuN), these observations suggest that the deficit of DCX/p-CREB-positive cells in the DG of Ras-GRF2-depleted mice does not involve impaired neuronal proliferation but rather delayed transition from the stem cell stage to the differentiation stages of the neurogenic process. This model is also supported by functional analyses of DG-derived neurosphere cultures and transcriptional characterization of the neurogenic areas of mice of all relevant Ras-GRF genotypes suggesting that the neurogenic role of Ras-GRF2 is exerted in a cell-autonomous manner through a specific transcriptional program.
Collapse
Affiliation(s)
- Carmela Gómez
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC- Universidad de Salamanca) and CIBERONC, 37007 Salamanca, Spain
| | - David Jimeno
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC- Universidad de Salamanca) and CIBERONC, 37007 Salamanca, Spain
| | - Alberto Fernández-Medarde
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC- Universidad de Salamanca) and CIBERONC, 37007 Salamanca, Spain
| | - Rósula García-Navas
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC- Universidad de Salamanca) and CIBERONC, 37007 Salamanca, Spain
| | - Nuria Calzada
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC- Universidad de Salamanca) and CIBERONC, 37007 Salamanca, Spain
| | - Eugenio Santos
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC- Universidad de Salamanca) and CIBERONC, 37007 Salamanca, Spain.
| |
Collapse
|
33
|
Maynard ME, Barton EA, Robinson CR, Wooden JI, Leasure JL. Sex differences in hippocampal damage, cognitive impairment, and trophic factor expression in an animal model of an alcohol use disorder. Brain Struct Funct 2017; 223:195-210. [PMID: 28752318 DOI: 10.1007/s00429-017-1482-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 07/20/2017] [Indexed: 12/21/2022]
Abstract
Compared to men, women disproportionally experience alcohol-related organ damage, including brain damage, and while men remain more likely to drink and to drink heavily, there is cause for concern because women are beginning to narrow the gender gap in alcohol use disorders. The hippocampus is a brain region that is particularly vulnerable to alcohol damage, due to cell loss and decreased neurogenesis. In the present study, we examined sex differences in hippocampal damage following binge alcohol. Consistent with our prior findings, we found a significant binge-induced decrement in dentate gyrus (DG) granule neurons in the female DG. However, in the present study, we found no significant decrement in granule neurons in the male DG. We show that the decrease in granule neurons in females is associated with both spatial navigation impairments and decreased expression of trophic support molecules. Finally, we show that post-binge exercise is associated with an increase in trophic support and repopulation of the granule neuron layer in the female hippocampus. We conclude that sex differences in alcohol-induced hippocampal damage are due in part to a paucity of trophic support and plasticity-related signaling in females.
Collapse
Affiliation(s)
- Mark E Maynard
- Department of Psychology, University of Houston, Houston, TX, 77204-5022, USA.,Department of Neurobiology and Anatomy, University of Texas Health Science Center, PO Box 20708, Houston, TX, 77225-0708, USA
| | - Emily A Barton
- Department of Psychology, University of Houston, Houston, TX, 77204-5022, USA
| | - Caleb R Robinson
- Department of Psychology, University of Houston, Houston, TX, 77204-5022, USA.,Department of Biology, Eastern Nazarene College, 23 E Elm Ave, Shrader Hall 30B, Quincy, MA, 02170, USA
| | - Jessica I Wooden
- Department of Psychology, University of Houston, Houston, TX, 77204-5022, USA
| | - J Leigh Leasure
- Department of Psychology, University of Houston, Houston, TX, 77204-5022, USA. .,Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204-5022, USA.
| |
Collapse
|
34
|
Ding ML, Ma H, Man YG, Lv HY. Protective effects of a green tea polyphenol, epigallocatechin-3-gallate, against sevoflurane-induced neuronal apoptosis involve regulation of CREB/BDNF/TrkB and PI3K/Akt/mTOR signalling pathways in neonatal mice. Can J Physiol Pharmacol 2017; 95:1396-1405. [PMID: 28679060 DOI: 10.1139/cjpp-2016-0333] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Epigallocatechin-3-gallate (EGCG), a polyphenol in green tea, is an effective antioxidant and possesses neuroprotective effects. Brain-derived neurotrophic factor (BDNF) and cyclic AMP response element-binding protein (CREB) are crucial for neurogenesis and synaptic plasticity. In this study, we aimed to assess the protective effects of EGCG against sevoflurane-induced neurotoxicity in neonatal mice. Distinct groups of C57BL/6 mice were given EGCG (25, 50, or 75 mg/kg body weight) from postnatal day 3 (P3) to P21 and were subjected to sevoflurane (3%; 6 h) exposure on P7. EGCG significantly inhibited sevoflurane-induced neuroapoptosis as determined by Fluoro-Jade B staining and terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL). Increased levels of cleaved caspase-3, downregulated Bad and Bax, and significantly enhanced Bcl-2, Bcl-xL, xIAP, c-IAP-1, and survivin expression were observed. EGCG induced activation of the PI3K/Akt pathway as evidenced by increased Akt, phospho-Akt, GSK-3β, phospho-GSK-3β, and mTORc1 levels. Sevoflurane-mediated downregulation of cAMP/CREB and BDNF/TrkB signalling was inhibited by EGCG. Reverse transcription PCR analysis revealed enhanced BDNF and TrkB mRNA levels upon EGCG administration. Improved performance of mice in Morris water maze tests suggested enhanced learning and memory. The study indicates that EGCG was able to effectively inhibit sevoflurane-induced neurodegeneration and improve learning and memory retention of mice via activation of CREB/BDNF/TrkB-PI3K/Akt signalling.
Collapse
Affiliation(s)
- Mei-Li Ding
- a Department of Pediatrics, Shandong Jining No. 1 People's Hospital, Shandong 272011, China
| | - Hui Ma
- b Department of Neurosurgery, Shandong Jining No. 1 People's Hospital, Shandong 272011, China
| | - Yi-Gang Man
- a Department of Pediatrics, Shandong Jining No. 1 People's Hospital, Shandong 272011, China
| | - Hong-Yan Lv
- a Department of Pediatrics, Shandong Jining No. 1 People's Hospital, Shandong 272011, China
| |
Collapse
|
35
|
Feng S, Shi T, Qiu J, Yang H, Wu Y, Zhou W, Wang W, Wu H. Notch1 deficiency in postnatal neural progenitor cells in the dentate gyrus leads to emotional and cognitive impairment. FASEB J 2017; 31:4347-4358. [PMID: 28611114 DOI: 10.1096/fj.201700216rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/30/2017] [Indexed: 01/19/2023]
Abstract
It is well known that Notch1 signaling plays a crucial role in embryonic neural development and adult neurogenesis. The latest evidence shows that Notch1 also plays a critical role in synaptic plasticity in mature hippocampal neurons. So far, deeper insights into the function of Notch1 signaling during the different steps of adult neurogenesis are still lacking, and the mechanisms by which Notch1 dysfunction is associated with brain disorders are also poorly understood. In the current study, we found that Notch1 was highly expressed in the adult-born immature neurons in the hippocampal dentate gyrus. Using a genetic approach to selectively ablate Notch1 signaling in late immature precursors in the postnatal hippocampus by cross-breeding doublecortin (DCX)+ neuron-specific proopiomelanocortin (POMC)-α Cre mice with floxed Notch1 mice, we demonstrated a previously unreported pivotal role of Notch1 signaling in survival and function of adult newborn neurons in the dentate gyrus. Moreover, behavioral and functional studies demonstrated that POMC-Notch1-/- mutant mice showed anxiety and depressive-like behavior with impaired synaptic transmission properties in the dentate gyrus. Finally, our mechanistic study showed significantly compromised phosphorylation of cAMP response element-binding protein (CREB) in Notch1 mutants, suggesting that the dysfunction of Notch1 mutants is associated with the disrupted pCREB signaling in postnatally generated immature neurons in the dentate gyrus.-Feng, S., Shi, T., Qiu, J., Yang, H., Wu, Y., Zhou, W., Wang, W., Wu, H. Notch1 deficiency in postnatal neural progenitor cells in the dentate gyrus leads to emotional and cognitive impairment.
Collapse
Affiliation(s)
- Shufang Feng
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Tianyao Shi
- Department of Traditional Chinese Medicine (TCM) and Neuroimmunopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jiangxia Qiu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Haihong Yang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yan Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Wenxia Zhou
- Department of Traditional Chinese Medicine (TCM) and Neuroimmunopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Wei Wang
- Department of Orthopedics Research Institute, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Haitao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China; .,Key Laboratory of Neuroregeneration, Coinnovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
36
|
Gascón S, Ortega F, Götz M. Transient CREB-mediated transcription is key in direct neuronal reprogramming. NEUROGENESIS 2017; 4:e1285383. [PMID: 28321434 PMCID: PMC5345748 DOI: 10.1080/23262133.2017.1285383] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/08/2017] [Accepted: 01/16/2017] [Indexed: 02/08/2023]
Abstract
Combinations of neuronal determinants and/or small-molecules such as Forskolin (Fk) can be used to convert different cell types into neurons. As Fk is known to activate cAMP-dependent pathways including CREB-activity, we aimed here to determine the role of CREB in reprogramming – including its temporal profile. We show that transient expression of the dominant-positive CREB-VP16 followed by its inactivation mediated by the dominant-negative ICER improves neuronal conversion of astrocytes mediated by the neurogenic determinant Ascl1. Contrarily, persistent over-activation by CREB-VP16 or persistent inhibition by ICER interferes with neuronal reprogramming, with the latter enhancing cell death. Taken together our work shows transient CREB activation as a key effector in neuronal reprogramming.
Collapse
Affiliation(s)
- Sergio Gascón
- Ludwig-Maximilians University of Munich, Physiological Genomics, Biomedical Center (BMC), Planegg-Martinsried, Germany; Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany
| | - Felipe Ortega
- Biochemistry and Molecular Biology Department IV, Faculty of Veterinary Medicine, Complutense University , Madrid, Spain ; Institute of Neurochemistry (IUIN) , Madrid, Spain ; Health Research Institute of the Hospital Clínico San Carlos (IdISSC) , Madrid, Spain
| | - Magdalena Götz
- Ludwig-Maximilians University of Munich, Physiological Genomics, Biomedical Center (BMC), Planegg-Martinsried, Germany; Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany; Excellence Cluster of Systems Neurology (SYNERGY), Munich, Germany
| |
Collapse
|
37
|
Orts-Del’Immagine A, Trouslard J, Airault C, Hugnot JP, Cordier B, Doan T, Kastner A, Wanaverbecq N. Postnatal maturation of mouse medullo-spinal cerebrospinal fluid-contacting neurons. Neuroscience 2017; 343:39-54. [DOI: 10.1016/j.neuroscience.2016.11.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 10/10/2016] [Accepted: 11/21/2016] [Indexed: 11/27/2022]
|
38
|
Guo D, Guo J, Li X, Guan F. Differential effects of Pax3 on expression of polysialyltransferases STX and PST in TGF-β-treated normal murine mammary gland cells. Exp Biol Med (Maywood) 2016; 242:177-183. [PMID: 27651434 DOI: 10.1177/1535370216669838] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Glycosylation of certain proteins at the mammalian cell surface is an essential event in carcinogenesis. Sialylation, one type of glycosylation, can act on multiple cell-behaviors, such as migration, growth, and malignant invasion. Two polysialyltransferases, ST8Sia II (STX) and ST8Sia IV (PST), are responsible for synthesis of polysialic acid on neural cell adhesion molecule. We showed previously that STX and PST are oppositely expressed in normal murine mammary gland cells undergoing transforming growth factor-β-induced epithelial-mesenchymal transition. The molecular basis for regulation of STX and PST remained unclear. In the present study, we observed that transcription factor Pax3 upregulates STX expression, downregulates PST expression, and modulates upregulated expression of PSA, which attaches primarily to neural cell adhesion molecule to form PSA-NCAM. Overexpression of Pax3 in normal murine mammary gland cells transformed the expression of epithelial-mesenchymal transition markers E-cadherin and N-cadherin, and significantly promoted cell migration, but had no effect on cell proliferation.
Collapse
Affiliation(s)
- Dong Guo
- 1 The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jia Guo
- 1 The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiang Li
- 2 Wuxi Medical School, Jiangnan University, Wuxi 214122, China
| | - Feng Guan
- 1 The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
39
|
The aPKC-CBP Pathway Regulates Adult Hippocampal Neurogenesis in an Age-Dependent Manner. Stem Cell Reports 2016; 7:719-734. [PMID: 27618724 PMCID: PMC5063627 DOI: 10.1016/j.stemcr.2016.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 08/10/2016] [Accepted: 08/11/2016] [Indexed: 11/20/2022] Open
Abstract
While epigenetic modifications have emerged as attractive substrates to integrate environmental changes into the determination of cell identity and function, specific signals that directly activate these epigenetic modifications remain unknown. Here, we examine the role of atypical protein kinase C (aPKC)-mediated Ser436 phosphorylation of CBP, a histone acetyltransferase, in adult hippocampal neurogenesis and memory. Using a knockin mouse strain (CbpS436A) in which the aPKC-CBP pathway is deficient, we observe impaired hippocampal neuronal differentiation, maturation, and memory and diminished binding of CBP to CREB in 6-month-old CbpS436A mice, but not at 3 months of age. Importantly, elevation of CREB activity rescues these deficits, and CREB activity is reduced whereas aPKC activity is increased in the murine hippocampus as they age from 3 to 6 months regardless of genotype. Thus, the aPKC-CBP pathway is a homeostatic compensatory mechanism that modulates hippocampal neurogenesis and memory in an age-dependent manner in response to reduced CREB activity. The aPKC-CBP pathway maintains mature adult hippocampal neuronal differentiation The aPKC-CBP pathway is required for hippocampal-dependent memory in mature adult The aPKC-CBP pathway is required for CBP binding to CREB in mature adult hippocampi Increased CREB activity rescues the deficits due to the deficient aPKC-CBP pathway
Collapse
|
40
|
Zhou L, Ma SL, Yeung PKK, Wong YH, Tsim KWK, So KF, Lam LCW, Chung SK. Anxiety and depression with neurogenesis defects in exchange protein directly activated by cAMP 2-deficient mice are ameliorated by a selective serotonin reuptake inhibitor, Prozac. Transl Psychiatry 2016; 6:e881. [PMID: 27598965 PMCID: PMC5048194 DOI: 10.1038/tp.2016.129] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 05/03/2016] [Accepted: 05/05/2016] [Indexed: 01/29/2023] Open
Abstract
Intracellular cAMP and serotonin are important modulators of anxiety and depression. Fluoxetine, a selective serotonin reuptake inhibitor (SSRI) also known as Prozac, is widely used against depression, potentially by activating cAMP response element-binding protein (CREB) and increasing brain-derived neurotrophic factor (BDNF) through protein kinase A (PKA). However, the role of Epac1 and Epac2 (Rap guanine nucleotide exchange factors, RAPGEF3 and RAPGEF4, respectively) as potential downstream targets of SSRI/cAMP in mood regulations is not yet clear. Here, we investigated the phenotypes of Epac1 (Epac1(-/-)) or Epac2 (Epac2(-/-)) knockout mice by comparing them with their wild-type counterparts. Surprisingly, Epac2(-/-) mice exhibited a wide range of mood disorders, including anxiety and depression with learning and memory deficits in contextual and cued fear-conditioning tests without affecting Epac1 expression or PKA activity. Interestingly, rs17746510, one of the three single-nucleotide polymorphisms (SNPs) in RAPGEF4 associated with cognitive decline in Chinese Alzheimer's disease (AD) patients, was significantly correlated with apathy and mood disturbance, whereas no significant association was observed between RAPGEF3 SNPs and the risk of AD or neuropsychiatric inventory scores. To further determine the detailed role of Epac2 in SSRI/serotonin/cAMP-involved mood disorders, we treated Epac2(-/-) mice with a SSRI, Prozac. The alteration in open field behavior and impaired hippocampal cell proliferation in Epac2(-/-) mice were alleviated by Prozac. Taken together, Epac2 gene polymorphism is a putative risk factor for mood disorders in AD patients in part by affecting the hippocampal neurogenesis.
Collapse
Affiliation(s)
- L Zhou
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - S L Ma
- Department of Psychiatry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - P K K Yeung
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China,State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Y H Wong
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China,State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - K W K Tsim
- State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China,Division of Life Science and Center for Chinese Medicine, Hong Kong University of Science and Technology, Clear Water Bay, Clear Water Bay, Hong Kong SAR, China
| | - K F So
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China,Research Center of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Pokfulam, Hong Kong SAR, China,State Key Laboratory of Brain and Cognitive Science, The University of Hong Kong, Pokfulam, Hong Kong SAR, China,Department of Ophthalmology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - L C W Lam
- Department of Psychiatry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - S K Chung
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China,State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China,Research Center of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Pokfulam, Hong Kong SAR, China,School of Biomedical Sciences, The University of Hong Kong, 1/F, Laboratory Block, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China. E-mail:
| |
Collapse
|
41
|
Lee Y, Jeon SJ, Lee HE, Jung IH, Jo YW, Lee S, Cheong JH, Jang DS, Ryu JH. Spinosin, a C-glycoside flavonoid, enhances cognitive performance and adult hippocampal neurogenesis in mice. Pharmacol Biochem Behav 2016; 145:9-16. [DOI: 10.1016/j.pbb.2016.03.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 11/26/2022]
|
42
|
Malashenkova IK, Krynskiy SA, Khailov NA, Kazanova GV, Velichkovsky BB, Didkovsky NA. The role of cytokines in memory consolidation. ACTA ACUST UNITED AC 2016. [DOI: 10.1134/s2079086416020055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
43
|
Choi M, Lee SH, Chang HL, Son H. Hippocampal VEGF is necessary for antidepressant-like behaviors but not sufficient for antidepressant-like effects of ketamine in rats. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1247-54. [PMID: 27063455 DOI: 10.1016/j.bbadis.2016.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 03/03/2016] [Accepted: 04/03/2016] [Indexed: 12/16/2022]
Abstract
We investigated the effects of ketamine on both the temporal and spatial profiles of neural precursor cells located in the hippocampus, and on antidepressant-like behaviors in rats. A single dose of ketamine resulted in a significant increase in the number of 5-bromo-2-deoxyuridine-positive (BrdU(+)) cells in the dentate gyrus (DG) of rats at 24h, but not at 28days, after treatment completion. Ketamine caused antidepressant-like behaviors in the forced swim test (FST) and novelty suppressed feeding test (NSFT). Viral-mediated hippocampal knockdown of vascular endothelial growth factor (VEGF) produced depressive-like behaviors in the FST and NSFT, which were partially recovered by ketamine to the level observed in the control group. The behavioral effects of VEGF knock down were accompanied by a decrease in hippocampal neurogenesis, which was also partially recovered by ketamine. Our results suggest that basal hippocampal VEGF expression is necessary for ketamine-induced antidepressant-like behaviors in rats, but ketamine-induced VEGF expression only partially contributes to hippocampal neurogenesis and the antidepressant-like effects of ketamine.
Collapse
Affiliation(s)
- Miyeon Choi
- Department of Biochemistry and Molecular Biology, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul 133-791, Republic of Korea
| | - Seung Hoon Lee
- Graduate School of Biomedical Science and Engineering, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul 133-791, Republic of Korea
| | - Ho Lee Chang
- Department of Pharmacology, College of Medicine, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul 133-791, Republic of Korea
| | - Hyeon Son
- Department of Biochemistry and Molecular Biology, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul 133-791, Republic of Korea; Graduate School of Biomedical Science and Engineering, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul 133-791, Republic of Korea.
| |
Collapse
|
44
|
Urnukhsaikhan E, Cho H, Mishig-Ochir T, Seo YK, Park JK. Pulsed electromagnetic fields promote survival and neuronal differentiation of human BM-MSCs. Life Sci 2016; 151:130-138. [PMID: 26898125 DOI: 10.1016/j.lfs.2016.02.066] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 02/15/2016] [Accepted: 02/16/2016] [Indexed: 12/11/2022]
Abstract
Pulsed electromagnetic fields (PEMF) are known to affect biological properties such as differentiation, regulation of transcription factor and cell proliferation. However, the cell-protective effect of PEMF exposure is largely unknown. The aim of this study is to understand the mechanisms underlying PEMF-mediated suppression of apoptosis and promotion of survival, including PEMF-induced neuronal differentiation. Treatment of induced human BM-MSCs with PEMF increased the expression of neural markers such as NF-L, NeuroD1 and Tau. Moreover, treatment of induced human BM-MSCs with PEMF greatly decreased cell death in a dose- and time-dependent manner. There is evidence that Akt and Ras are involved in neuronal survival and protection. Activation of Akt and Ras results in the regulation of survival proteins such as Bad and Bcl-xL. Thus, the Akt/Ras signaling pathway may be a desirable target for enhancing cell survival and treatment of neurological disease. Our analyses indicated that PEMF exposure dramatically increased the activity of Akt, Rsk, Creb, Erk, Bcl-xL and Bad via phosphorylation. PEMF-dependent cell protection was reversed by pretreatment with LY294002, a specific inhibitor of phosphatidylinositol 3-kinase (PI3K). Our data suggest that the PI3K/Akt/Bad signaling pathway may be a possible mechanism for the cell-protective effects of PEMF.
Collapse
Affiliation(s)
| | - Hyunjin Cho
- Dongguk University Research Institute of Biotechnology, Republic of Korea
| | | | - Young-Kwon Seo
- Department of Medical Biotechnology, Dongguk University, Seoul, Republic of Korea
| | - Jung-Kueg Park
- Department of Medical Biotechnology, Dongguk University, Seoul, Republic of Korea
| |
Collapse
|
45
|
He X, Deng FJ, Ge JW, Yan XX, Pan AH, Li ZY. Effects of total saponins of Panax notoginseng on immature neuroblasts in the adult olfactory bulb following global cerebral ischemia/reperfusion. Neural Regen Res 2015; 10:1450-6. [PMID: 26604906 PMCID: PMC4625511 DOI: 10.4103/1673-5374.165514] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The main active components extracted from Panax notoginseng are total saponins. They have been shown to inhibit platelet aggregation, increase cerebral blood flow, improve neurological behavior, decrease infarct volume and promote proliferation and differentiation of neural stem cells in the hippocampus and lateral ventricles. However, there is a lack of studies on whether total saponins of Panax notoginseng have potential benefits on immature neuroblasts in the olfactory bulb following ischemia and reperfusion. This study established a rat model of global cerebral ischemia and reperfusion using four-vessel occlusion. Rats were administered total saponins of Panax notoginseng at 75 mg/kg intraperitoneally 30 minutes after ischemia then once a day, for either 7 or 14 days. Total saponins of Panax notoginseng enhanced the number of doublecortin (DCX)+ neural progenitor cells and increased co-localization of DCX with neuronal nuclei and phosphorylated cAMP response element-binding/DCX+ neural progenitor cells in the olfactory bulb at 7 and 14 days post ischemia. These findings indicate that following global brain ischemia/reperfusion, total saponins of Panax notoginseng promote differentiation of DCX+ cells expressing immature neuroblasts in the olfactory bulb and the underlying mechanism is related to the activation of the signaling pathway of cyclic adenosine monophosphate response element binding protein.
Collapse
Affiliation(s)
- Xu He
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China ; Department of Anatomy, Yiyang Medical College, Yiyang, Hunan Province, China
| | - Feng-Jun Deng
- Department of Pharmacy, Yiyang Medical College, Yiyang, Hunan Province, China
| | - Jin-Wen Ge
- Department of Integrated Traditional and Western Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan Province, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Ai-Hua Pan
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Zhi-Yuan Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
46
|
Ehrlich DE, Josselyn SA. Plasticity-related genes in brain development and amygdala-dependent learning. GENES BRAIN AND BEHAVIOR 2015; 15:125-43. [PMID: 26419764 DOI: 10.1111/gbb.12255] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/12/2015] [Accepted: 09/14/2015] [Indexed: 12/31/2022]
Abstract
Learning about motivationally important stimuli involves plasticity in the amygdala, a temporal lobe structure. Amygdala-dependent learning involves a growing number of plasticity-related signaling pathways also implicated in brain development, suggesting that learning-related signaling in juveniles may simultaneously influence development. Here, we review the pleiotropic functions in nervous system development and amygdala-dependent learning of a signaling pathway that includes brain-derived neurotrophic factor (BDNF), extracellular signaling-related kinases (ERKs) and cyclic AMP-response element binding protein (CREB). Using these canonical, plasticity-related genes as an example, we discuss the intersection of learning-related and developmental plasticity in the immature amygdala, when aversive and appetitive learning may influence the developmental trajectory of amygdala function. We propose that learning-dependent activation of BDNF, ERK and CREB signaling in the immature amygdala exaggerates and accelerates neural development, promoting amygdala excitability and environmental sensitivity later in life.
Collapse
Affiliation(s)
- D E Ehrlich
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Langone Medical Center, New York, NY, USA.,Department of Otolaryngology, NYU Langone School of Medicine, New York, NY, USA
| | - S A Josselyn
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON, Canada.,Department of Psychology, University of Toronto, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
47
|
Ortega-Martínez S. A new perspective on the role of the CREB family of transcription factors in memory consolidation via adult hippocampal neurogenesis. Front Mol Neurosci 2015; 8:46. [PMID: 26379491 PMCID: PMC4549561 DOI: 10.3389/fnmol.2015.00046] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 08/11/2015] [Indexed: 12/21/2022] Open
Abstract
Adult neurogenesis is the process by which new neurons are generated in the brains of adults. Since its discovery 50 years ago, adult neurogenesis has been widely studied in the mammalian brain and has provided a new perspective on the pathophysiology of many psychiatric and neurodegenerative disorders, some of which affect memory. In this regard, adult hippocampal neurogenesis (AHN), which occurs in the subgranular zone (SGZ) of the dentate gyrus (DG), has been suggested to play a role in the formation and consolidation of new memories. This process involves many transcription factors, of which cyclic AMP (cAMP)-responsive element-binding protein (CREB) is a well-documented one. In the developing brain, CREB regulates crucial cell stages (e.g., proliferation, differentiation, and survival), and in the adult brain, it participates in neuronal plasticity, learning, and memory. In addition, new evidence supports the hypothesis that CREB may also participate in learning and memory through its involvement in AHN. This review examines the CREB family of transcription factors, including the different members and known signaling pathways. It highlights the role of CREB as a modulator of AHN, which could underlie its function in memory consolidation mechanisms.
Collapse
Affiliation(s)
- Sylvia Ortega-Martínez
- Turku Centre for Biotechnology, Åbo Akademi University and University of Turku Turku, Finland
| |
Collapse
|
48
|
Liu H, Xue X, Shi H, Qi L, Gong D. Osthole Upregulates BDNF to Enhance Adult Hippocampal Neurogenesis in APP/PS1 Transgenic Mice. Biol Pharm Bull 2015; 38:1439-49. [DOI: 10.1248/bpb.b15-00013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hong Liu
- Department of Neurology, Liaocheng Hospital
| | | | - Huijian Shi
- Department of Anesthesiology, Affilliated Hospital of TaiShan Medical College
| | - Lifeng Qi
- Department of Neurology, Liaocheng Hospital
| | | |
Collapse
|
49
|
Jin H, Pei L, Shu X, Yang X, Yan T, Wu Y, Wei N, Yan H, Wang S, Yao C, Liu D, Tian Q, Wang L, Lu Y. Therapeutic Intervention of Learning and Memory Decays by Salidroside Stimulation of Neurogenesis in Aging. Mol Neurobiol 2014; 53:851-866. [DOI: 10.1007/s12035-014-9045-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 12/02/2014] [Indexed: 12/13/2022]
|
50
|
Nam SM, Kim JW, Yoo DY, Yim HS, Kim DW, Choi JH, Kim W, Jung HY, Won MH, Hwang IK, Seong JK, Yoon YS. Physical exercise ameliorates the reduction of neural stem cell, cell proliferation and neuroblast differentiation in senescent mice induced by D-galactose. BMC Neurosci 2014; 15:116. [PMID: 25359614 PMCID: PMC4219098 DOI: 10.1186/s12868-014-0116-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/06/2014] [Indexed: 02/02/2023] Open
Abstract
Background Aging negatively affects adult hippocampal neurogenesis, and exercise attenuates the age-related reduction in adult hippocampal neurogenesis. In the present study, we used senescent mice induced by D-galactose to examine neural stem cells, cell proliferation, and neuronal differentiation with or without exercise treatment. D-galactose (100 mg/kg) was injected to six-week-old C57BL/6 J mice for 6 weeks to induce the senescent model. During these periods, the animals were placed on a treadmill and acclimated to exercise for 1 week. Then treadmill running was conducted for 1 h/day for 5 consecutive days at 10-12 m/min for 5 weeks. Results Body weight and food intake did not change significantly after D-galactose administration with/without treadmill exercise, although body weight and food intake was highest after treadmill exercise in adult animals and lowest after treadmill exercise in D-galactose-induced senescent model animals. D-galactose treatment significantly decreased the number of nestin (a neural stem cell marker), Ki67 (a cell proliferation marker), and doublecortin (DCX, a differentiating neuroblast marker) positive cells compared to those in the control group. In contrast, treadmill exercise significantly increased Ki67- and DCX-positive cell numbers in both the vehicle- and D-galactose treated groups. In addition, phosphorylated cAMP-response element binding protein (pCREB) and brain derived neurotrophic factor (BDNF) was significantly decreased in the D-galactose treated group, whereas exercise increased their expression in the subgranular zone of the dentate gyrus in both the vehicle- and D-galactose-treated groups. Conclusion These results suggest that treadmill exercise attenuates the D-galactose-induced reduction in neural stem cells, cell proliferation, and neuronal differentiation by enhancing the expression of pCREB and BDNF in the dentate gyrus of the hippocampus. Electronic supplementary material The online version of this article (doi:10.1186/s12868-014-0116-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sung Min Nam
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 151-742, South Korea.
| | - Jong Whi Kim
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 151-742, South Korea.
| | - Dae Young Yoo
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 151-742, South Korea.
| | - Hee Sun Yim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, South Korea.
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, South Korea.
| | - Jung Hoon Choi
- Department of Anatomy, College of Veterinary Medicine, Kangwon National University, Chuncheon, South Korea.
| | - Woosuk Kim
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 151-742, South Korea.
| | - Hyo Young Jung
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 151-742, South Korea.
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea.
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 151-742, South Korea.
| | - Je Kyung Seong
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 151-742, South Korea.
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 151-742, South Korea.
| |
Collapse
|