1
|
Taccola G, Steele AG, Apicella R, Oh J, Dietz V, Rajendran S, Barber SM, Faraji AH, Horner PJ, Sayenko DG. Interactions between descending and spinal circuits on motor output. Exp Neurol 2025; 392:115347. [PMID: 40505828 DOI: 10.1016/j.expneurol.2025.115347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 04/29/2025] [Accepted: 06/09/2025] [Indexed: 06/16/2025]
Abstract
INTRODUCTION Supraspinal influence on spinal networks remains incompletely understood yet is crucial for restoring motor function after neurological insults, including spinal cord injury or stroke. Neuromodulation interventions have been employed with varying success to aid recovery and can be utilized to investigate the relationship between supraspinal and spinal networks. MATERIAL AND METHODS We elicited hindlimb muscle responses by motor cortex stimulation paired with either epidural or transcutaneous spinal stimulation in neurologically intact Long-Evans rats and Yucatan miniature pigs. RESULTS Our findings indicate that modulation of sensorimotor networks using the two stimulation modalities varies with the intensity of spinal stimulation. Specifically, spinal stimulation at near-motor-threshold levels modulates the magnitude of the weak descending volleys, with pronounced increases in compound motor evoked potential magnitude of up to 400-500 %. As spinal stimulation intensity increased, we observed a transition from modulated cortically evoked motor responses toward modulated spinally evoked motor responses. However, when the intensity of spinal stimulation exceeded the supra-motor-threshold, the conditioned responses were abolished. We also examined the effects of timing between paired cortical and spinal stimulation and found that the highest modulation occurred when delivering spinal stimulation using a latency approximately equal to the central conduction time of cortical stimulation. CONCLUSION The capacity of cortical stimulation to modulate the effects of spinal modulation can be described as a convergence of supraspinal and spinal networks on the motor pathway. Overall, our results suggest potential stimulation strategies that capitalize on supraspinal-spinal interactions without the need for targeting individual motor pools with focal spinal stimulation.
Collapse
Affiliation(s)
- G Taccola
- Center for Neuroregeneration, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX 77030, United States of America; Department of Neurosurgery, Center for Neural Systems Restoration, Houston Methodist Hospital, 6550 Fannin Street, Houston, Texas 77030, United States of America; Neuroscience Department, International School for Advanced Studies (SISSA), via Bonomea, 265 - 34136 Trieste, Italy
| | - A G Steele
- Center for Neuroregeneration, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX 77030, United States of America; Department of Neurosurgery, Center for Neural Systems Restoration, Houston Methodist Hospital, 6550 Fannin Street, Houston, Texas 77030, United States of America
| | - R Apicella
- Center for Neuroregeneration, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX 77030, United States of America; Neuroscience Department, International School for Advanced Studies (SISSA), via Bonomea, 265 - 34136 Trieste, Italy
| | - J Oh
- Center for Neuroregeneration, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX 77030, United States of America; Department of Neurosurgery, Center for Neural Systems Restoration, Houston Methodist Hospital, 6550 Fannin Street, Houston, Texas 77030, United States of America
| | - V Dietz
- Center for Neuroregeneration, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX 77030, United States of America; Department of Neurosurgery, Center for Neural Systems Restoration, Houston Methodist Hospital, 6550 Fannin Street, Houston, Texas 77030, United States of America
| | - S Rajendran
- Center for Neuroregeneration, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX 77030, United States of America; Department of Neurosurgery, Center for Neural Systems Restoration, Houston Methodist Hospital, 6550 Fannin Street, Houston, Texas 77030, United States of America
| | - S M Barber
- Center for Neuroregeneration, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX 77030, United States of America; Department of Neurosurgery, Center for Neural Systems Restoration, Houston Methodist Hospital, 6550 Fannin Street, Houston, Texas 77030, United States of America
| | - A H Faraji
- Center for Neuroregeneration, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX 77030, United States of America; Department of Neurosurgery, Center for Neural Systems Restoration, Houston Methodist Hospital, 6550 Fannin Street, Houston, Texas 77030, United States of America
| | - P J Horner
- Center for Neuroregeneration, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX 77030, United States of America; Department of Neurosurgery, Center for Neural Systems Restoration, Houston Methodist Hospital, 6550 Fannin Street, Houston, Texas 77030, United States of America
| | - D G Sayenko
- Center for Neuroregeneration, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX 77030, United States of America; Department of Neurosurgery, Center for Neural Systems Restoration, Houston Methodist Hospital, 6550 Fannin Street, Houston, Texas 77030, United States of America.
| |
Collapse
|
2
|
Urbin MA, Liu F, Moon CH. Microstructural integrity within the damaged region of the residual corticofugal projection from primary motor cortex predicts the effect of noninvasive neuromodulation targeting the spinal cord in chronic stroke. Neurotherapeutics 2025:e00607. [PMID: 40383664 DOI: 10.1016/j.neurot.2025.e00607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/28/2025] [Accepted: 04/28/2025] [Indexed: 05/20/2025] Open
Abstract
Distal limb impairment after neurological injury is largely a consequence of damage to descending tracts that structurally and functionally connect cortical motor areas with spinal motor neuron pools. Noninvasive neuromodulation strategies that aim to enhance cortico-spinal connectivity via spike timing-dependent mechanisms in the spinal cord rely on transmission of descending volleys across the residual tract. Whether variation in the aftereffects of noninvasive neuromodulation depends on the overall volume or microstructural integrity of fibers that survive injury is unknown. Here, paired corticospinal-motoneuronal stimulation (PCMS) was administered to increase cortico-spinal connectivity of the residual tract in humans with longstanding hand impairment due to stroke. Diffusion MRI was used to reconstruct the residual corticofugal projection from primary motor cortex. We found that fractional anisotropy of fibers within the region directly damaged by stroke accounted for 49.2 % of the variance in facilitation of motor-evoked potentials elicited by single-pulse transcranial magnetic stimulation. White matter volume within the damaged region was only weakly correlated with the observed change. Microstructure in caudal portions of the residual tract subject to secondary degeneration strongly predicted voluntary and stimulation-evoked activation of spinal motor neurons pools innervating the paretic hand but were unrelated to PCMS aftereffects. Our findings provide preliminary evidence to indicate that microstructural integrity of fibers directly damaged by stroke, and not the overall volume that remains, predicts the effect of noninvasive neuromodulation mediated downstream in the spinal cord.
Collapse
Affiliation(s)
- Michael A Urbin
- Human Engineering Research Laboratories, VA RR&D Center of Excellence, VA Pittsburgh Healthcare System, Pittsburgh, 15206, PA, USA.
| | - Fang Liu
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, 15213, PA, USA
| | - Chan Hong Moon
- Department of Radiology, University of Pittsburgh, Pittsburgh, 15213, PA, USA
| |
Collapse
|
3
|
Cho KH, Hong MR, Song WK. Effects of end-effector robotic arm reach training with functional electrical stimulation for chronic stroke survivors. Top Stroke Rehabil 2025; 32:337-348. [PMID: 39361711 DOI: 10.1080/10749357.2024.2409595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Upper-extremity dysfunction significantly affects dependence in the daily lives of stroke survivors, limiting their participation in the social environment and reducing their quality of life. OBJECTIVES This study aimed to investigate the effect of end-effector robotic arm reach training (RAT) with functional electrical stimulation (FES) on upper-limb motor recovery in chronic stroke survivors. METHODS In this single-blinded randomized controlled trial, 28 chronic stroke survivors were randomized to receive RAT-with-FES and RAT-without-FES for 40 min/day, three times per week over a 4-week period, and the data of 26 participants were used in the final analysis. Upper-limb motor recovery was measured using the Fugl-Meyer assessment (FMA), and kinematics (movement time, speed, and distance) during reaching movements toward targets placed in three directions (ipsilateral, median, and contralateral sides) were measured using a robotic arm. RESULTS The upper-limb motor recovery (FMA and kinematics) improvement for the within-group comparisons tended to be greater in the RAT-with-FES group than in the RAT-without-FES group. However, in the between-group comparison, no significant differences were found in FMA, and significant differences were observed only for 2 distance parameters of kinematic factors: total (23.0% vs. 1.7%) and straight total (25.5% vs. 2.6%) distance on the ipsilateral side (p < 0.05). CONCLUSIONS This study was unable to clearly reveal the positive effects of electrical stimulation combined with robotic arm training. However, we believe that it provides basic data that furthers our understanding of the role of hybrid neuroprostheses in stroke rehabilitation and the factors determining successful treatment.
Collapse
Affiliation(s)
- Ki Hun Cho
- Department of Physical Therapy, Korea National University of Transportation, Jeungpyeong, Republic of Korea
| | - Mi Ran Hong
- Department of Rehabilitative & Assistive Technology, National Rehabilitation Research Institute, National Rehabilitation Center, Seoul, Republic of Korea
| | - Won-Kyung Song
- Department of Rehabilitative & Assistive Technology, National Rehabilitation Research Institute, National Rehabilitation Center, Seoul, Republic of Korea
| |
Collapse
|
4
|
Hussain SJ, Freedberg MV. Debunking the Myth of Excitatory and Inhibitory Repetitive Transcranial Magnetic Stimulation in Cognitive Neuroscience Research. J Cogn Neurosci 2025; 37:1009-1022. [PMID: 39785679 DOI: 10.1162/jocn_a_02288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Repetitive TMS (rTMS) is a powerful neuroscientific tool with the potential to noninvasively identify brain-behavior relationships in humans. Early work suggested that certain rTMS protocols (e.g., continuous theta-burst stimulation, intermittent theta-burst stimulation, high-frequency rTMS, low-frequency rTMS) predictably alter the probability that cortical neurons will fire action potentials (i.e., change cortical excitability). However, despite significant methodological, conceptual, and technical advances in rTMS research over the past few decades, overgeneralization of early rTMS findings has led to a stubbornly persistent assumption that rTMS protocols by their nature induce behavioral and/or physiological inhibition or facilitation, even when they are applied to nonmotor cortical sites or under untested circumstances. In this Perspectives article, we offer a "public service announcement" that summarizes the origins of this problematic assumption, highlighting limitations of seminal studies that inspired them and results of contemporary studies that violate them. Next, we discuss problems associated with holding this assumption, including making brain-behavior inferences without confirming the locality and directionality of neurophysiological changes. Finally, we provide recommendations for researchers to eliminate this misguided assumption when designing and interpreting their own work, emphasizing results of recent studies showing that the effects of rTMS on neurophysiological metrics and their associated behaviors can be caused by mechanisms other than binary changes in excitability of the stimulated brain region or network. Collectively, we contend that no rTMS protocol is by its nature either excitatory or inhibitory, and that researchers must use caution with these terms when forming experimental hypotheses and testing brain-behavior relationships.
Collapse
|
5
|
Murray LM, McIntosh JR, Goldsmith JA, Wu YK, Liu M, Sanford SP, Joiner EF, Mandigo C, Virk MS, Tyagi V, Carmel JB, Harel NY. Timing-dependent synergies between noninvasive motor cortex and spinal cord stimulation in chronic cervical spinal cord injury. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.04.17.25326011. [PMID: 40313296 PMCID: PMC12045415 DOI: 10.1101/2025.04.17.25326011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Precise movement requires integrating descending motor control with sensory feedback. Sensory networks interact strongly with descending motor circuits within the spinal cord. We targeted this interaction by pairing stimulation of the motor cortex with coordinated stimulation of the cervical spinal cord. We used separate non-invasive and epidural experiments to test the hypothesis that the strongest muscle response would occur when paired brain and spinal cord stimuli simultaneously converge within the spinal cord. For non-invasive experiments, we measured arm and hand muscle motor evoked potentials (MEPs) in response to transcranial magnetic stimulation (TMS) and transcutaneous spinal cord stimulation (TSCS) in 16 individuals with chronic spinal cord injury (SCI) and 15 uninjured individuals. We compared this noninvasive approach to intraoperative paired stimulation experiments using dorsal epidural electrodes in 38 individuals undergoing surgery for cervical myelopathy. We observed augmented muscle responses to suprathreshold TMS when subthreshold TSCS stimuli were timed to converge synchronously in the spinal cord. At convergent timing, target muscle MEPs increased by 11.0% overall (13.3% in people with SCI, 6.2% in uninjured individuals) compared to non-convergent time intervals. Facilitation correlated with TSCS intensity, with intensity close to movement threshold being most effective. Facilitation did not correlate with SCI level or severity, indicating spared circuits were sufficient for this effect. Noninvasive pairing produced less facilitation compared to intraoperative (epidural) pairing. Thus, sensorimotor interactions in the cervical spinal spinal cord can be targeted with paired stimulation in health and after SCI.
Collapse
Affiliation(s)
- Lynda M. Murray
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
- James J. Peters VA Med. Ctr., 130 West Kingsbridge Road, Bronx, NY 10468
| | - James R. McIntosh
- Dept. of Neurology, Columbia University, 650 W. 168th St, New York, NY, 10032, USA
| | - Jacob A. Goldsmith
- James J. Peters VA Med. Ctr., 130 West Kingsbridge Road, Bronx, NY 10468
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - Yu-Kuang Wu
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
- James J. Peters VA Med. Ctr., 130 West Kingsbridge Road, Bronx, NY 10468
| | - Mingxiao Liu
- James J. Peters VA Med. Ctr., 130 West Kingsbridge Road, Bronx, NY 10468
| | - Sean P. Sanford
- James J. Peters VA Med. Ctr., 130 West Kingsbridge Road, Bronx, NY 10468
| | - Evan F. Joiner
- Dept. of Neurological Surgery, Columbia University, 650 W. 168th St, New York, NY, 10032, USA
| | - Christopher Mandigo
- Dept. of Neurological Surgery, Columbia University, 650 W. 168th St, New York, NY, 10032, USA
- New York Presbyterian, The Och Spine Hospital, 5141 Broadway, New York, NY 10034
| | - Michael S. Virk
- Dept. of Neurological Surgery, Weill Cornell Medicine - New York Presbyterian, Och Spine, 1300 York Ave, New York, NY 10065
| | - Vishweshwar Tyagi
- Dept. of Neurology, Columbia University, 650 W. 168th St, New York, NY, 10032, USA
| | - Jason B. Carmel
- Dept. of Neurology, Columbia University, 650 W. 168th St, New York, NY, 10032, USA
| | - Noam Y. Harel
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
- James J. Peters VA Med. Ctr., 130 West Kingsbridge Road, Bronx, NY 10468
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| |
Collapse
|
6
|
Yan J, Luo Q, Chen Z, Wang Z, Guo X, Xie Q, Oetomo D, Tan Y, Niu CM. Spike-Based Neuromorphic Model of Spasticity for Generation of Affected Neural Activity. IEEE Trans Neural Syst Rehabil Eng 2025; 33:1360-1371. [PMID: 40173059 DOI: 10.1109/tnsre.2025.3557044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Spasticity is a common motor symptom that disrupt muscle contraction and hence movements. Proper management of spasticity requires identification of its origins and reasoning of the therapeutic plans. Challenges arise because spasticity might originate from elevated activity in both the cortical and sub-cortical pathways. No existing models (animal or computational) could cover all possibilities leading to spasticity, especially the peripheral causes such as hyperreflexia. To bridge this gap, this work develops a novel computational, spike-based neuromorphic model of spasticity, named NEUSPA. Rather than relying solely on a monosynaptic spinal loop comprising alpha motoneurons, sensory afferents, synapses, skeletal muscles, and muscle spindles, the NEUSPA model introduces two additional inputs: additive (ADD) and multiplicative (MUL). These inputs generate velocity-dependent EMG responses. The effectiveness of the NEUSPA model is validated using classic experiments from the literature and data collected from two post-stroke patients with affected upper-limb movements. The model is also applied to simulate two real-world scenarios that patients may encounter. Simulation results suggest that hyperreflexia due to extra inputs was sufficient to produce spastic EMG responses. However, EMG onsets were more sensitive to ADD inputs (slope =0.628, p <0.0001, r ${}^{{2}} =0.96$ ) compared to MUL inputs (slope =0.471, p <0.0001, r ${}^{{2}} =0.92$ ). Additionally, simulation of finger-pressing on a deformable object indicated that spasticity could increase the duration from 1.03s to 1.20s compared to a non-impaired condition. These results demonstrate that NEUSPA effectively synthesizes abnormal physiological data, facilitating decision-making and machine learning in neurorehabilitation.
Collapse
|
7
|
Bjørndal JR, Jespersen L, Beck MM, Karabanov AN, Christiansen L, Lundbye-Jensen J. Paired corticospinal-motoneuronal stimulation enhances ballistic motor learning and corticospinal plasticity in older adults. J Physiol 2025. [PMID: 40163584 DOI: 10.1113/jp287204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 03/11/2025] [Indexed: 04/02/2025] Open
Abstract
Late adulthood is accompanied by declines in manual motor performance and reduced neuroplasticity, which can influence the effects of motor practice and learning. Corticomotoneuronal (CM) connectivity can be targeted non-invasively through individualized paired corticospinal-motoneuronal stimulation (PCMS) to prime ballistic motor learning in young adults. However, the priming effects of PCMS on motor output and ballistic motor learning in older adults remain unexplored. Part one of this study investigates ballistic motor performance and learning in young (20-30 years) and older (65-75 years) adults as within-session changes in peak acceleration of rapid index finger flexions and delayed retention 1 week later. The results demonstrate that older adults display lower maximal acceleration compared to young adults and smaller improvements with practice, indicating inferior learning and low levels of delayed retention. Part two of the study investigates the effects of PCMS on motor learning and corticospinal excitability in older adults. Corticospinal excitability was assessed throughout the experiment by recording motor evoked potentials from the first dorsal interosseous. PCMS increased subsequent ballistic learning and corticospinal excitability after practice compared to SHAM. Importantly, combined PCMS and motor practice also enhanced long-term retention, and performance remained enhanced 7 days later. This means that PCMS effectively reinstated the otherwise absent long-term learning in older adults. We demonstrate that PCMS primes experience-dependent plasticity accompanying motor learning resulting in long-term benefits on motor performance in older adults. These findings highlight the potential of PCMS to enhance the effects of motor practice and benefit functional abilities in older adults. KEY POINTS: Late adulthood is associated with reduced activation of spinal motoneurons during vigorous movements, resulting in slower and less precise movements. Older adults (aged 65-75 years) display lower ballistic motor performance compared to younger adults (aged 20-30 years); furthermore, older adults exhibit smaller improvements during practice, and lower retention. A single session of paired corticospinal-motoneuronal stimulation (PCMS) increases corticospinal excitability and primes within-session ballistic motor learning in older adults. A single session of PCMS improves long-term retention following ballistic motor learning. We provide proof-of-principle that PCMS represents a potential strategy to enhance the effects of motor practice and counteract age-related decline in motor function.
Collapse
Affiliation(s)
- Jonas Rud Bjørndal
- Movement & Neuroscience, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - Lasse Jespersen
- Movement & Neuroscience, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - Mikkel Malling Beck
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Anke Ninija Karabanov
- Movement & Neuroscience, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - Lasse Christiansen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Jesper Lundbye-Jensen
- Movement & Neuroscience, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Chen B, Gaikwad S, Powell RH, Jo HJ, Kessler A, Chen D, Heckman CJ, Jones L, Guest J, Wolpaw J, Oudega M, Blight AR, Perez MA. Combinatorial approaches increasing neuronal activity accelerate recovery after spinal cord injury. Brain 2025:awaf099. [PMID: 40126943 DOI: 10.1093/brain/awaf099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/07/2025] [Accepted: 02/14/2025] [Indexed: 03/26/2025] Open
Abstract
Combinatorial approaches targeting multiple aspects of spinal cord injury (SCI) pathophysiology are needed to maximize functional recovery. We hypothesized that strengthening corticospinal synapses via Hebbian stimulation and increasing neuronal transmission with 4-aminopyridine (4-AP, a potassium blocker) could accelerate locomotor recovery in individuals with chronic SCI. Participants were randomly assigned to receive 10 mg of 4-AP or placebo, where both groups followed with 60-min of Hebbian stimulation targeting corticospinal-motoneuronal synapses supplying leg muscles involved in locomotion and 60-min of standard exercise rehabilitation for 40 sessions over 8-14 weeks. During Hebbian stimulation, 720 paired pulses were delivered to elicit corticospinal action potentials via electrical stimulation of the thoracic spine, ensuring volleys reached the spinal cord 1-2 milliseconds before motoneurons were retrogradely activated through bilateral electrical stimulation of the femoral, common peroneal, and posterior tibial nerves (targeting the quadriceps femoris, tibialis anterior, and soleus muscles, respectively). Results showed that participants who received 4-AP exhibited significantly greater improvements in walking speed and endurance, corticospinal transmission, and light touch sensation compared to those who received the placebo. The minimal clinically important difference in walking speed and endurance was achieved after 20 sessions in the 4-AP group, but was not consistently reached in the placebo group. Although walking continued to improve in both groups over the course of 40 sessions, the 4-AP group demonstrated significantly greater progress. Improvement in the 4-AP group was still present twelve months later. These findings suggest that 4-AP represents a strategy to potentiate and accelerate Hebbian stimulation effects on motor recovery in individuals with chronic SCI.
Collapse
Affiliation(s)
- Bing Chen
- Shirley Ryan AbilityLab, Chicago, IL 60611, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL 60611, USA
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL 60611, USA
- Edward Jr. Hines VA Hospital, Hines, IL 60141, USA
| | | | | | - Hang Jin Jo
- Shirley Ryan AbilityLab, Chicago, IL 60611, USA
- Department of Rehabilitation Science, University at Buffalo, Buffalo, NY, 14260, USA
| | - Allison Kessler
- Shirley Ryan AbilityLab, Chicago, IL 60611, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL 60611, USA
| | - David Chen
- Shirley Ryan AbilityLab, Chicago, IL 60611, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL 60611, USA
| | - C J Heckman
- Shirley Ryan AbilityLab, Chicago, IL 60611, USA
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL 60611, USA
| | - Linda Jones
- Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - James Guest
- University of Miami, Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miami, FL 33136, USA
| | - Jonathan Wolpaw
- National Center for Adaptive Neurotechnologies, Albany Stratton VA Medical Center, Albany, NY 12208, USA
| | - Martin Oudega
- Shirley Ryan AbilityLab, Chicago, IL 60611, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL 60611, USA
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL 60611, USA
- Edward Jr. Hines VA Hospital, Hines, IL 60141, USA
| | - Andrew R Blight
- Faculty of Health, University of Plymouth, Plymouth PL4 8AA, UK
| | - Monica A Perez
- Shirley Ryan AbilityLab, Chicago, IL 60611, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL 60611, USA
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL 60611, USA
- Edward Jr. Hines VA Hospital, Hines, IL 60141, USA
| |
Collapse
|
9
|
Germann M, Nabila E, Baker SN. Paired Stimulation of Different Digits for 30 min Does Not Produce Long-Term Plastic Changes in the Human Cutaneomuscular Reflex. eNeuro 2025; 12:ENEURO.0103-24.2024. [PMID: 40113256 PMCID: PMC11927050 DOI: 10.1523/eneuro.0103-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 03/22/2025] Open
Abstract
Cutaneomuscular reflexes (CMRs) can be recorded in the hand muscle of human subjects after stimulation of a digital nerve. We hypothesized that repeated synchronous stimulation of nerves from two digits may lead to long-term plastic changes in CMR, by the mechanisms of spike-timing-dependent plasticity (STDP). To test this idea, we conducted experiments in 27 healthy human volunteers. After baseline measurement of CMR, one of four 30-min-long stimulation conditions were tested; the CMR was then remeasured. The four conditions were simultaneous index finger and thumb stimulation; asynchronous index finger and thumb stimulation; thumb 5 ms before index finger stimulation; and thumb-only stimulation. Neither the early (E1) nor late excitatory (E2) components of the CMR showed consistent changes after any stimulation condition. The inhibitory (I1) component was slightly reduced in all cases. To understand why paired stimulation did not produce long-term changes, we conducted a further experiment. In this, we measured the CMR in response to simultaneous stimulation of index finger and thumb, compared with a prediction expected if the responses summed linearly. This revealed sublinear summation, possibly indicating partial response saturation after stimulation of only one digit. We argue such a pattern prevents paired stimuli from generating especially reliable and well-timed outputs relative to synaptic inputs in downstream neurons, which is required to produce plasticity by STDP.
Collapse
Affiliation(s)
- Maria Germann
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Eldesta Nabila
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Stuart N Baker
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| |
Collapse
|
10
|
Holopainen K, Tolmacheva A, Bersch I, Haakana P, Pohjonen M, Kirveskari E, Arokoski J, Shulga A. Stable improvement in hand muscle strength in incomplete spinal cord injury patients by long-term paired associative stimulation-a case series study. Front Neurol 2025; 16:1486591. [PMID: 39968455 PMCID: PMC11832407 DOI: 10.3389/fneur.2025.1486591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/09/2025] [Indexed: 02/20/2025] Open
Abstract
Introduction Paired associative stimulation (PAS) consists of high-intensity transcranial magnetic stimulation and high-frequency electric stimulation of the peripheral nerve (high-PAS) and can induce plastic changes in spared corticospinal connections in individuals with spinal cord injury (SCI), leading to the restoration of motor function. The objective of this study was to investigate the long-term effect of high-PAS on hand function and muscle strength. Materials and methods High-PAS was applied to four patients with chronic, incomplete, cervical-level SCI multiple times a week for as long as hand muscle strength improved. The median, ulnar, and radial nerves of one hand chosen by the patient were stimulated. Patients underwent Medical Research Council (MRC) manual muscle testing monthly during the stimulation period and were followed for 12 months after the stimulation. Results Strength increased in both the stimulated and non-stimulated hands. In muscles innervated by stimulated nerves, strength increased on average by 24.5% from pre- to post-conditions (p = 0.013). The achieved strength level was maintained for a minimum of 6 months after completing the stimulations. Patients were also evaluated with motor point (MP) integrity testing to estimate the extent of lower motor neuron damage. High MP integrity testing scores (low extent of damage) correlated positively with good MRC outcomes of the stimulated hand after high-PAS (r = 0.52, p ≤ 0.001). Conclusion High-PAS may improve muscle strength of both the stimulated and contralateral sides. Stable results were achieved when stimulation was delivered as long as MRC score improved progressively. The optimal duration of high-PAS treatment remains unknown. Clinical trial registration clinicaltrials.gov, identifier NCT03045744.
Collapse
Affiliation(s)
- Kirsi Holopainen
- BioMag Laboratory, HUS Diagnostic Centre, Helsinki University Hospital, University of Helsinki and Aalto University School of Science, Helsinki, Finland
| | - Aleksandra Tolmacheva
- BioMag Laboratory, HUS Diagnostic Centre, Helsinki University Hospital, University of Helsinki and Aalto University School of Science, Helsinki, Finland
| | - Ines Bersch
- International FES Centre, Swiss Paraplegic Centre, Nottwil, Switzerland
| | - Piia Haakana
- BioMag Laboratory, HUS Diagnostic Centre, Helsinki University Hospital, University of Helsinki and Aalto University School of Science, Helsinki, Finland
- Department of Physiology, University of Helsinki, Helsinki, Finland
| | - Markus Pohjonen
- Department of Internal Medicine and Rehabilitation, Division of Rehabilitation, Helsinki University Hospital and Helsinki University, Helsinki, Finland
| | - Erika Kirveskari
- BioMag Laboratory, HUS Diagnostic Centre, Helsinki University Hospital, University of Helsinki and Aalto University School of Science, Helsinki, Finland
- HUS Medical Imaging Centre, Clinical Neurophysiology, Clinical Neurosciences, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Jari Arokoski
- Department of Internal Medicine and Rehabilitation, Division of Rehabilitation, Helsinki University Hospital and Helsinki University, Helsinki, Finland
| | - Anastasia Shulga
- BioMag Laboratory, HUS Diagnostic Centre, Helsinki University Hospital, University of Helsinki and Aalto University School of Science, Helsinki, Finland
- Department of Internal Medicine and Rehabilitation, Division of Rehabilitation, Helsinki University Hospital and Helsinki University, Helsinki, Finland
| |
Collapse
|
11
|
Finn HT, Parono M, Bye EA, Taylor JL, Gandevia SC, Héroux ME, Butler JE. Differential effects of stimulation waveform and intensity on the neural structures activated by lumbar transcutaneous spinal cord stimulation. J Neurophysiol 2025; 133:447-463. [PMID: 39718492 DOI: 10.1152/jn.00266.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/25/2024] Open
Abstract
Lumbar transcutaneous spinal cord stimulation (TSS) evokes synchronized muscle responses, termed spinally evoked motor response (sEMR). Whether the structures TSS activates to evoke sEMRs differ when TSS intensity and waveform are varied is unknown. In 15 participants (9 F, 6 M), sEMRs were evoked by TSS over L1-L3 (at sEMR threshold and suprathreshold intensities) with conventional (one 400-µs biphasic pulse) or high-frequency burst (ten 40-µs biphasic pulses at 10 kHz) stimulus waveforms in vastus medialis (VM), tibialis anterior (TA), and medial gastrocnemius (MG) muscles. TSS was paired with transcranial magnetic stimulation (TMS) over the contralateral motor cortex at relative interstimulus intervals (ISIs) (-10 ms to 11 ms), centered on the ISI when TSS and TMS inputs simultaneously activated VM motoneurons. Doublet TSS was delivered at 80-ms ISI. For VM, the area of the combined response evoked by paired TMS and TSS was not facilitated at any ISI. For TA and MG, combined responses were facilitated by ∼40-100% when TMS activated the motoneurons before or at a similar time as TSS, particularly with suprathreshold TSS. Additionally, for TA, there was greater suppression of the second sEMR evoked by TSS doublets using suprathreshold conventional TSS compared to high-frequency burst TSS (P < 0.001). The results suggest that for VM TSS activated predominantly motor axons, but for TA and MG facilitation of the sEMR by TMS suggests that TSS activated sensory axons. Stimulation waveforms had similar outcomes in most conditions.NEW & NOTEWORTHY Transcutaneous spinal cord stimulation (TSS) can evoke muscle responses by activation of sensory and/or motor axons. The relative contribution of these varies across the muscles tested. We found evidence for activation of sensory axons with TSS for tibialis anterior and medial gastrocnemius but not for vastus medialis. In cases where sensory axons were activated, conventional TSS activated relatively more sensory axons than high-frequency burst TSS.
Collapse
Affiliation(s)
- Harrison T Finn
- Spinal Cord Injury Research Centre, Neuroscience Research Australia, Randwick, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Marel Parono
- Spinal Cord Injury Research Centre, Neuroscience Research Australia, Randwick, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Elizabeth A Bye
- Spinal Cord Injury Research Centre, Neuroscience Research Australia, Randwick, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Janet L Taylor
- Spinal Cord Injury Research Centre, Neuroscience Research Australia, Randwick, New South Wales, Australia
- Edith Cowan University, Joondalup, Western Australia, Australia
| | - Simon C Gandevia
- Spinal Cord Injury Research Centre, Neuroscience Research Australia, Randwick, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
- Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Martin E Héroux
- Spinal Cord Injury Research Centre, Neuroscience Research Australia, Randwick, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Jane E Butler
- Spinal Cord Injury Research Centre, Neuroscience Research Australia, Randwick, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
12
|
Nätkynmäki A, Lauronen L, Haakana P, Kirveskari E, Avela J, Shulga A. Spinally targeted paired associated stimulation with high-frequency peripheral component induces spinal level plasticity in healthy subjects. Sci Rep 2024; 14:31052. [PMID: 39730811 PMCID: PMC11680591 DOI: 10.1038/s41598-024-82271-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 12/04/2024] [Indexed: 12/29/2024] Open
Abstract
A novel variant of paired-associative stimulation (PAS) consisting of high-frequency peripheral nerve stimulation (PNS) and high-intensity transcranial magnetic stimulation (TMS) above the motor cortex, called high-PAS, can lead to improved motor function in patients with incomplete spinal cord injury. In PAS, the interstimulus interval (ISI) between the PNS and TMS pulses plays a significant role in the location of the intended effect of the induced plastic changes. While conventional PAS protocols (single TMS pulse often applied with intensity close to resting motor threshold, and single PNS pulse) usually require precisely defined ISIs, high-PAS can induce plasticity at a wide range of ISIs and also in spite of small ISI errors, which is helpful in clinical settings where precise ISI determination can be challenging. However, this also makes the determination of high-PAS level of plasticity induction more challenging and calls for more research on the mechanism of action of high-PAS. We sought to determine if the TMS-induced orthodromic activation in upper motor neurons and PNS-induced antidromic activation in lower motor neurons arriving simultaneously to the intervening synapses at the spinal cord level can be shown to induce acute changes at the targeted location, unlike an otherwise identical but cortically targeted equivalent. Ten healthy subjects participated in two separate sessions, where high-PAS induced activation was set to target spinal (SPINAL) or cortical (CORTICAL) levels with ISI manipulation between otherwise identically applied TMS and PNS pulses. The outcomes were assessed with motor-evoked potentials (MEPs) and Hoffmann (H)-reflex before (PRE), immediately after, and 30 and 60 min after (POST, POST30, POST60) the intervention. MEPs were significantly enhanced in both interventions. In the SPINAL but not in the CORTICAL session, maximal H-reflex amplitudes significantly increased at two timepoints, indicating an increase in spinal excitability. The H/M ratio (maximal H-reflex normalized to maximal M-wave) also showed a significant increase from PRE to POST30 timepoint in the SPINAL session when compared with the CORTICAL equivalent. These results confirm that spinally targeted high-PAS with individualized ISIs indeed has an effect at the spinal level in the sensorimotor system. High-PAS is a novel PAS variant that has shown promising results in motor rehabilitation of individuals with SCI and these new findings contribute to the understanding of its mechanism of action. This provides further evidence for high-PAS as an option for clinical settings to target plasticity at different levels of the corticospinal tract.
Collapse
Affiliation(s)
- Anna Nätkynmäki
- BioMag Laboratory, HUS Diagnostic Center, Helsinki University Hospital, University of Helsinki and Aalto University School of Science, Helsinki, Finland
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Leena Lauronen
- Clinical Neurophysiology, New Children's Hospital, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Piia Haakana
- BioMag Laboratory, HUS Diagnostic Center, Helsinki University Hospital, University of Helsinki and Aalto University School of Science, Helsinki, Finland
- Motion Analysis Laboratory, New Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Department of Physiology, University of Helsinki, Helsinki, Finland
| | - Erika Kirveskari
- BioMag Laboratory, HUS Diagnostic Center, Helsinki University Hospital, University of Helsinki and Aalto University School of Science, Helsinki, Finland
- Clinical Neurophysiology, Clinical Neurosciences, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Janne Avela
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Anastasia Shulga
- BioMag Laboratory, HUS Diagnostic Center, Helsinki University Hospital, University of Helsinki and Aalto University School of Science, Helsinki, Finland.
- Department of Physical and Rehabilitation Medicine, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.
| |
Collapse
|
13
|
Haakana P, Nätkynmäki A, Kirveskari E, Mäkelä JP, Kilgard MP, Tarvainen MP, Shulga A. Effects of auricular vagus nerve stimulation and electrical earlobe stimulation on motor-evoked potential changes induced by paired associative stimulation. Eur J Neurosci 2024; 60:5949-5965. [PMID: 39258329 DOI: 10.1111/ejn.16539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/29/2024] [Indexed: 09/12/2024]
Abstract
Paired associative stimulation (PAS) is a combination of transcranial magnetic stimulation (TMS) and peripheral nerve stimulation (PNS). PAS can induce long-term potentiation (LTP)-like plasticity in humans, manifested as motor-evoked potential (MEP) enhancement. We have developed a variant of PAS ("high-PAS"), which consists of high-frequency PNS and high-intensity TMS and targets spinal plasticity and promotes rehabilitation after spinal cord injury (SCI). Vagus nerve stimulation (VNS) promotes LTP-like plasticity and enhances recovery in SCI and stroke in humans and animals when combined with repetitive motor training. We combined high-PAS with simultaneous noninvasive transcutaneous auricular VNS (aVNS) to determine if aVNS enhances the extent of PAS-induced MEP amplitude increase. Sixteen healthy participants were stimulated for 20 min in four different sessions (PAS, PAS + aVNS, PAS + shamVNS, and aVNS) in a randomized single-blind setup. MEPs were measured before, immediately after, and at 30, 60, and 90 min post-stimulation. Stimulation protocols with PAS significantly potentiated MEPs (p = 0.005) when compared with aVNS (p = 0.642). Although not significant, MEP enhancement observed after PAS (43.5%) is further increased by aVNS (49.7%) and electrical earlobe stimulation (63.9%). Our aVNS setup failed to significantly enhance the effect of PAS, but sham VNS revealed a trend towards enhanced plasticity. Optimization of auricular VNS stimulation setup is required for possible tests of patients with SCI.
Collapse
Affiliation(s)
- Piia Haakana
- BioMag Laboratory, HUS Diagnostic Center, Helsinki University Hospital, University of Helsinki and Aalto University School of Science, Helsinki, Finland
- Motion Analysis Laboratory, New Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Department of Physiology, University of Helsinki, Helsinki, Finland
| | - Anna Nätkynmäki
- BioMag Laboratory, HUS Diagnostic Center, Helsinki University Hospital, University of Helsinki and Aalto University School of Science, Helsinki, Finland
| | - Erika Kirveskari
- BioMag Laboratory, HUS Diagnostic Center, Helsinki University Hospital, University of Helsinki and Aalto University School of Science, Helsinki, Finland
- HUS Medical Imaging Center, Clinical Neurophysiology; Clinical Neurosciences, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Jyrki P Mäkelä
- BioMag Laboratory, HUS Diagnostic Center, Helsinki University Hospital, University of Helsinki and Aalto University School of Science, Helsinki, Finland
| | - Michael P Kilgard
- Texas Biomedical Device Center, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Mika P Tarvainen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Anastasia Shulga
- BioMag Laboratory, HUS Diagnostic Center, Helsinki University Hospital, University of Helsinki and Aalto University School of Science, Helsinki, Finland
- Department of Physical and Rehabilitation Medicine, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Bjørndal JR, Beck MM, Jespersen L, Christiansen L, Lundbye-Jensen J. Hebbian priming of human motor learning. Nat Commun 2024; 15:5126. [PMID: 38879614 PMCID: PMC11180091 DOI: 10.1038/s41467-024-49478-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/03/2024] [Indexed: 06/19/2024] Open
Abstract
Motor learning relies on experience-dependent plasticity in relevant neural circuits. In four experiments, we provide initial evidence and a double-blinded, sham-controlled replication (Experiment I-II) demonstrating that motor learning involving ballistic index finger movements is improved by preceding paired corticospinal-motoneuronal stimulation (PCMS), a human model for exogenous induction of spike-timing-dependent plasticity. Behavioral effects of PCMS targeting corticomotoneuronal (CM) synapses are order- and timing-specific and partially bidirectional (Experiment III). PCMS with a 2 ms inter-arrival interval at CM-synapses enhances learning and increases corticospinal excitability compared to control protocols. Unpaired stimulations did not increase corticospinal excitability (Experiment IV). Our findings demonstrate that non-invasively induced plasticity interacts positively with experience-dependent plasticity to promote motor learning. The effects of PCMS on motor learning approximate Hebbian learning rules, while the effects on corticospinal excitability demonstrate timing-specificity but not bidirectionality. These findings offer a mechanistic rationale to enhance motor practice effects by priming sensorimotor training with individualized PCMS.
Collapse
Affiliation(s)
- Jonas Rud Bjørndal
- Movement & Neuroscience, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Nørre Allé 51, Copenhagen N, Denmark.
| | - Mikkel Malling Beck
- Movement & Neuroscience, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Nørre Allé 51, Copenhagen N, Denmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Kettegård Allé 30, Hvidovre, Denmark
| | - Lasse Jespersen
- Movement & Neuroscience, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Nørre Allé 51, Copenhagen N, Denmark
| | - Lasse Christiansen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Kettegård Allé 30, Hvidovre, Denmark
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen N, Denmark
| | - Jesper Lundbye-Jensen
- Movement & Neuroscience, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Nørre Allé 51, Copenhagen N, Denmark.
| |
Collapse
|
15
|
McIntosh JR, Joiner EF, Goldberg JL, Greenwald P, Dionne AC, Murray LM, Thuet E, Modik O, Shelkov E, Lombardi JM, Sardar ZM, Lehman RA, Chan AK, Riew KD, Harel NY, Virk MS, Mandigo C, Carmel JB. Timing-dependent synergies between motor cortex and posterior spinal stimulation in humans. J Physiol 2024; 602:2961-2983. [PMID: 38758005 PMCID: PMC11178459 DOI: 10.1113/jp286183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/04/2024] [Indexed: 05/18/2024] Open
Abstract
Volitional movement requires descending input from the motor cortex and sensory feedback through the spinal cord. We previously developed a paired brain and spinal electrical stimulation approach in rats that relies on convergence of the descending motor and spinal sensory stimuli in the cervical cord. This approach strengthened sensorimotor circuits and improved volitional movement through associative plasticity. In humans, it is not known whether posterior epidural spinal cord stimulation targeted at the sensorimotor interface or anterior epidural spinal cord stimulation targeted within the motor system is effective at facilitating brain evoked responses. In 59 individuals undergoing elective cervical spine decompression surgery, the motor cortex was stimulated with scalp electrodes and the spinal cord was stimulated with epidural electrodes, with muscle responses being recorded in arm and leg muscles. Spinal electrodes were placed either posteriorly or anteriorly, and the interval between cortex and spinal cord stimulation was varied. Pairing stimulation between the motor cortex and spinal sensory (posterior) but not spinal motor (anterior) stimulation produced motor evoked potentials that were over five times larger than brain stimulation alone. This strong augmentation occurred only when descending motor and spinal afferent stimuli were timed to converge in the spinal cord. Paired stimulation also increased the selectivity of muscle responses relative to unpaired brain or spinal cord stimulation. Finally, clinical signs suggest that facilitation was observed in both injured and uninjured segments of the spinal cord. The large effect size of this paired stimulation makes it a promising candidate for therapeutic neuromodulation. KEY POINTS: Pairs of stimuli designed to alter nervous system function typically target the motor system, or one targets the sensory system and the other targets the motor system for convergence in cortex. In humans undergoing clinically indicated surgery, we tested paired brain and spinal cord stimulation that we developed in rats aiming to target sensorimotor convergence in the cervical cord. Arm and hand muscle responses to paired sensorimotor stimulation were more than five times larger than brain or spinal cord stimulation alone when applied to the posterior but not anterior spinal cord. Arm and hand muscle responses to paired stimulation were more selective for targeted muscles than the brain- or spinal-only conditions, especially at latencies that produced the strongest effects of paired stimulation. Measures of clinical evidence of compression were only weakly related to the paired stimulation effect, suggesting that it could be applied as therapy in people affected by disorders of the central nervous system.
Collapse
Affiliation(s)
- James R McIntosh
- Department of Neurology, Columbia University, New York, NY, USA
- Department of Orthopedic Surgery, Columbia University, New York, NY, USA
- Department of Neurological Surgery, Weill Cornell Medicine - New York Presbyterian, Och Spine, New York, NY, USA
| | - Evan F Joiner
- Department of Neurological Surgery, Columbia University, New York, NY, USA
| | - Jacob L Goldberg
- Department of Neurological Surgery, Weill Cornell Medicine - New York Presbyterian, Och Spine, New York, NY, USA
| | - Phoebe Greenwald
- Department of Neurological Surgery, Columbia University, New York, NY, USA
| | - Alexandra C Dionne
- Department of Orthopedic Surgery, Columbia University, New York, NY, USA
| | - Lynda M Murray
- Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters VA Med. Ctr., Bronx, NY, USA
| | - Earl Thuet
- New York Presbyterian, The Och Spine Hospital, New York, NY, USA
| | - Oleg Modik
- Department of Neurology, Weill Cornell Medicine - New York Presbyterian, Och Spine, New York, NY, USA
| | - Evgeny Shelkov
- Department of Neurology, Weill Cornell Medicine - New York Presbyterian, Och Spine, New York, NY, USA
| | - Joseph M Lombardi
- Department of Orthopedic Surgery, Columbia University, New York, NY, USA
- New York Presbyterian, The Och Spine Hospital, New York, NY, USA
| | - Zeeshan M Sardar
- Department of Orthopedic Surgery, Columbia University, New York, NY, USA
- New York Presbyterian, The Och Spine Hospital, New York, NY, USA
| | - Ronald A Lehman
- Department of Orthopedic Surgery, Columbia University, New York, NY, USA
- New York Presbyterian, The Och Spine Hospital, New York, NY, USA
| | - Andrew K Chan
- Department of Neurological Surgery, Columbia University, New York, NY, USA
- New York Presbyterian, The Och Spine Hospital, New York, NY, USA
| | - K Daniel Riew
- Department of Neurological Surgery, Weill Cornell Medicine - New York Presbyterian, Och Spine, New York, NY, USA
- New York Presbyterian, The Och Spine Hospital, New York, NY, USA
| | - Noam Y Harel
- Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters VA Med. Ctr., Bronx, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael S Virk
- Department of Neurological Surgery, Weill Cornell Medicine - New York Presbyterian, Och Spine, New York, NY, USA
| | - Christopher Mandigo
- Department of Neurological Surgery, Columbia University, New York, NY, USA
- New York Presbyterian, The Och Spine Hospital, New York, NY, USA
| | - Jason B Carmel
- Department of Neurology, Columbia University, New York, NY, USA
- Department of Orthopedic Surgery, Columbia University, New York, NY, USA
- Department of Neurological Surgery, Weill Cornell Medicine - New York Presbyterian, Och Spine, New York, NY, USA
| |
Collapse
|
16
|
Sagastegui Alva PG, Boesendorfer A, Aszmann OC, Ibáñez J, Farina D. Excitation of natural spinal reflex loops in the sensory-motor control of hand prostheses. Sci Robot 2024; 9:eadl0085. [PMID: 38809994 DOI: 10.1126/scirobotics.adl0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 04/30/2024] [Indexed: 05/31/2024]
Abstract
Sensory feedback for prosthesis control is typically based on encoding sensory information in specific types of sensory stimuli that the users interpret to adjust the control of the prosthesis. However, in physiological conditions, the afferent feedback received from peripheral nerves is not only processed consciously but also modulates spinal reflex loops that contribute to the neural information driving muscles. Spinal pathways are relevant for sensory-motor integration, but they are commonly not leveraged for prosthesis control. We propose an approach to improve sensory-motor integration for prosthesis control based on modulating the excitability of spinal circuits through the vibration of tendons in a closed loop with muscle activity. We measured muscle signals in healthy participants and amputees during different motor tasks, and we closed the loop by applying vibration on tendons connected to the muscles, which modulated the excitability of motor neurons. The control signals to the prosthesis were thus the combination of voluntary control and additional spinal reflex inputs induced by tendon vibration. Results showed that closed-loop tendon vibration was able to modulate the neural drive to the muscles. When closed-loop tendon vibration was used, participants could achieve similar or better control performance in interfaces using muscle activation than without stimulation. Stimulation could even improve prosthetic grasping in amputees. Overall, our results indicate that closed-loop tendon vibration can integrate spinal reflex pathways in the myocontrol system and open the possibility of incorporating natural feedback loops in prosthesis control.
Collapse
Affiliation(s)
| | - Anna Boesendorfer
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Oskar C Aszmann
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Jaime Ibáñez
- Department of Bioengineering, Imperial College London, London, UK
- BSICoS group, I3A Institute, University of Zaragoza, IIS Aragón, Zaragoza, Spain
| | - Dario Farina
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
17
|
Holopainen K, Sihvonen AJ, Kauramäki J, Särkämö T, Shulga A. The effects of music combined to paired associative stimulation on motor-evoked potentials and alertness in spinal cord injury patients and healthy subjects. Sci Rep 2024; 14:10194. [PMID: 38702398 PMCID: PMC11068768 DOI: 10.1038/s41598-024-60984-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
Paired associative stimulation (PAS) consisting of high-intensity transcranial magnetic stimulation (TMS) and high-frequency peripheral nerve stimulation (known as high-PAS) induces plastic changes and improves motor performance in patients with incomplete spinal cord injury (SCI). Listening to music during PAS may potentially improve mood and arousal and facilitate PAS-induced neuroplasticity via auditory-motor coupling, but the effects have not been explored. This pilot study aimed to determine if the effect of high-PAS on motor-evoked potentials (MEPs) and subjective alertness can be augmented with music. Ten healthy subjects and nine SCI patients received three high-PAS sessions in randomized order (PAS only, PAS with music synchronized to TMS, PAS with self-selected music). MEPs were measured before (PRE), after (POST), 30 min (POST30), and 60 min (POST60) after stimulation. Alertness was evaluated with a questionnaire. In healthy subjects, MEPs increased at POST in all sessions and remained higher at POST60 in PAS with synchronized music compared with the other sessions. There was no difference in alertness. In SCI patients, MEPs increased at POST and POST30 in PAS only but not in other sessions, whereas alertness was higher in PAS with self-selected music. More research is needed to determine the potential clinical effects of using music during high-PAS.
Collapse
Affiliation(s)
- Kirsi Holopainen
- BioMag Laboratory, HUS Diagnostic Centre, Helsinki University Hospital, University of Helsinki and Aalto University School of Science, Helsinki, Finland
| | - Aleksi J Sihvonen
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Centre of Excellence in Music, Mind, Body and Brain, University of Helsinki, Helsinki, Finland
- Clinical Neurosciences, Neurology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Neurology, Neurocenter, Helsinki University Hospital, Helsinki, Finland
| | - Jaakko Kauramäki
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Centre of Excellence in Music, Mind, Body and Brain, University of Helsinki, Helsinki, Finland
| | - Teppo Särkämö
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Centre of Excellence in Music, Mind, Body and Brain, University of Helsinki, Helsinki, Finland
| | - Anastasia Shulga
- BioMag Laboratory, HUS Diagnostic Centre, Helsinki University Hospital, University of Helsinki and Aalto University School of Science, Helsinki, Finland.
- Department of Physical and Rehabilitation Medicine, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.
| |
Collapse
|
18
|
Nakagawa K, Kakehata G, Kaneko N, Masugi Y, Osu R, Iso S, Kanosue K, Nakazawa K. Reciprocal inhibition of the thigh muscles in humans: A study using transcutaneous spinal cord stimulation. Physiol Rep 2024; 12:e16039. [PMID: 38740563 DOI: 10.14814/phy2.16039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 05/16/2024] Open
Abstract
Evaluating reciprocal inhibition of the thigh muscles is important to investigate the neural circuits of locomotor behaviors. However, measurements of reciprocal inhibition of thigh muscles using spinal reflex, such as H-reflex, have never been systematically established owing to methodological limitations. The present study aimed to clarify the existence of reciprocal inhibition in the thigh muscles using transcutaneous spinal cord stimulation (tSCS). Twenty able-bodied male individuals were enrolled. We evoked spinal reflex from the biceps femoris muscle (BF) by tSCS on the lumber posterior root. We examined whether the tSCS-evoked BF reflex was reciprocally inhibited by the following conditionings: (1) single-pulse electrical stimulation on the femoral nerve innervating the rectus femoris muscle (RF) at various inter-stimulus intervals in the resting condition; (2) voluntary contraction of the RF; and (3) vibration stimulus on the RF. The BF reflex was significantly inhibited when the conditioning electrical stimulation was delivered at 10 and 20 ms prior to tSCS, during voluntary contraction of the RF, and during vibration on the RF. These data suggested a piece of evidence of the existence of reciprocal inhibition from the RF to the BF muscle in humans and highlighted the utility of methods for evaluating reciprocal inhibition of the thigh muscles using tSCS.
Collapse
Affiliation(s)
- Kento Nakagawa
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan
- Faculty of Human Sciences, Waseda University, Tokorozawa, Saitama, Japan
- Department of Sports and Health Management, Faculty of Business and Information Sciences, Jobu University, Isesaki, Gunma, Japan
| | - Gaku Kakehata
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan
- Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
- Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan
| | - Naotsugu Kaneko
- Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Yohei Masugi
- Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
- Department of Physical Therapy, School of Health Sciences, Tokyo International University, Kawagoe, Saitama, Japan
| | - Rieko Osu
- Faculty of Human Sciences, Waseda University, Tokorozawa, Saitama, Japan
| | - Shigeo Iso
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan
| | - Kazuyuki Kanosue
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan
- Institute of Health and Sports Science and Medicine, Juntendo University, Inzai, Chiba, Japan
| | - Kimitaka Nakazawa
- Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
| |
Collapse
|
19
|
Urbin MA, Lafe CW, Bautista ME, Wittenberg GF, Simpson TW. Effects of noninvasive neuromodulation targeting the spinal cord on early learning of force control by the digits. CNS Neurosci Ther 2024; 30:e14561. [PMID: 38421127 PMCID: PMC10851178 DOI: 10.1111/cns.14561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 03/02/2024] Open
Abstract
AIMS Control of finger forces underlies our capacity for skilled hand movements acquired during development and reacquired after neurological injury. Learning force control by the digits, therefore, predicates our functional independence. Noninvasive neuromodulation targeting synapses that link corticospinal neurons onto the final common pathway via spike-timing-dependent mechanisms can alter distal limb motor output on a transient basis, yet these effects appear subject to individual differences. Here, we investigated how this form of noninvasive neuromodulation interacts with task repetition to influence early learning of force control during precision grip. METHODS The unique effects of neuromodulation, task repetition, and neuromodulation coinciding with task repetition were tested in three separate conditions using a within-subject, cross-over design (n = 23). RESULTS We found that synchronizing depolarization events within milliseconds of stabilizing precision grip accelerated learning but only after accounting for individual differences through inclusion of subjects who showed upregulated corticospinal excitability at 2 of 3 time points following conditioning stimulation (n = 19). CONCLUSIONS Our findings provide insights into how the state of the corticospinal system can be leveraged to drive early motor skill learning, further emphasizing individual differences in the response to noninvasive neuromodulation. We interpret these findings in the context of biological mechanisms underlying the observed effects and implications for emerging therapeutic applications.
Collapse
Affiliation(s)
- Michael A. Urbin
- Human Engineering Research Laboratories, VA RR&D Center of ExcellenceVA Pittsburgh Healthcare SystemPittsburghPennsylvaniaUSA
| | - Charley W. Lafe
- Human Engineering Research Laboratories, VA RR&D Center of ExcellenceVA Pittsburgh Healthcare SystemPittsburghPennsylvaniaUSA
| | - Manuel E. Bautista
- Human Engineering Research Laboratories, VA RR&D Center of ExcellenceVA Pittsburgh Healthcare SystemPittsburghPennsylvaniaUSA
| | - George F. Wittenberg
- Human Engineering Research Laboratories, VA RR&D Center of ExcellenceVA Pittsburgh Healthcare SystemPittsburghPennsylvaniaUSA
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Rehabilitation Neural Engineering Laboratories, Department of Physical Medicine & RehabilitationUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Tyler W. Simpson
- Rehabilitation Neural Engineering Laboratories, Department of Physical Medicine & RehabilitationUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
20
|
McIntosh JR, Joiner EF, Goldberg JL, Greenwald P, Murray LM, Thuet E, Modik O, Shelkov E, Lombardi JM, Sardar ZM, Lehman RA, Chan AK, Riew KD, Harel NY, Virk MS, Mandigo C, Carmel JB. Timing dependent synergies between motor cortex and posterior spinal stimulation in humans. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.18.23294259. [PMID: 37645795 PMCID: PMC10462218 DOI: 10.1101/2023.08.18.23294259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Volitional movement requires descending input from motor cortex and sensory feedback through the spinal cord. We previously developed a paired brain and spinal electrical stimulation approach in rats that relies on convergence of the descending motor and spinal sensory stimuli in the cervical cord. This approach strengthened sensorimotor circuits and improved volitional movement through associative plasticity. In humans it is not known whether dorsal epidural SCS targeted at the sensorimotor interface or anterior epidural SCS targeted within the motor system is effective at facilitating brain evoked responses. In 59 individuals undergoing elective cervical spine decompression surgery, the motor cortex was stimulated with scalp electrodes and the spinal cord with epidural electrodes while muscle responses were recorded in arm and leg muscles. Spinal electrodes were placed either posteriorly or anteriorly, and the interval between cortex and spinal cord stimulation was varied. Pairing stimulation between the motor cortex and spinal sensory (posterior) but not spinal motor (anterior) stimulation produced motor evoked potentials that were over five times larger than brain stimulation alone. This strong augmentation occurred only when descending motor and spinal afferent stimuli were timed to converge in the spinal cord. Paired stimulation also increased the selectivity of muscle responses relative to unpaired brain or spinal cord stimulation. Finally, paired stimulation effects were present regardless of the severity of myelopathy as measured by clinical signs or spinal cord imaging. The large effect size of this paired stimulation makes it a promising candidate for therapeutic neuromodulation.
Collapse
Affiliation(s)
- James R McIntosh
- Dept. of Neurology, Columbia University, 650 W. 168th St, New York, NY, 10032, USA
- Dept. of Orthopedic Surgery, Columbia University, 650 W. 168th St, New York, NY, 10032, USA
- Dept. of Neurological Surgery, Weill Cornell Medicine - New York Presbyterian, Och Spine, 1300 York Ave, New York, NY 10065
| | - Evan F Joiner
- Dept. of Neurological Surgery, Columbia University, 650 W. 168th St, New York, NY, 10032, USA
| | - Jacob L Goldberg
- Dept. of Neurological Surgery, Weill Cornell Medicine - New York Presbyterian, Och Spine, 1300 York Ave, New York, NY 10065
| | - Phoebe Greenwald
- Dept. of Neurological Surgery, Columbia University, 650 W. 168th St, New York, NY, 10032, USA
| | - Lynda M Murray
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
- James J. Peters VA Med. Ctr., 130 West Kingsbridge Road, Bronx, NY 10468
| | - Earl Thuet
- New York Presbyterian, The Och Spine Hospital, 5141 Broadway, New York, NY 10034
| | - Oleg Modik
- Dept. of Neurology, Weill Cornell Medicine - New York Presbyterian, Och Spine, 1300 York Ave, New York, NY 10065
| | - Evgeny Shelkov
- Dept. of Neurology, Weill Cornell Medicine - New York Presbyterian, Och Spine, 1300 York Ave, New York, NY 10065
| | - Joseph M Lombardi
- Dept. of Neurology, Columbia University, 650 W. 168th St, New York, NY, 10032, USA
- New York Presbyterian, The Och Spine Hospital, 5141 Broadway, New York, NY 10034
| | - Zeeshan M Sardar
- Dept. of Neurology, Columbia University, 650 W. 168th St, New York, NY, 10032, USA
- New York Presbyterian, The Och Spine Hospital, 5141 Broadway, New York, NY 10034
| | - Ronald A Lehman
- Dept. of Neurology, Columbia University, 650 W. 168th St, New York, NY, 10032, USA
- New York Presbyterian, The Och Spine Hospital, 5141 Broadway, New York, NY 10034
| | - Andrew K Chan
- Dept. of Neurological Surgery, Columbia University, 650 W. 168th St, New York, NY, 10032, USA
- New York Presbyterian, The Och Spine Hospital, 5141 Broadway, New York, NY 10034
| | - K Daniel Riew
- Dept. of Neurology, Columbia University, 650 W. 168th St, New York, NY, 10032, USA
- Dept. of Neurological Surgery, Weill Cornell Medicine - New York Presbyterian, Och Spine, 1300 York Ave, New York, NY 10065
- New York Presbyterian, The Och Spine Hospital, 5141 Broadway, New York, NY 10034
| | - Noam Y Harel
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
- James J. Peters VA Med. Ctr., 130 West Kingsbridge Road, Bronx, NY 10468
| | - Michael S Virk
- Dept. of Neurological Surgery, Weill Cornell Medicine - New York Presbyterian, Och Spine, 1300 York Ave, New York, NY 10065
| | - Christopher Mandigo
- Dept. of Neurological Surgery, Columbia University, 650 W. 168th St, New York, NY, 10032, USA
- New York Presbyterian, The Och Spine Hospital, 5141 Broadway, New York, NY 10034
| | - Jason B Carmel
- Dept. of Neurology, Columbia University, 650 W. 168th St, New York, NY, 10032, USA
- Dept. of Orthopedic Surgery, Columbia University, 650 W. 168th St, New York, NY, 10032, USA
- Dept. of Neurological Surgery, Weill Cornell Medicine - New York Presbyterian, Och Spine, 1300 York Ave, New York, NY 10065
| |
Collapse
|
21
|
Khan MA, Fares H, Ghayvat H, Brunner IC, Puthusserypady S, Razavi B, Lansberg M, Poon A, Meador KJ. A systematic review on functional electrical stimulation based rehabilitation systems for upper limb post-stroke recovery. Front Neurol 2023; 14:1272992. [PMID: 38145118 PMCID: PMC10739305 DOI: 10.3389/fneur.2023.1272992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
Background Stroke is one of the most common neurological conditions that often leads to upper limb motor impairments, significantly affecting individuals' quality of life. Rehabilitation strategies are crucial in facilitating post-stroke recovery and improving functional independence. Functional Electrical Stimulation (FES) systems have emerged as promising upper limb rehabilitation tools, offering innovative neuromuscular reeducation approaches. Objective The main objective of this paper is to provide a comprehensive systematic review of the start-of-the-art functional electrical stimulation (FES) systems for upper limb neurorehabilitation in post-stroke therapy. More specifically, this paper aims to review different types of FES systems, their feasibility testing, or randomized control trials (RCT) studies. Methods The FES systems classification is based on the involvement of patient feedback within the FES control, which mainly includes "Open-Loop FES Systems" (manually controlled) and "Closed-Loop FES Systems" (brain-computer interface-BCI and electromyography-EMG controlled). Thus, valuable insights are presented into the technological advantages and effectiveness of Manual FES, EEG-FES, and EMG-FES systems. Results and discussion The review analyzed 25 studies and found that the use of FES-based rehabilitation systems resulted in favorable outcomes for the stroke recovery of upper limb functional movements, as measured by the FMA (Fugl-Meyer Assessment) (Manually controlled FES: mean difference = 5.6, 95% CI (3.77, 7.5), P < 0.001; BCI-controlled FES: mean difference = 5.37, 95% CI (4.2, 6.6), P < 0.001; EMG-controlled FES: mean difference = 14.14, 95% CI (11.72, 16.6), P < 0.001) and ARAT (Action Research Arm Test) (EMG-controlled FES: mean difference = 11.9, 95% CI (8.8, 14.9), P < 0.001) scores. Furthermore, the shortcomings, clinical considerations, comparison to non-FES systems, design improvements, and possible future implications are also discussed for improving stroke rehabilitation systems and advancing post-stroke recovery. Thus, summarizing the existing literature, this review paper can help researchers identify areas for further investigation. This can lead to formulating research questions and developing new studies aimed at improving FES systems and their outcomes in upper limb rehabilitation.
Collapse
Affiliation(s)
- Muhammad Ahmed Khan
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, United States
- Department of Electrical Engineering, Stanford University, Palo Alto, CA, United States
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Hoda Fares
- Department of Electrical, Electronic, Telecommunication Engineering and Naval Architecture (DITEN), University of Genoa, Genoa, Italy
| | - Hemant Ghayvat
- Department of Computer Science, Linnaeus University, Växjö, Sweden
| | | | | | - Babak Razavi
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, United States
| | - Maarten Lansberg
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, United States
| | - Ada Poon
- Department of Electrical Engineering, Stanford University, Palo Alto, CA, United States
| | - Kimford Jay Meador
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, United States
| |
Collapse
|
22
|
Haakana P, Holopainen K, Nätkynmäki A, Kirveskari E, Tarvainen MP, Shulga A. The effect of paired associative stimulation with a high-intensity cortical component and a high-frequency peripheral component on heart rate and heart rate variability in healthy subjects. FRONTIERS IN REHABILITATION SCIENCES 2023; 4:1200958. [PMID: 37565182 PMCID: PMC10410150 DOI: 10.3389/fresc.2023.1200958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/11/2023] [Indexed: 08/12/2023]
Abstract
Objective A novel protocol for paired associative stimulation (PAS), called high PAS, consists of high-intensity transcranial magnetic stimulation (TMS) and high-frequency peripheral nerve stimulation (PNS). High PAS was developed for spinal cord injury rehabilitation and targets plastic changes in stimulated pathways in the corticospinal tract, which improves motor function. As therapy interventions can last many weeks, it is important to fully understand the effects of high PAS, including its effect on the cardiovascular system. Heart rate variability (HRV) has been used to measure changes in both sympathetic and parasympathetic systems. Methods We used short-term HRV measurements to evaluate the effects of one 20-min session of high PAS on 17 healthy individuals. HRV was recorded for 5 min before (PRE), during (STIM), immediately after (POST), 30 min after (POST30), and 60 min after (POST60) the stimulation. Five participants repeated the HRV setup with sham stimulation. Results A significant decrease in low-frequency (LF) power (n.u.) (p = 0.002), low-frequency to high-frequency (HF) ratio (p = 0.017), in Poincaré plot [the standard deviation of RR intervals perpendicular to (SD1) and along (SD2) the line of identity SD2/SD1 ratio p < 0.001], and an increase in HF power (n.u.) (p = 0.002) were observed between PRE and STIM conditions; these changes were fully reversible immediately after stimulation. PRE to POST by 3% (p = 0.015) and continued to decline until POST60 by 5% (p = 0.011). LF power (ms2) (p = 0.017) and SD2 (p = 0.015) decreased from PRE to STIM and increased from PRE to POST (p = 0.025 and p = 0.017, respectively). The results from sham PAS exhibited a trend similar to active high-PAS stimulation. Conclusions High PAS does not have sustained effects during 60-min follow-up on cardiovascular functions, as measured by HRV. None of the short-term results indicates activation of the sympathetic nervous system in healthy individuals. Observed changes in HRV indicate higher parasympathetic activity during stimulation, which is reversible, and is plausibly explained by the fact that the participants spend 20 min without moving, talking, or using phones while being stimulated.
Collapse
Affiliation(s)
- P. Haakana
- BioMag Laboratory, HUS Diagnostic Center, Helsinki University Hospital, University of Helsinki and Aalto University School of Science, Helsinki, Finland
- Motion Analysis Laboratory, New Children’s Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - K. Holopainen
- BioMag Laboratory, HUS Diagnostic Center, Helsinki University Hospital, University of Helsinki and Aalto University School of Science, Helsinki, Finland
| | - A. Nätkynmäki
- BioMag Laboratory, HUS Diagnostic Center, Helsinki University Hospital, University of Helsinki and Aalto University School of Science, Helsinki, Finland
| | - E. Kirveskari
- BioMag Laboratory, HUS Diagnostic Center, Helsinki University Hospital, University of Helsinki and Aalto University School of Science, Helsinki, Finland
- HUS Medical Imaging Center, Clinical Neurophysiology, Clinical Neurosciences, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - M. P. Tarvainen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - A. Shulga
- BioMag Laboratory, HUS Diagnostic Center, Helsinki University Hospital, University of Helsinki and Aalto University School of Science, Helsinki, Finland
- Department of Physical and Rehabilitation Medicine, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
23
|
Jo HJ, Kizziar E, Sangari S, Chen D, Kessler A, Kim K, Anschel A, Heinemann AW, Mensh BD, Awadalla S, Lieber RL, Oudega M, Perez MA. Multisite Hebbian Plasticity Restores Function in Humans with Spinal Cord Injury. Ann Neurol 2023; 93:1198-1213. [PMID: 36843340 PMCID: PMC10268028 DOI: 10.1002/ana.26622] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/29/2022] [Accepted: 02/06/2023] [Indexed: 02/28/2023]
Abstract
OBJECTIVE Spinal cord injury (SCI) damages synaptic connections between corticospinal axons and motoneurons of many muscles, resulting in devastating paralysis. We hypothesized that strengthening corticospinal-motoneuronal synapses at multiple spinal cord levels through Hebbian plasticity (i.e., "neurons that fire together, wire together") promotes recovery of leg and arm function. METHODS Twenty participants with chronic SCI were randomly assigned to receive 20 sessions of Hebbian or sham stimulation targeting corticospinal-motoneuronal synapses of multiple leg muscles followed by exercise. Based on the results from this study, in a follow-up prospective study, 11 more participants received 40 sessions of Hebbian stimulation targeting corticospinal-motoneuronal synapses of multiple arm and leg muscles followed by exercise. During Hebbian stimulation sessions, 180 paired pulses elicited corticospinal action potentials by magnetic (motor cortex) and/or electrical (thoracic spine) stimulation allowing volleys to arrive at the spinal cord 1-2 milliseconds before motoneurons were activated retrogradely via bilateral electrical stimulation (brachial plexus, ulnar, femoral, and common peroneal nerves) for biceps brachii, first dorsal interosseous, quadriceps femoris, and tibialis anterior muscles as needed. RESULTS We found in our randomized study that participants receiving Hebbian stimulation improved their walking speed and corticospinal function to a greater extent than individuals receiving sham stimulation. In agreement, prospective study participants improved their grasping and walking, corticospinal function, and quality of life metrics, exhibiting greater improvements with more sessions that persisted 9-month post-therapy. INTERPRETATION Our findings suggest that multisite Hebbian stimulation, informed by the physiology of the corticospinal system, represents an effective strategy to promote functional recovery following SCI. ANN NEUROL 2023;93:1198-1213.
Collapse
Affiliation(s)
- Hang Jin Jo
- Shirley Ryan AbilityLab, Chicago, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, USA
| | - Ethan Kizziar
- Shirley Ryan AbilityLab, Chicago, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, USA
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, USA
| | - Sina Sangari
- Shirley Ryan AbilityLab, Chicago, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, USA
| | - David Chen
- Shirley Ryan AbilityLab, Chicago, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, USA
| | - Allison Kessler
- Shirley Ryan AbilityLab, Chicago, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, USA
| | - Ki Kim
- Shirley Ryan AbilityLab, Chicago, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, USA
| | - Alan Anschel
- Shirley Ryan AbilityLab, Chicago, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, USA
| | - Allen W. Heinemann
- Shirley Ryan AbilityLab, Chicago, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, USA
| | - Brett D. Mensh
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Saria Awadalla
- Division of Epidemiology & Biostatistics, University of Illinois at Chicago, Chicago, USA
| | - Richard L. Lieber
- Shirley Ryan AbilityLab, Chicago, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, USA
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, USA
- Edward Jr. Hines VA Hospital, Chicago, USA
| | - Martin Oudega
- Shirley Ryan AbilityLab, Chicago, USA
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, USA
- Edward Jr. Hines VA Hospital, Chicago, USA
| | - Monica A. Perez
- Shirley Ryan AbilityLab, Chicago, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, USA
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, USA
- Edward Jr. Hines VA Hospital, Chicago, USA
| |
Collapse
|
24
|
Grover FM, Chen B, Perez MA. Increased paired stimuli enhance corticospinal-motoneuronal plasticity in humans with spinal cord injury. J Neurophysiol 2023; 129:1414-1422. [PMID: 36752493 PMCID: PMC10259851 DOI: 10.1152/jn.00499.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 02/09/2023] Open
Abstract
Paired corticospinal-motoneuronal stimulation (PCMS) has been used to enhance corticospinal excitability and functional outcomes in humans with spinal cord injury (SCI). Here, we examined the effect of increasing the number of paired pulses on PCMS-induced plasticity. During PCMS, corticospinal volleys evoked by transcranial magnetic stimulation (TMS) over the hand motor cortex were timed to arrive at corticospinal-motoneuronal synapses of the first dorsal interosseous (FDI) muscle 1-2 ms before the arrival of antidromic potentials elicited in motoneurons by electrical stimulation of the ulnar nerve. We tested motor-evoked potentials (MEPs) elicited by TMS over the hand motor cortex and electrical stimulation at the cervicomedullary junction (CMEPs) in the FDI muscle before and after 180 paired pulses (PCMS-180) followed up by another 180 paired pulses (PCMS-360) in humans with and without chronic incomplete cervical SCI. The nine-hole-peg-test (9HPT) was measured before and after PCMS paired pulses in individuals with SCI. We found that the size of MEPs and CMEPs increased after PCMS-180 in both groups compared with baseline and further increased after PCMS-360 in participants with SCI, suggesting a spinal origin for these effects. Notably, in people with SCI, the time to complete the 9HPT decreased after PCMS-180 and further decreased after PCMS-360 compared with baseline but not when the 9HPT was repeated overtime. Our findings demonstrate that increasing the number of PCMS paired pulses potentiates corticospinal excitability and voluntary motor output after SCI, likely through spinal plasticity. This proof-of-principle study suggests that increasing the PCMS dose represents a strategy to boost voluntary motor output after SCI.NEW & NOTEWORTHY Paired corticospinal-motoneuronal stimulation (PCMS) has been used to enhance corticospinal excitability and functional outcomes in humans with spinal cord injury (SCI). Here, we demonstrate that 360 paired pulses resulted in larger increases in motor-evoked potential size in a hand muscle and in a better ability to complete the nine-hold-peg-test compared with 180 paired pulses in people with SCI. This proof-of-principle study suggests that increasing the PCMS dose represents a strategy to boost motor output after SCI.
Collapse
Affiliation(s)
- Francis M Grover
- Shirley Ryan AbilityLab, Chicago, Illinois, United States
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, Illinois, United States
| | - Bing Chen
- Shirley Ryan AbilityLab, Chicago, Illinois, United States
- Edward Hines Jr. VA Hospital, Chicago, Illinois, United States
| | - Monica A Perez
- Shirley Ryan AbilityLab, Chicago, Illinois, United States
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, Illinois, United States
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois, United States
- Edward Hines Jr. VA Hospital, Chicago, Illinois, United States
| |
Collapse
|
25
|
Germann M, Maffitt NJ, Poll A, Raditya M, Ting JSK, Baker SN. Pairing Transcranial Magnetic Stimulation and Loud Sounds Produces Plastic Changes in Motor Output. J Neurosci 2023; 43:2469-2481. [PMID: 36859307 PMCID: PMC10082460 DOI: 10.1523/jneurosci.0228-21.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 03/03/2023] Open
Abstract
Most current methods for neuromodulation target the cortex. Approaches for inducing plasticity in subcortical motor pathways, such as the reticulospinal tract, could help to boost recovery after damage (e.g., stroke). In this study, we paired loud acoustic stimulation (LAS) with transcranial magnetic stimulation (TMS) over the motor cortex in male and female healthy humans. LAS activates the reticular formation; TMS activates descending systems, including corticoreticular fibers. Two hundred paired stimuli were used, with 50 ms interstimulus interval at which LAS suppresses TMS responses. Before and after stimulus pairing, responses in the contralateral biceps muscle to TMS alone were measured. Ten, 20, and 30 min after stimulus pairing ended, TMS responses were enhanced, indicating the induction of LTP. No long-term changes were seen in control experiments which used 200 unpaired TMS or LAS, indicating the importance of associative stimulation. Following paired stimulation, no changes were seen in responses to direct corticospinal stimulation at the level of the medulla, or in the extent of reaction time shortening by a loud sound (StartReact effect), suggesting that plasticity did not occur in corticospinal or reticulospinal synapses. Direct measurements in female monkeys undergoing a similar paired protocol revealed no enhancement of corticospinal volleys after paired stimulation, suggesting no changes occurred in intracortical connections. The most likely substrate for the plastic changes, consistent with all our measurements, is an increase in the efficacy of corticoreticular connections. This new protocol may find utility, as it seems to target different motor circuits compared with other available paradigms.SIGNIFICANCE STATEMENT Induction of plasticity by neurostimulation protocols may be promising to enhance functional recovery after damage such as following stroke, but current protocols mainly target cortical circuits. In this study, we developed a novel paradigm which may generate long-term changes in connections between cortex and brainstem. This could provide an additional tool to modulate and improve recovery.
Collapse
Affiliation(s)
- Maria Germann
- Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Natalie J Maffitt
- Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Annie Poll
- Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Marco Raditya
- Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Jason S K Ting
- Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Stuart N Baker
- Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| |
Collapse
|
26
|
Fok KL, Kaneko N, Tajali S, Masani K. Paired associative stimulation on the soleus H-Reflex using motor point and peripheral nerve stimulation. Neurosci Lett 2023; 797:137070. [PMID: 36641045 DOI: 10.1016/j.neulet.2023.137070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/28/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Paired associative stimulation (PAS) has been shown to modulate the corticospinal excitability via spike timing dependent plasticity (STDP). In this study, we aimed to suppress the spinal H-Reflex using PAS. We paired two stimulation modalities, i.e., peripheral nerve stimulation (PNS) and motor point stimulation (MPS). We used PNS to dominantly activate the Ia sensory axon, and we used MPS to dominantly activate the α-motoneuron cell body antidromically. Thus, we applied both PNS and MPS such that the α-motoneuron cell body was activated 5 ms before the activation of the Ia sensory axon ending at the Ia-α motoneuron synapse. If the spinal reflexes can be modulated by STDP, and a combination of MPS and PNS is timed appropriately, then the H-Reflex amplitude will decrease while no change in H-Reflex amplitude is expected for MPS or PNS only. To test this hypothesis, six young healthy participants (5M/1F: 26.8 ± 4.1 yrs) received one of the three following conditions on days separated by at least 24 hr: 1) PAS, 2) MPS only or 3) PNS only. The H-Reflex and M-wave recruitment curves of the soleus were measured immediately prior to, immediately after, 30 min and 60 min after the intervention. The normalized H-Reflex amplitudes were then compared across conditions and times using a two-way ANOVA (3 conditions × 4 times). No main effects of condition or time, or interaction effect were found. These results suggest that relying solely on STDP may be insufficient to inhibit the soleus H-Reflex.
Collapse
Affiliation(s)
- Kai Lon Fok
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; KITE, Toronto Rehabilitation Institute, University Health Network, 520 Sutherland Drive, Toronto, ON M4G 3V9, Canada
| | - Naotsugu Kaneko
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; KITE, Toronto Rehabilitation Institute, University Health Network, 520 Sutherland Drive, Toronto, ON M4G 3V9, Canada; Japan Society for the Promotion of Science, Tokyo 102-0083, Japan; Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Shirin Tajali
- KITE, Toronto Rehabilitation Institute, University Health Network, 520 Sutherland Drive, Toronto, ON M4G 3V9, Canada
| | - Kei Masani
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; KITE, Toronto Rehabilitation Institute, University Health Network, 520 Sutherland Drive, Toronto, ON M4G 3V9, Canada.
| |
Collapse
|
27
|
Paired corticomotoneuronal stimulation of the preactivated ankle dorsiflexor: an open-label study of magnetic and electrical painless protocols. Exp Brain Res 2023; 241:629-647. [PMID: 36637488 DOI: 10.1007/s00221-022-06534-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 12/20/2022] [Indexed: 01/14/2023]
Abstract
Paired corticomotoneuronal stimulation (or electrical PCMS: ePCMS) is the repetitive pairing of an electrical stimulus to a nerve with a transcranial magnetic stimulation of the primary motor cortex (TMS-of-M1) to noninvasively influence spinal plasticity. We compared ePCMS with the new painless PCMS protocol pairing a magnetic stimulus to the nerve with TMS-of-M1 (mPCMS) in the preactivated tibial anterior muscle (TA). Sixteen healthy adults participated in two sessions (mPCMS, ePCMS), each with 180 pairs of [low-intensity TMS-of-M1 + nerve stimulation] at 0.2 Hz. TA motor-evoked potentials (MEP) to single-pulse TMS at pre-PCMS, immediately and 30 min after PCMS, were cluster-analyzed to discriminate responders and non-responders. Paired-pulse TMS-of-M1 and F-waves were also tested and BDNF polymorphism influence was explored. Both PCMS protocols significantly increased MEP amplitudes (n = 9 responders each), but the time-course differed with mPCMS inducing larger MEP increase over time. The number of BDNF-methionine carriers tended to be larger than Val66Val in mPCMS and the reverse in ePCMS, thus warranting further investigations. The MEP changes of the preactivated TA likely occurred at the pre-motoneuronal level and larger mPCMS after-effects over time may be related to the afferents recruited. mPCMS seems relevant to be tested in future studies as a painless noninvasive approach to induce sustained pre-motoneuronal plasticity in spinal cord injury.
Collapse
|
28
|
Pal A, Park H, Ramamurthy A, Asan AS, Bethea T, Johnkutty M, Carmel JB. Spinal cord associative plasticity improves forelimb sensorimotor function after cervical injury. Brain 2022; 145:4531-4544. [PMID: 36063483 PMCID: PMC10200304 DOI: 10.1093/brain/awac235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/10/2022] [Accepted: 06/17/2022] [Indexed: 01/06/2023] Open
Abstract
Associative plasticity occurs when two stimuli converge on a common neural target. Previous efforts to promote associative plasticity have targeted cortex, with variable and moderate effects. In addition, the targeted circuits are inferred, rather than tested directly. In contrast, we sought to target the strong convergence between motor and sensory systems in the spinal cord. We developed spinal cord associative plasticity, precisely timed pairing of motor cortex and dorsal spinal cord stimulations, to target this interaction. We tested the hypothesis that properly timed paired stimulation would strengthen the sensorimotor connections in the spinal cord and improve recovery after spinal cord injury. We tested physiological effects of paired stimulation, the pathways that mediate it, and its function in a preclinical trial. Subthreshold spinal cord stimulation strongly augmented motor cortex evoked muscle potentials at the time they were paired, but only when they arrived synchronously in the spinal cord. This paired stimulation effect depended on both cortical descending motor and spinal cord proprioceptive afferents; selective inactivation of either of these pathways fully abrogated the paired stimulation effect. Spinal cord associative plasticity, repetitive pairing of these pathways for 5 or 30 min in awake rats, increased spinal excitability for hours after pairing ended. To apply spinal cord associative plasticity as therapy, we optimized the parameters to promote strong and long-lasting effects. This effect was just as strong in rats with cervical spinal cord injury as in uninjured rats, demonstrating that spared connections after moderate spinal cord injury were sufficient to support plasticity. In a blinded trial, rats received a moderate C4 contusive spinal cord injury. Ten days after injury, they were randomized to 30 min of spinal cord associative plasticity each day for 10 days or sham stimulation. Rats with spinal cord associative plasticity had significantly improved function on the primary outcome measure, a test of dexterity during manipulation of food, at 50 days after spinal cord injury. In addition, rats with spinal cord associative plasticity had persistently stronger responses to cortical and spinal stimulation than sham stimulation rats, indicating a spinal locus of plasticity. After spinal cord associative plasticity, rats had near normalization of H-reflex modulation. The groups had no difference in the rat grimace scale, a measure of pain. We conclude that spinal cord associative plasticity strengthens sensorimotor connections within the spinal cord, resulting in partial recovery of reflex modulation and forelimb function after moderate spinal cord injury. Since both motor cortex and spinal cord stimulation are performed routinely in humans, this approach can be trialled in people with spinal cord injury or other disorders that damage sensorimotor connections and impair dexterity.
Collapse
Affiliation(s)
- Ajay Pal
- Department of Orthopedics, Columbia University, New York, NY 10032, USA
| | - HongGeun Park
- Department of Orthopedics, Columbia University, New York, NY 10032, USA
| | - Aditya Ramamurthy
- Department of Orthopedics, Columbia University, New York, NY 10032, USA
| | - Ahmet S Asan
- Department of Orthopedics, Columbia University, New York, NY 10032, USA
| | - Thelma Bethea
- Department of Orthopedics, Columbia University, New York, NY 10032, USA
| | - Meenu Johnkutty
- Department of Orthopedics, Columbia University, New York, NY 10032, USA
| | - Jason B Carmel
- Department of Orthopedics, Columbia University, New York, NY 10032, USA
- Department of Neurology, Columbia University, New York, NY 10032, USA
| |
Collapse
|
29
|
Amann M, Sidhu SK, McNeil CJ, Gandevia SC. Critical considerations of the contribution of the corticomotoneuronal pathway to central fatigue. J Physiol 2022; 600:5203-5214. [PMID: 36326193 PMCID: PMC9772161 DOI: 10.1113/jp282564] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Neural drive originating in higher brain areas reaches exercising limb muscles through the corticospinal-motoneuronal pathway, which links the motor cortex and spinal motoneurones. The properties of this pathway have frequently been observed to change during fatiguing exercise in ways that could influence the development of central fatigue (i.e. the progressive reduction in voluntary muscle activation). However, based on differences in motor cortical and motoneuronal excitability between exercise modalities (e.g. single-joint vs. locomotor exercise), there is no characteristic response that allows for a categorical conclusion about the effect of these changes on functional impairments and performance limitations. Despite the lack of uniformity in findings during fatigue, there is strong evidence for marked 'inhibition' of motoneurones as a direct result of voluntary drive. Endogenous forms of neuromodulation, such as via serotonin released from neurones, can directly affect motoneuronal output and central fatigue. Exogenous forms of neuromodulation, such as brain stimulation, may achieve a similar effect, although the evidence is weak. Non-invasive transcranial direct current stimulation can cause transient or long-lasting changes in cortical excitability; however, variable results across studies cast doubt on its claimed capacity to enhance performance. Furthermore, with these studies, it is difficult to establish a cause-and-effect relationship between brain responsiveness and exercise performance. This review briefly summarizes changes in the corticomotoneuronal pathway during various types of exercise, and considers the relevance of these changes for the development of central fatigue, as well as the potential of non-invasive brain stimulation to enhance motor cortical excitability, motoneuronal output and, ultimately, exercise performance.
Collapse
Affiliation(s)
- Markus Amann
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| | - Simranjit K. Sidhu
- School of Biomedicine, The University of Adelaide, South Australia, Australia
| | - Chris J McNeil
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Simon C Gandevia
- Neuroscience Research Australia and University of New South Wales, Sydney, Australia
| |
Collapse
|
30
|
Pulverenti TS, Zaaya M, Grabowski E, Grabowski M, Knikou M. Brain and spinal cord paired stimulation coupled with locomotor training facilitates motor output in human spinal cord injury. Front Neurol 2022; 13:1000940. [PMID: 36313489 PMCID: PMC9612520 DOI: 10.3389/fneur.2022.1000940] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/26/2022] [Indexed: 11/21/2022] Open
Abstract
Combined interventions for neuromodulation leading to neurorecovery have gained great attention by researchers to resemble clinical rehabilitation approaches. In this randomized clinical trial, we established changes in the net output of motoneurons innervating multiple leg muscles during stepping when transcranial magnetic stimulation (TMS) of the primary motor cortex was paired with transcutaneous spinal (transspinal) stimulation over the thoracolumbar region during locomotor training. TMS was delivered before (TMS-transspinal) or after (transspinal-TMS) transspinal stimulation during the stance phase of the less impaired leg. Ten individuals with chronic incomplete or complete SCI received at least 20 sessions of training. Each session consisted of 240 paired stimuli delivered over 10-min blocks for 1 h during robotic assisted step training on a motorized treadmill. Body weight support, leg guidance force and treadmill speed were adjusted based on each subject's ability to step without knee buckling or toe dragging. Most transspinal evoked potentials (TEPs) recorded before and after each intervention from ankle and knee muscles during assisted stepping were modulated in a phase-dependent pattern. Transspinal-TMS and locomotor training affected motor neuron output of knee and ankle muscles with ankle TEPs to be modulated in a phase-dependent manner. TMS-transspinal and locomotor training increased motor neuron output for knee but not for ankle muscles. Our results support that targeted brain and spinal cord stimulation alters responsiveness of neurons over multiple spinal segments in people with chronic SCI. Noninvasive stimulation of the brain and spinal cord along with locomotor training is a novel neuromodulation method that can become a promising modality for rehabilitation in humans after SCI.
Collapse
Affiliation(s)
- Timothy S. Pulverenti
- Klab4Recovery Research Program, The City University of New York, New York, NY, United States
| | - Morad Zaaya
- Klab4Recovery Research Program, The City University of New York, New York, NY, United States
| | - Ewelina Grabowski
- PhD Program in Biology and Collaborative Neuroscience Program, Graduate Center of the City University of New York and College of Staten Island, New York, NY, United States
| | - Monika Grabowski
- PhD Program in Biology and Collaborative Neuroscience Program, Graduate Center of the City University of New York and College of Staten Island, New York, NY, United States
| | - Maria Knikou
- Klab4Recovery Research Program, The City University of New York, New York, NY, United States,PhD Program in Biology and Collaborative Neuroscience Program, Graduate Center of the City University of New York and College of Staten Island, New York, NY, United States,Department of Physical Therapy, College of Staten Island, The City University of New York, New York, NY, United States,*Correspondence: Maria Knikou
| |
Collapse
|
31
|
Samejima S, Henderson R, Pradarelli J, Mondello SE, Moritz CT. Activity-dependent plasticity and spinal cord stimulation for motor recovery following spinal cord injury. Exp Neurol 2022; 357:114178. [PMID: 35878817 DOI: 10.1016/j.expneurol.2022.114178] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/22/2022] [Accepted: 07/16/2022] [Indexed: 02/07/2023]
Abstract
Spinal cord injuries lead to permanent physical impairment despite most often being anatomically incomplete disruptions of the spinal cord. Remaining connections between the brain and spinal cord create the potential for inducing neural plasticity to improve sensorimotor function, even many years after injury. This narrative review provides an overview of the current evidence for spontaneous motor recovery, activity-dependent plasticity, and interventions for restoring motor control to residual brain and spinal cord networks via spinal cord stimulation. In addition to open-loop spinal cord stimulation to promote long-term neuroplasticity, we also review a more targeted approach: closed-loop stimulation. Lastly, we review mechanisms of spinal cord neuromodulation to promote sensorimotor recovery, with the goal of advancing the field of rehabilitation for physical impairments following spinal cord injury.
Collapse
Affiliation(s)
- Soshi Samejima
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada; Department of Medicine, Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Richard Henderson
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA; Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - Jared Pradarelli
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - Sarah E Mondello
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - Chet T Moritz
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA; Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA; Center for Neurotechnology, Seattle, WA, USA; Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
32
|
Optimal peripheral nerve stimulation intensity for paired associative stimulation with high-frequency peripheral component in healthy subjects. Sci Rep 2022; 12:12466. [PMID: 35864177 PMCID: PMC9304330 DOI: 10.1038/s41598-022-16811-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 07/15/2022] [Indexed: 11/09/2022] Open
Abstract
Paired associative stimulation (PAS) with high-frequency peripheral nerve stimulation (PNS), called “high-PAS”, induces motor-evoked potential (MEP) potentiation in healthy subjects and improves muscle activity and independence in incomplete spinal cord injury patients. Data on optimal PNS intensity in PAS are scarce. In a high-PAS protocol, PNS intensity is defined as “minimal intensity required to produce F-responses”. We sought to further refine this definition and to investigate how PNS intensity affects PAS outcome. Two experiments were performed on 10 healthy subjects where MEP amplitude change was measured 0, 30, and 60 min after PAS. In the first experiment, the intensity required to achieve 7/10 persistence of F-responses was used to define PNS intensity level. In the second experiment, we used the intensity required to achieve 1/10 persistence (“baseline”). In addition, we applied this intensity at + 25%, − 25%, and − 50% levels. In the first experiment, PAS did not produce significant MEP potentiation. In the second experiment, PAS produced statistically significant MEP potentiation, with PNS intensity of “baseline” and “baseline − 25%” levels but not at + 25% or − 50% levels. In conclusion, for PAS utilizing high-frequency PNS, the intensity required to achieve 1/10 F-response persistence or the intensity 25% lower produces significant MEP potentiation in healthy subjects.
Collapse
|
33
|
Moorjani S, Walvekar S, Fetz EE, Perlmutter SI. Movement-dependent electrical stimulation for volitional strengthening of cortical connections in behaving monkeys. Proc Natl Acad Sci U S A 2022; 119:e2116321119. [PMID: 35759657 PMCID: PMC9271159 DOI: 10.1073/pnas.2116321119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/29/2022] [Indexed: 12/30/2022] Open
Abstract
Correlated activity of neurons can lead to long-term strengthening or weakening of the connections between them. In addition, the behavioral context, imparted by execution of physical movements or the presence of a reward, can modulate the plasticity induced by Hebbian mechanisms. In the present study, we have combined behavior and induced neuronal correlations to strengthen connections in the motor cortex of adult behaving monkeys. Correlated activity was induced using an electrical-conditioning protocol in which stimuli gated by voluntary movements were used to produce coactivation of neurons at motor-cortical sites involved in those movements. Delivery of movement-dependent stimulation resulted in small increases in the strength of associated cortical connections immediately after conditioning. Remarkably, when paired with further repetition of the movements that gated the conditioning stimuli, there were substantially larger gains in the strength of cortical connections, which occurred in a use-dependent manner, without delivery of additional conditioning stimulation. In the absence of such movements, little change was observed in the strength of motor-cortical connections. Performance of the motor behavior in the absence of conditioning also did not produce any changes in connectivity. Our results show that combining movement-gated stimulation with further natural use of the "conditioned" pathways after stimulation ends can produce use-dependent strengthening of connections in adult primates, highlighting an important role for behavior in cortical plasticity. Our data also provide strong support for combining movement-gated stimulation with use-dependent physical rehabilitation for strengthening connections weakened by a stroke or spinal cord injury.
Collapse
Affiliation(s)
- Samira Moorjani
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195
- Center for Neurotechnology, University of Washington, Seattle, WA 98195
| | - Sarita Walvekar
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195
| | - Eberhard E Fetz
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195
- Center for Neurotechnology, University of Washington, Seattle, WA 98195
| | - Steve I Perlmutter
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195
- Center for Neurotechnology, University of Washington, Seattle, WA 98195
| |
Collapse
|
34
|
Brain and spinal cord paired stimulation coupled with locomotor training affects polysynaptic flexion reflex circuits in human spinal cord injury. Exp Brain Res 2022; 240:1687-1699. [PMID: 35513720 DOI: 10.1007/s00221-022-06375-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 04/15/2022] [Indexed: 12/19/2022]
Abstract
Neurorecovery from locomotor training is well established in human spinal cord injury (SCI). However, neurorecovery resulting from combined interventions has not been widely studied. In this randomized clinical trial, we established the tibialis anterior (TA) flexion reflex modulation pattern when transcranial magnetic stimulation (TMS) of the primary motor cortex was paired with transcutaneous spinal cord (transspinal) stimulation over the thoracolumbar region during assisted step training. Single pulses of TMS were delivered either before (TMS-transspinal) or after (transspinal-TMS) transspinal stimulation during the stance phase of the less impaired leg. Eight individuals with chronic incomplete or complete SCI received at least 20 sessions of paired stimulation during assisted step training. Each session consisted of 240 paired stimuli delivered over 10-min blocks for 1 h during robotic-assisted step training with the Lokomat6 Pro®. Body weight support, leg guidance force and treadmill speed were adjusted based on each participant's ability to step without knee buckling or toe dragging. Both the early and late TA flexion reflex remained unaltered after TMS-transspinal and locomotor training. In contrast, the early and late TA flexion reflexes were significantly depressed during stepping after transspinal-TMS and locomotor training. Reflex changes occurred at similar slopes and intercepts before and after training. Our findings support that targeted brain and spinal cord stimulation coupled with locomotor training reorganizes the function of flexion reflex pathways, which are a part of locomotor networks, in humans with varying levels of sensorimotor function after SCI.Trial registration number NCT04624607; Registered on November 12, 2020.
Collapse
|
35
|
Thorstensen JR, Taylor JL, Kavanagh JJ. 5-HT 2 receptor antagonism reduces human motoneuron output to antidromic activation but not to stimulation of corticospinal axons. Eur J Neurosci 2022; 56:3674-3686. [PMID: 35445439 PMCID: PMC9543143 DOI: 10.1111/ejn.15672] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/19/2022] [Accepted: 04/07/2022] [Indexed: 12/01/2022]
Abstract
The intrinsic electrical properties of motoneurons strongly affect motoneuron excitability to fast-acting excitatory ionotropic inputs. Serotonin (5-HT) is a neurochemical that alters the intrinsic properties of motoneurons, whereby animal models and in vitro experiments indicate that 5-HT increases motoneuron excitability by activating 5-HT2 receptors on the somato-dendritic compartment. In the current study, we examined how antagonism of the 5-HT2 receptor affects motoneuron excitability in humans. We hypothesised that motoneuron excitability would be reduced. The 5-HT2 antagonist cyproheptadine was administered to ten healthy participants in a double-blinded, placebo-controlled, crossover trial. Electrical cervicomedullary stimulation was used to deliver a synchronised excitatory volley to motoneurons to elicit cervicomedullary motor evoked potentials (CMEPs) in the surface electromyography (EMG) signal of the resting biceps brachii. Likewise, electrical peripheral nerve stimulation was used to generate antidromic spikes in motoneurons and cause recurrent discharges, which were recorded with surface EMG as F-waves in a resting hand muscle. Compared to placebo, we found that 5-HT2 antagonism reduced the amplitude and persistence of F-waves but did not affect CMEP amplitude. 5-HT2 antagonism also reduced maximal contraction strength. The reduced recurrent discharge of motoneurons with 5-HT2 antagonism suggests that 5-HT2 receptors modulate the electrical properties of the initial segment or soma to promote excitability. Conversely, as cyproheptadine did not affect motoneuron excitability to brief synaptic input, but affected maximal contractions requiring sustained input, it seems likely that the 5-HT2 mediated amplification of synaptic input at motoneuron dendrites is functionally significant only when excitatory input activates persistent inward currents.
Collapse
Affiliation(s)
- Jacob R Thorstensen
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Janet L Taylor
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia.,Neuroscience Research Australia, Sydney, Australia
| | - Justin J Kavanagh
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| |
Collapse
|
36
|
Effect of long-term paired associative stimulation on the modulation of cortical sensorimotor oscillations after spinal cord injury. Spinal Cord Ser Cases 2022; 8:38. [PMID: 35379772 PMCID: PMC8980100 DOI: 10.1038/s41394-022-00506-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 11/24/2022] Open
Abstract
Study design A prospective interventional case series. Objectives To explore changes in the modulation of cortical sensorimotor oscillations after long-term paired associative stimulation (PAS) in participants with spinal cord injury (SCI). Setting BioMag Laboratory, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland. Methods Five patients with chronic incomplete SCI received unilateral spinal PAS to upper limb for 16–22 days. Changes in the modulation of sensorimotor oscillations in response to tactile stimulus and active and imaginary hand movements were assessed with magnetoencephalography recorded before and after the intervention. Results PAS restored the modulation of sensorimotor oscillations in response to active hand movement in four patients, whereas the modulation following tactile stimulation remained unaltered. The observed change was larger in the hemisphere that received PAS and preceded the clinical effect of the intervention. Conclusions Long-term spinal PAS treatment, which enhances the motor functions of SCI patients, also restores the modulation of cortical sensorimotor oscillations.
Collapse
|
37
|
Effects of paired stimulation with specific waveforms on cortical and spinal plasticity in subjects with a chronic spinal cord injury. J Formos Med Assoc 2022; 121:2044-2056. [DOI: 10.1016/j.jfma.2022.02.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/13/2021] [Accepted: 02/17/2022] [Indexed: 12/16/2022] Open
|
38
|
Jo HJ, Richardson MSA, Oudega M, Perez MA. Paired corticospinal-motoneuronal stimulation and exercise after spinal cord injury. J Spinal Cord Med 2021; 44:S23-S27. [PMID: 34779722 PMCID: PMC8604481 DOI: 10.1080/10790268.2021.1970908] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CONTEXT Rehabilitation after spinal cord injury (SCI) relies on the use of exercise training, which has limited functional gains. There is a need to develop more efficient approaches to facilitate recovery after SCI. METHODS This review focuses on a neuromodulation method where transcranial magnetic stimulation (TMS) over the primary motor cortex is paired with transcutaneous electrical stimulation over a peripheral nerve to induce plasticity at corticospinal-motoneuronal synapses. These two stimuli are applied at precise inter-stimulus intervals to reinforce corticospinal synaptic transmission using principles of spike-timing-dependent plasticity applied alone or in combination with exercise training. RESULTS Transmission in residual corticospinal axons, assessed using TMS and maximal voluntary motor output, increased after stimulation combined with exercise training in persons with SCI. There were also significant improvements in functional outcomes, including walking speed and grasping function, which persisted after 6-9 months post stimulation. Moreover, the data suggested that the effects of the stimulation protocol can be augmented with a higher number of sessions and with multiple stimulation sites in the spinal cord. CONCLUSIONS Voluntary movement is enhanced in people with SCI through the strengthening of corticospinal-motoneuronal synapses using paired stimulation. This neuromodulation technique represents a novel powerful strategy to facilitate functional recovery after SCI.
Collapse
Affiliation(s)
- Hang Jin Jo
- Shirley Ryan AbilityLab, Chicago, Illinois, USA,Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois, USA
| | | | - Martin Oudega
- Shirley Ryan AbilityLab, Chicago, Illinois, USA,Edward Jr. Hines VA Medical Center, Hines, Illinois, USA,Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, Illinois, USA,Department of Physiology, Northwestern University, Chicago, Illinois, USA
| | - Monica A. Perez
- Shirley Ryan AbilityLab, Chicago, Illinois, USA,Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois, USA,Edward Jr. Hines VA Medical Center, Hines, Illinois, USA,Correspondence to: Monica A. Perez, Arms + Hands Lab, Shirley Ryan AbilityLab, Chicago, Illinois, USA. E-mail:
| |
Collapse
|
39
|
Intensity dependency of peripheral nerve stimulation in spinal LTP induced by paired associative corticospinal-motoneuronal stimulation (PCMS). PLoS One 2021; 16:e0259931. [PMID: 34793533 PMCID: PMC8601434 DOI: 10.1371/journal.pone.0259931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/02/2021] [Indexed: 11/21/2022] Open
Abstract
Paired associative corticospinal-motoneuronal stimulation (PCMS) induces plasticity at synapses between corticospinal tracts (CSTs) and spinal motoneurons (SMs). We investigated the effects of peripheral nerve electrical stimulation (PNS) intensity on PCMS-induced plasticity. PCMS consisted of 180 paired stimuli of transcranial magnetic stimulation (TMS) over the left primary motor cortex with PNS on the right ulnar nerve at the wrist. We compared effects induced by different PNS intensities: supramaximal, twice and three times sensory threshold intensities. For evaluating efficacy of the synapse between CSTs and SMs, single-pulse TMS was delivered at cervicomedullary junction level, and cervicomedullary motor-evoked potentials (CMEPs) were recorded from the right first-dorsal interosseous muscle before and after PCMS. PCMS with the supramaximal PNS intensity increased CMEP amplitude. The facilitatory effect of PCMS with the supramaximal PNS was larger than those of PCMS with weaker PNS intensities. Sham TMS with the supramaximal PNS showed no CMEP changes after the intervention. PNS intensity of PCMS influences the magnitude of synaptic plasticity induction between the CSTs and SMs at the spinal level, and the supramaximal intensity is the best for induction of long-term potentiation-like effects. The PNS intensity may influence the number of activated SMs by axonal backpropagating pulses with PNS which must overlap with descending volleys induced by TMS.
Collapse
|
40
|
Wecht JR, Savage WM, Famodimu GO, Mendez GA, Levine JM, Maher MT, Weir JP, Wecht JM, Carmel JB, Wu YK, Harel NY. Posteroanterior Cervical Transcutaneous Spinal Cord Stimulation: Interactions with Cortical and Peripheral Nerve Stimulation. J Clin Med 2021; 10:jcm10225304. [PMID: 34830584 PMCID: PMC8623612 DOI: 10.3390/jcm10225304] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 12/27/2022] Open
Abstract
Transcutaneous spinal cord stimulation (TSCS) has demonstrated potential to beneficially modulate spinal cord motor and autonomic circuitry. We are interested in pairing cervical TSCS with other forms of nervous system stimulation to enhance synaptic plasticity in circuits serving hand function. We use a novel configuration for cervical TSCS in which the anode is placed anteriorly over ~C4–C5 and the cathode posteriorly over ~T2–T4. We measured the effects of single pulses of TSCS paired with single pulses of motor cortex or median nerve stimulation timed to arrive at the cervical spinal cord at varying intervals. In 13 participants with and 15 participants without chronic cervical spinal cord injury, we observed that subthreshold TSCS facilitates hand muscle responses to motor cortex stimulation, with a tendency toward greater facilitation when TSCS is timed to arrive at cervical synapses simultaneously or up to 10 milliseconds after cortical stimulus arrival. Single pulses of subthreshold TSCS had no effect on the amplitudes of median H-reflex responses or F-wave responses. These findings support a model in which TSCS paired with appropriately timed cortical stimulation has the potential to facilitate convergent transmission between descending motor circuits, segmental afferents, and spinal motor neurons serving the hand. Studies with larger numbers of participants and repetitively paired cortical and spinal stimulation are needed.
Collapse
Affiliation(s)
- Jaclyn R. Wecht
- James J. Peters VA Medical Center, Bronx, NY 10468, USA; (J.R.W.); (W.M.S.); (G.O.F.); (G.A.M.); (J.M.L.); (M.T.M.); (J.M.W.); (Y.-K.W.)
| | - William M. Savage
- James J. Peters VA Medical Center, Bronx, NY 10468, USA; (J.R.W.); (W.M.S.); (G.O.F.); (G.A.M.); (J.M.L.); (M.T.M.); (J.M.W.); (Y.-K.W.)
| | - Grace O. Famodimu
- James J. Peters VA Medical Center, Bronx, NY 10468, USA; (J.R.W.); (W.M.S.); (G.O.F.); (G.A.M.); (J.M.L.); (M.T.M.); (J.M.W.); (Y.-K.W.)
| | - Gregory A. Mendez
- James J. Peters VA Medical Center, Bronx, NY 10468, USA; (J.R.W.); (W.M.S.); (G.O.F.); (G.A.M.); (J.M.L.); (M.T.M.); (J.M.W.); (Y.-K.W.)
| | - Jonah M. Levine
- James J. Peters VA Medical Center, Bronx, NY 10468, USA; (J.R.W.); (W.M.S.); (G.O.F.); (G.A.M.); (J.M.L.); (M.T.M.); (J.M.W.); (Y.-K.W.)
| | - Matthew T. Maher
- James J. Peters VA Medical Center, Bronx, NY 10468, USA; (J.R.W.); (W.M.S.); (G.O.F.); (G.A.M.); (J.M.L.); (M.T.M.); (J.M.W.); (Y.-K.W.)
| | - Joseph P. Weir
- Department of Health, Sport & Exercise Sciences, University of Kansas, Lawrence, KS 66045, USA;
| | - Jill M. Wecht
- James J. Peters VA Medical Center, Bronx, NY 10468, USA; (J.R.W.); (W.M.S.); (G.O.F.); (G.A.M.); (J.M.L.); (M.T.M.); (J.M.W.); (Y.-K.W.)
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jason B. Carmel
- Department of Orthopedic Surgery, Columbia University, New York, NY 10032, USA;
| | - Yu-Kuang Wu
- James J. Peters VA Medical Center, Bronx, NY 10468, USA; (J.R.W.); (W.M.S.); (G.O.F.); (G.A.M.); (J.M.L.); (M.T.M.); (J.M.W.); (Y.-K.W.)
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Noam Y. Harel
- James J. Peters VA Medical Center, Bronx, NY 10468, USA; (J.R.W.); (W.M.S.); (G.O.F.); (G.A.M.); (J.M.L.); (M.T.M.); (J.M.W.); (Y.-K.W.)
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence:
| |
Collapse
|
41
|
Al'joboori Y, Hannah R, Lenham F, Borgas P, Kremers CJP, Bunday KL, Rothwell J, Duffell LD. The Immediate and Short-Term Effects of Transcutaneous Spinal Cord Stimulation and Peripheral Nerve Stimulation on Corticospinal Excitability. Front Neurosci 2021; 15:749042. [PMID: 34744614 PMCID: PMC8566815 DOI: 10.3389/fnins.2021.749042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022] Open
Abstract
Rehabilitative interventions involving electrical stimulation show promise for neuroplastic recovery in people living with Spinal Cord Injury (SCI). However, the understanding of how stimulation interacts with descending and spinal excitability remain unclear. In this study we compared the immediate and short-term (within a few minutes) effects of pairing Transcranial Magnetic Stimulation (TMS) with transcutaneous Spinal Cord stimulation (tSCS) and Peripheral Nerve Stimulation (PNS) on Corticospinal excitability in healthy subjects. Three separate experimental conditions were assessed. In Experiment I, paired associative stimulation (PAS) was applied, involving repeated pairing of single pulses of TMS and tSCS, either arriving simultaneously at the spinal motoneurones (PAS0ms) or slightly delayed (PAS5ms). Corticospinal and spinal excitability, and motor performance, were assessed before and after the PAS interventions in 24 subjects. Experiment II compared the immediate effects of tSCS and PNS on corticospinal excitability in 20 subjects. Experiment III compared the immediate effects of tSCS with tSCS delivered at the same stimulation amplitude but modulated with a carrier frequency (in the kHz range) on corticospinal excitability in 10 subjects. Electromyography (EMG) electrodes were placed over the Tibialis Anterior (TA) soleus (SOL) and vastus medialis (VM) muscles and stimulation electrodes (cathodes) were placed on the lumbar spine (tSCS) and lateral to the popliteal fossa (PNS). TMS over the primary motor cortex (M1) was paired with tSCS or PNS to produce Motor Evoked Potentials (MEPs) in the TA and SOL muscles. Simultaneous delivery of repetitive PAS (PAS0ms) increased corticospinal excitability and H-reflex amplitude at least 5 min after the intervention, and dorsiflexion force was increased in a force-matching task. When comparing effects on descending excitability between tSCS and PNS, a subsequent facilitation in MEPs was observed following tSCS at 30-50 ms which was not present following PNS. To a lesser extent this facilitatory effect was also observed with HF- tSCS at subthreshold currents. Here we have shown that repeated pairing of TMS and tSCS can increase corticospinal excitability when timed to arrive simultaneously at the alpha-motoneurone and can influence functional motor output. These results may be useful in optimizing stimulation parameters for neuroplasticity in people living with SCI.
Collapse
Affiliation(s)
- Yazi Al'joboori
- Department of Medical Physics & Biomedical Engineering, University College London, London, United Kingdom
| | - Ricci Hannah
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| | - Francesca Lenham
- Department of Medical Physics & Biomedical Engineering, University College London, London, United Kingdom
| | - Pia Borgas
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| | - Charlotte J P Kremers
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| | - Karen L Bunday
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom.,Psychology, School of Social Sciences, University of Westminster, London, United Kingdom
| | - John Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| | - Lynsey D Duffell
- Department of Medical Physics & Biomedical Engineering, University College London, London, United Kingdom
| |
Collapse
|
42
|
A New Paired Associative Stimulation Protocol with High-Frequency Peripheral Component and High-Intensity 20 Hz Repetitive Transcranial Magnetic Stimulation-A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111224. [PMID: 34769744 PMCID: PMC8583447 DOI: 10.3390/ijerph182111224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022]
Abstract
Paired associative stimulation (PAS) is a stimulation technique combining transcranial magnetic stimulation (TMS) and peripheral nerve stimulation (PNS) that can induce plastic changes in the human motor system. A PAS protocol consisting of a high-intensity single TMS pulse given at 100% of stimulator output (SO) and high-frequency 100-Hz PNS train, or "the high-PAS" was designed to promote corticomotoneuronal synapses. Such PAS, applied as a long-term intervention, has demonstrated therapeutic efficacy in spinal cord injury (SCI) patients. Adding a second TMS pulse, however, rendered this protocol inhibitory. The current study sought for more effective PAS parameters. Here, we added a third TMS pulse, i.e., a 20-Hz rTMS (three pulses at 96% SO) combined with high-frequency PNS (six pulses at 100 Hz). We examined the ability of the proposed stimulation paradigm to induce the potentiation of motor-evoked potentials (MEPs) in five human subjects and described the safety and tolerability of the new protocol in these subjects. In this study, rTMS alone was used as a control. In addition, we compared the efficacy of the new protocol in five subjects with two PAS protocols consisting of PNS trains of six pulses at 100 Hz combined with (a) single 100% SO TMS pulses (high-PAS) and (b) a 20-Hz rTMS at a lower intensity (three pulses at 120% RMT). The MEPs were measured immediately after, and 30 and 60 min after the stimulation. Although at 0 and 30 min there was no significant difference in the induced MEP potentiation between the new PAS protocol and the rTMS control, the MEP potentiation remained significantly higher at 60 min after the new PAS than after rTMS alone. At 60 min, the new protocol was also more effective than the two other PAS protocols. The new protocol caused strong involuntary twitches in three subjects and, therefore, its further characterization is needed before introducing it for clinical research. Additionally, its mechanism plausibly differs from PAS with high-frequency PNS that has been used in SCI patients.
Collapse
|
43
|
Johnstone A. Re-recruiting spinal motor neurons after stroke. J Physiol 2021; 599:4241-4242. [PMID: 34359095 DOI: 10.1113/jp281881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Ainslie Johnstone
- Department of Clinical and Movement Neuroscience, Institute of Neurology, University College London, London, UK
| |
Collapse
|
44
|
Guidali G, Roncoroni C, Bolognini N. Paired associative stimulations: Novel tools for interacting with sensory and motor cortical plasticity. Behav Brain Res 2021; 414:113484. [PMID: 34302877 DOI: 10.1016/j.bbr.2021.113484] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 06/10/2021] [Accepted: 07/19/2021] [Indexed: 12/26/2022]
Abstract
In the early 2000s, a novel non-invasive brain stimulation protocol, the paired associative stimulation (PAS), was introduced, allowing to induce and investigate Hebbian associative plasticity within the humans' motor system, with patterns resembling spike-timing-dependent plasticity properties found in cellular models. Since this evidence, PAS efficacy has been proved in healthy, and to a lesser extent, in clinical populations. Recently, novel 'modified' protocols targeting sensorimotor and crossmodal networks appeared in the literature. In the present work, we have reviewed recent advances using these 'modified' PAS protocols targeting sensory and motor cortical networks. To better categorize them, we propose a novel classification according to the nature of the peripheral and cortical stimulations (i.e., within-system, cross-systems, and cortico-cortical PAS). For each protocol of the categories mentioned above, we describe and discuss their main features, how they have been used to study and promote brain plasticity, and their advantages and disadvantages. Overall, current evidence suggests that these novel non-invasive brain stimulation protocols represent very promising tools to study the plastic properties of humans' sensorimotor and crossmodal networks, both in the healthy and in the damaged central nervous system.
Collapse
Affiliation(s)
- Giacomo Guidali
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Psychology & NeuroMI - Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy.
| | - Camilla Roncoroni
- Department of Psychology & NeuroMI - Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Nadia Bolognini
- Department of Psychology & NeuroMI - Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy; Laboratory of Neuropsychology, IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
45
|
Urbin MA, Collinger JL, Wittenberg GF. Corticospinal recruitment of spinal motor neurons in human stroke survivors. J Physiol 2021; 599:4357-4373. [PMID: 34021605 DOI: 10.1113/jp281311] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS Muscle weakness after stroke results from damage to corticospinal fibres that structurally and functionally connect cerebral cortex to the spinal cord. Here, we show an asymmetry in corticospinal recruitment of spinal motor neurons that is linked to maximal voluntary output of hand muscles weakened by stroke. Spike timing-dependent plasticity of synapses between corticospinal and spinal motor neurons transiently reversed recruitment failures in some survivors. These modulatory effects were strongly associated with recruitment asymmetry and hand impairment. Our findings highlight the functional relevance of spinal motor neuron recruitment by corticospinal inputs and the viability of corticospinal motor neuronal synapses for restoring activation of lower motor neurons after stroke. ABSTRACT Corticospinal input to spinal motor neurons is structurally and functionally altered by hemiparetic stroke. The pattern and extent to which corticospinal recruitment of spinal motor neurons is reorganized and whether such changes are linked to the severity of motor impairments is not well understood. Here, we performed experiments using the triple stimulation technique to quantify corticospinal recruitment of spinal motor neurons serving paretic and non-paretic intrinsic hand muscles of humans with longstanding motor impairment secondary to stroke (n = 13). We also examined whether recruitment failures could be transiently reversed by strengthening corticospinal-motoneuronal synaptic connectivity via targeted, temporally controlled non-invasive stimulation to elicit spike timing-dependent plasticity (STDP). Asymmetries were detected in corticospinal recruitment of spinal motor neurons, central conduction time and motor-evoked potential (MEP) latency. However, only recruitment asymmetry correlated with maximal voluntary motor output from the paretic hand. STDP-like effects were observed as an increase in spinal motor neuron recruitment. Control experiments to isolate the locus of plasticity demonstrated a modulation in MEPs elicited by electrical stimulation of primary motor cortex but not F-wave size or persistence, suggesting that plasticity was mediated through enhanced efficacy of residual corticospinal-motor neuronal synapses. The modulation in recruitment was strongly associated with baseline recruitment asymmetry and impairment severity. Our findings demonstrate that asymmetry in corticospinal recruitment of spinal motor neurons is directly related to impairments experienced by stroke survivors. These recruitment deficits may be partially and transiently reversed by spike timing-dependent plasticity of synapses between upper and lower motor neurons in the spinal cord, downstream of supraspinal circuits damaged by stroke.
Collapse
Affiliation(s)
- Michael A Urbin
- Human Engineering Research Laboratories, VA RR&D Center of Excellence, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA.,Rehabilitation Neural Engineering Laboratories, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jennifer L Collinger
- Human Engineering Research Laboratories, VA RR&D Center of Excellence, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA.,Rehabilitation Neural Engineering Laboratories, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - George F Wittenberg
- Human Engineering Research Laboratories, VA RR&D Center of Excellence, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA.,Rehabilitation Neural Engineering Laboratories, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
46
|
Pulverenti TS, Zaaya M, Grabowski M, Grabowski E, Islam MA, Li J, Murray LM, Knikou M. Neurophysiological Changes After Paired Brain and Spinal Cord Stimulation Coupled With Locomotor Training in Human Spinal Cord Injury. Front Neurol 2021; 12:627975. [PMID: 34040572 PMCID: PMC8141587 DOI: 10.3389/fneur.2021.627975] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/01/2021] [Indexed: 11/13/2022] Open
Abstract
Neurophysiological changes that involve activity-dependent neuroplasticity mechanisms via repeated stimulation and locomotor training are not commonly employed in research even though combination of interventions is a common clinical practice. In this randomized clinical trial, we established neurophysiological changes when transcranial magnetic stimulation (TMS) of the motor cortex was paired with transcutaneous thoracolumbar spinal (transspinal) stimulation in human spinal cord injury (SCI) delivered during locomotor training. We hypothesized that TMS delivered before transspinal (TMS-transspinal) stimulation promotes functional reorganization of spinal networks during stepping. In this protocol, TMS-induced corticospinal volleys arrive at the spinal cord at a sufficient time to interact with transspinal stimulation induced depolarization of alpha motoneurons over multiple spinal segments. We further hypothesized that TMS delivered after transspinal (transspinal-TMS) stimulation induces less pronounced effects. In this protocol, transspinal stimulation is delivered at time that allows transspinal stimulation induced action potentials to arrive at the motor cortex and affect descending motor volleys at the site of their origin. Fourteen individuals with motor incomplete and complete SCI participated in at least 25 sessions. Both stimulation protocols were delivered during the stance phase of the less impaired leg. Each training session consisted of 240 paired stimuli delivered over 10-min blocks. In transspinal-TMS, the left soleus H-reflex increased during the stance-phase and the right soleus H-reflex decreased at mid-swing. In TMS-transspinal no significant changes were found. When soleus H-reflexes were grouped based on the TMS-targeted limb, transspinal-TMS and locomotor training promoted H-reflex depression at swing phase, while TMS-transspinal and locomotor training resulted in facilitation of the soleus H-reflex at stance phase of the step cycle. Furthermore, both transspinal-TMS and TMS-transspinal paired-associative stimulation (PAS) and locomotor training promoted a more physiological modulation of motor activity and thus depolarization of motoneurons during assisted stepping. Our findings support that targeted non-invasive stimulation of corticospinal and spinal neuronal pathways coupled with locomotor training produce neurophysiological changes beneficial to stepping in humans with varying deficits of sensorimotor function after SCI.
Collapse
Affiliation(s)
- Timothy S Pulverenti
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, New York, NY, United States
| | - Morad Zaaya
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, New York, NY, United States
| | - Monika Grabowski
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, New York, NY, United States
| | - Ewelina Grabowski
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, New York, NY, United States
| | - Md Anamul Islam
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, New York, NY, United States
| | - Jeffrey Li
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, New York, NY, United States
| | - Lynda M Murray
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, New York, NY, United States
| | - Maria Knikou
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, New York, NY, United States.,Ph.D. Program in Biology and Collaborative Neuroscience Program, Graduate Center of the City University of New York and College of Staten Island, New York, NY, United States
| |
Collapse
|
47
|
Shulga A, Lioumis P, Kirveskari E, Savolainen S, Mäkelä JP. A novel paired associative stimulation protocol with a high-frequency peripheral component: A review on results in spinal cord injury rehabilitation. Eur J Neurosci 2021; 53:3242-3257. [PMID: 33738876 DOI: 10.1111/ejn.15191] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/26/2021] [Accepted: 03/12/2021] [Indexed: 12/11/2022]
Abstract
In recent decades, a multitude of therapeutic approaches has been developed for spinal cord injury (SCI), but few have progressed to regular clinical practice. Novel non-invasive, cost-effective, and feasible approaches to treat this challenging condition are needed. A novel variant of paired associative stimulation (PAS), high-PAS, consists of non-invasive high-intensity transcranial magnetic stimulation (TMS) and non-invasive high-frequency electrical peripheral nerve stimulation (PNS). We observed a therapeutic effect of high-PAS in 20 patients with incomplete SCI with wide range of injury severity, age, and time since injury. Tetraplegic and paraplegic, traumatic, and neurological SCI patients benefited from upper- or lower-limb high-PAS. We observed increases in manual motor scores (MMT) of upper and lower limbs, functional hand tests, walking tests, and measures of functional independence. We also optimized PAS settings in several studies in healthy subjects and began elucidating the mechanisms of therapeutic action. The scope of this review is to describe the clinical experience gained with this novel PAS approach. This review is focused on the summary of our results and observations and the methodological considerations for researchers and clinicians interested in adopting and further developing this new method.
Collapse
Affiliation(s)
- Anastasia Shulga
- BioMag Laboratory, HUS Diagnostic Center, Helsinki University Hospital, University of Helsinki and Aalto University School of Science, Helsinki, Finland.,Department of Physical and Rehabilitation Medicine, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Pantelis Lioumis
- BioMag Laboratory, HUS Diagnostic Center, Helsinki University Hospital, University of Helsinki and Aalto University School of Science, Helsinki, Finland.,Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Erika Kirveskari
- BioMag Laboratory, HUS Diagnostic Center, Helsinki University Hospital, University of Helsinki and Aalto University School of Science, Helsinki, Finland.,HUS Medical Imaging Center, Clinical Neurophysiology; Clinical Neurosciences, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Sarianna Savolainen
- BioMag Laboratory, HUS Diagnostic Center, Helsinki University Hospital, University of Helsinki and Aalto University School of Science, Helsinki, Finland.,Validia Rehabilitation Center, Helsinki, Finland
| | - Jyrki P Mäkelä
- BioMag Laboratory, HUS Diagnostic Center, Helsinki University Hospital, University of Helsinki and Aalto University School of Science, Helsinki, Finland
| |
Collapse
|
48
|
Islam MA, Pulverenti TS, Knikou M. Neuronal Actions of Transspinal Stimulation on Locomotor Networks and Reflex Excitability During Walking in Humans With and Without Spinal Cord Injury. Front Hum Neurosci 2021; 15:620414. [PMID: 33679347 PMCID: PMC7930001 DOI: 10.3389/fnhum.2021.620414] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/25/2021] [Indexed: 12/03/2022] Open
Abstract
This study investigated the neuromodulatory effects of transspinal stimulation on soleus H-reflex excitability and electromyographic (EMG) activity during stepping in humans with and without spinal cord injury (SCI). Thirteen able-bodied adults and 5 individuals with SCI participated in the study. EMG activity from both legs was determined for steps without, during, and after a single-pulse or pulse train transspinal stimulation delivered during stepping randomly at different phases of the step cycle. The soleus H-reflex was recorded in both subject groups under control conditions and following single-pulse transspinal stimulation at an individualized exactly similar positive and negative conditioning-test interval. The EMG activity was decreased in both subject groups at the steps during transspinal stimulation, while intralimb and interlimb coordination were altered only in SCI subjects. At the steps immediately after transspinal stimulation, the physiological phase-dependent EMG modulation pattern remained unaffected in able-bodied subjects. The conditioned soleus H-reflex was depressed throughout the step cycle in both subject groups. Transspinal stimulation modulated depolarization of motoneurons over multiple segments, limb coordination, and soleus H-reflex excitability during assisted stepping. The soleus H-reflex depression may be the result of complex spinal inhibitory interneuronal circuits activated by transspinal stimulation and collision between orthodromic and antidromic volleys in the peripheral mixed nerve. The soleus H-reflex depression by transspinal stimulation suggests a potential application for normalization of spinal reflex excitability after SCI.
Collapse
Affiliation(s)
- Md. Anamul Islam
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, United States
| | - Timothy S. Pulverenti
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, United States
| | - Maria Knikou
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, United States
- PhD Program in Biology and Collaborative Neuroscience Program, Graduate Center of the City University of New York and College of Staten Island, New York, NY, United States
| |
Collapse
|
49
|
Huot-Lavoie M, Ethier C, Ting W, Burns D. Assessment of Corticospinal Excitability in Awake Rodents Using EMG-Controlled Intracortical Stimulation. Bio Protoc 2021; 11:e4267. [DOI: 10.21769/bioprotoc.4267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/18/2021] [Accepted: 07/29/2021] [Indexed: 11/02/2022] Open
|
50
|
Rossi S, Antal A, Bestmann S, Bikson M, Brewer C, Brockmöller J, Carpenter LL, Cincotta M, Chen R, Daskalakis JD, Di Lazzaro V, Fox MD, George MS, Gilbert D, Kimiskidis VK, Koch G, Ilmoniemi RJ, Lefaucheur JP, Leocani L, Lisanby SH, Miniussi C, Padberg F, Pascual-Leone A, Paulus W, Peterchev AV, Quartarone A, Rotenberg A, Rothwell J, Rossini PM, Santarnecchi E, Shafi MM, Siebner HR, Ugawa Y, Wassermann EM, Zangen A, Ziemann U, Hallett M. Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: Expert Guidelines. Clin Neurophysiol 2021; 132:269-306. [PMID: 33243615 PMCID: PMC9094636 DOI: 10.1016/j.clinph.2020.10.003] [Citation(s) in RCA: 713] [Impact Index Per Article: 178.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
This article is based on a consensus conference, promoted and supported by the International Federation of Clinical Neurophysiology (IFCN), which took place in Siena (Italy) in October 2018. The meeting intended to update the ten-year-old safety guidelines for the application of transcranial magnetic stimulation (TMS) in research and clinical settings (Rossi et al., 2009). Therefore, only emerging and new issues are covered in detail, leaving still valid the 2009 recommendations regarding the description of conventional or patterned TMS protocols, the screening of subjects/patients, the need of neurophysiological monitoring for new protocols, the utilization of reference thresholds of stimulation, the managing of seizures and the list of minor side effects. New issues discussed in detail from the meeting up to April 2020 are safety issues of recently developed stimulation devices and pulse configurations; duties and responsibility of device makers; novel scenarios of TMS applications such as in the neuroimaging context or imaging-guided and robot-guided TMS; TMS interleaved with transcranial electrical stimulation; safety during paired associative stimulation interventions; and risks of using TMS to induce therapeutic seizures (magnetic seizure therapy). An update on the possible induction of seizures, theoretically the most serious risk of TMS, is provided. It has become apparent that such a risk is low, even in patients taking drugs acting on the central nervous system, at least with the use of traditional stimulation parameters and focal coils for which large data sets are available. Finally, new operational guidelines are provided for safety in planning future trials based on traditional and patterned TMS protocols, as well as a summary of the minimal training requirements for operators, and a note on ethics of neuroenhancement.
Collapse
Affiliation(s)
- Simone Rossi
- Department of Scienze Mediche, Chirurgiche e Neuroscienze, Unit of Neurology and Clinical Neurophysiology, Brain Investigation and Neuromodulation Lab (SI-BIN Lab), University of Siena, Italy.
| | - Andrea Antal
- Department of Clinical Neurophysiology, University Medical Center, Georg-August University of Goettingen, Germany; Institue of Medical Psychology, Otto-Guericke University Magdeburg, Germany
| | - Sven Bestmann
- Department of Movement and Clinical Neurosciences, UCL Queen Square Institute of Neurology, London, UK and Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Carmen Brewer
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jürgen Brockmöller
- Department of Clinical Pharmacology, University Medical Center, Georg-August University of Goettingen, Germany
| | - Linda L Carpenter
- Butler Hospital, Brown University Department of Psychiatry and Human Behavior, Providence, RI, USA
| | - Massimo Cincotta
- Unit of Neurology of Florence - Central Tuscany Local Health Authority, Florence, Italy
| | - Robert Chen
- Krembil Research Institute and Division of Neurology, Department of Medicine, University of Toronto, Canada
| | - Jeff D Daskalakis
- Center for Addiction and Mental Health (CAMH), University of Toronto, Canada
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico, Roma, Italy
| | - Michael D Fox
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Mark S George
- Medical University of South Carolina, Charleston, SC, USA
| | - Donald Gilbert
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Vasilios K Kimiskidis
- Laboratory of Clinical Neurophysiology, Aristotle University of Thessaloniki, AHEPA University Hospital, Greece
| | | | - Risto J Ilmoniemi
- Department of Neuroscience and Biomedical Engineering (NBE), Aalto University School of Science, Aalto, Finland
| | - Jean Pascal Lefaucheur
- EA 4391, ENT Team, Faculty of Medicine, Paris Est Creteil University (UPEC), Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, Assistance Publique Hôpitaux de Paris, (APHP), Créteil, France
| | - Letizia Leocani
- Department of Neurology, Institute of Experimental Neurology (INSPE), IRCCS-San Raffaele Hospital, Vita-Salute San Raffaele University, Milano, Italy
| | - Sarah H Lisanby
- National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD, USA; Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Carlo Miniussi
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Center for Memory Health, Hebrew SeniorLife, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Guttmann Brain Health Institut, Institut Guttmann, Universitat Autonoma Barcelona, Spain
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center, Georg-August University of Goettingen, Germany
| | - Angel V Peterchev
- Departments of Psychiatry & Behavioral Sciences, Biomedical Engineering, Electrical & Computer Engineering, and Neurosurgery, Duke University, Durham, NC, USA
| | - Angelo Quartarone
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Alexander Rotenberg
- Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - John Rothwell
- Department of Movement and Clinical Neurosciences, UCL Queen Square Institute of Neurology, London, UK and Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Paolo M Rossini
- Department of Neuroscience and Rehabilitation, IRCCS San Raffaele-Pisana, Roma, Italy
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Mouhsin M Shafi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark; Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yoshikatzu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Eric M Wassermann
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Abraham Zangen
- Zlotowski Center of Neuroscience, Ben Gurion University, Beer Sheva, Israel
| | - Ulf Ziemann
- Department of Neurology & Stroke, and Hertie-Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|